organic compounds
1,3,5,7-Tetrabromoadamantane
aDepartment of Chemistry, Provincial Key Laboratory of Characteristic Resources Utilization of Gansu Corridor, Hexi University, Zhangye 734000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Key Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Gansu Key Laboratory of Polymer Materials, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: weitaibao@126.com
In the pyramidal-shaped molecule of the title compound, C10H12Br4, the four terminal Br—C bond distances are nearly identical, ranging from 1.964 (4) to 1.974 (4) Å. The Br⋯Br distance of 3.6553 (7) Å indicates van der Waals contacts between molecules in the crystal structure.
Related literature
For applications of adamantane compounds, see: Kim et al. (2001); Kozhushkov et al. (2005); Li et al. (2003). For related structures, see: Pedireddi et al. (1994); Reddy et al. (1995). For the synthesis, see: Murray et al. (1989); Migulin & Menger (2001).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810054474/xu5115sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810054474/xu5115Isup2.hkl
The compound was prepared in the procudure reported by Murray et al. (1989) and by Migulin & Menger (2001). Adamantane (27.0 g, 0.2 mol) was added portionwise over 30 min to a stirred mixture of bromine (350 g, 2.2 mol) and anhydrous aluminium chloride (27.0 g, 0.2 mol) at 278 to 283 K. The mixture was heated to 363 K over a period of 1 h and held at that temperature for 24 h. Hydrogen bromide was evolved copiously during the addition and heating. Excess bromine (180 g) was distilled on the water bath. The residue was triturated with aqueous sodium sulfite (to remove excess bromine) with hydrochloric acid added (to dissolve aluminium salts). The solids were removed by filtration, washed, air-dried, and recrystallization from 1200 ml of glacial acetic acid.
The H atoms were placed at calculated positions with C—H = 0.97 Å and refined in riding model approximation with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H12Br4 | F(000) = 848 |
Mr = 451.84 | Dx = 2.343 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2005 reflections |
a = 11.7669 (4) Å | θ = 2.6–25.9° |
b = 9.0612 (3) Å | µ = 12.53 mm−1 |
c = 12.1493 (4) Å | T = 296 K |
β = 98.529 (2)° | Block, colourless |
V = 1281.06 (7) Å3 | 0.35 × 0.32 × 0.24 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2511 independent reflections |
Radiation source: fine-focus sealed tube | 1892 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −13→14 |
Tmin = 0.097, Tmax = 0.153 | k = −11→9 |
7087 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0333P)2 + 0.419P] where P = (Fo2 + 2Fc2)/3 |
2511 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
C10H12Br4 | V = 1281.06 (7) Å3 |
Mr = 451.84 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.7669 (4) Å | µ = 12.53 mm−1 |
b = 9.0612 (3) Å | T = 296 K |
c = 12.1493 (4) Å | 0.35 × 0.32 × 0.24 mm |
β = 98.529 (2)° |
Bruker APEXII CCD diffractometer | 2511 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1892 reflections with I > 2σ(I) |
Tmin = 0.097, Tmax = 0.153 | Rint = 0.047 |
7087 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.70 e Å−3 |
2511 reflections | Δρmin = −0.67 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.09687 (5) | 0.62981 (5) | 0.32537 (5) | 0.05014 (17) | |
Br2 | 1.16582 (4) | 0.01485 (5) | 0.39605 (5) | 0.05204 (18) | |
Br3 | 0.71851 (4) | 0.26097 (6) | 0.35978 (5) | 0.05166 (17) | |
Br4 | 0.94466 (5) | 0.22452 (6) | −0.02140 (4) | 0.04818 (16) | |
C1 | 1.0321 (4) | 0.4324 (5) | 0.2896 (4) | 0.0313 (10) | |
C2 | 1.1152 (4) | 0.3177 (5) | 0.3482 (4) | 0.0366 (11) | |
H2A | 1.1892 | 0.3251 | 0.3226 | 0.044* | |
H2B | 1.1262 | 0.3336 | 0.4280 | 0.044* | |
C3 | 1.0625 (3) | 0.1664 (4) | 0.3203 (4) | 0.0311 (10) | |
C4 | 0.9471 (4) | 0.1532 (5) | 0.3643 (4) | 0.0365 (11) | |
H4A | 0.9144 | 0.0558 | 0.3487 | 0.044* | |
H4B | 0.9576 | 0.1691 | 0.4441 | 0.044* | |
C5 | 0.8681 (4) | 0.2707 (5) | 0.3050 (4) | 0.0335 (10) | |
C6 | 0.9174 (4) | 0.4244 (5) | 0.3321 (4) | 0.0352 (11) | |
H6A | 0.8656 | 0.4991 | 0.2963 | 0.042* | |
H6B | 0.9279 | 0.4411 | 0.4118 | 0.042* | |
C7 | 0.8488 (3) | 0.2456 (5) | 0.1789 (4) | 0.0341 (11) | |
H7A | 0.8154 | 0.1490 | 0.1614 | 0.041* | |
H7B | 0.7971 | 0.3198 | 0.1422 | 0.041* | |
C8 | 0.9661 (4) | 0.2567 (4) | 0.1403 (4) | 0.0312 (10) | |
C9 | 1.0165 (4) | 0.4106 (5) | 0.1642 (4) | 0.0329 (10) | |
H9A | 1.0899 | 0.4188 | 0.1373 | 0.039* | |
H9B | 0.9650 | 0.4848 | 0.1274 | 0.039* | |
C10 | 1.0470 (4) | 0.1384 (4) | 0.1955 (4) | 0.0351 (11) | |
H10A | 1.1204 | 0.1438 | 0.1685 | 0.042* | |
H10B | 1.0145 | 0.0411 | 0.1787 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0643 (4) | 0.0367 (3) | 0.0492 (3) | −0.0179 (2) | 0.0078 (3) | −0.0076 (2) |
Br2 | 0.0501 (3) | 0.0462 (3) | 0.0589 (4) | 0.0088 (2) | 0.0049 (3) | 0.0190 (3) |
Br3 | 0.0371 (3) | 0.0639 (3) | 0.0582 (4) | −0.0055 (2) | 0.0214 (3) | −0.0025 (3) |
Br4 | 0.0573 (3) | 0.0577 (3) | 0.0292 (3) | −0.0008 (2) | 0.0054 (2) | −0.0053 (2) |
C1 | 0.033 (2) | 0.026 (2) | 0.035 (3) | −0.0085 (18) | 0.005 (2) | −0.004 (2) |
C2 | 0.031 (2) | 0.046 (3) | 0.032 (3) | −0.006 (2) | 0.002 (2) | −0.001 (2) |
C3 | 0.030 (2) | 0.028 (2) | 0.034 (3) | 0.0008 (18) | 0.002 (2) | 0.007 (2) |
C4 | 0.043 (3) | 0.039 (3) | 0.029 (3) | −0.007 (2) | 0.009 (2) | 0.003 (2) |
C5 | 0.030 (2) | 0.036 (2) | 0.036 (3) | −0.0030 (19) | 0.012 (2) | −0.002 (2) |
C6 | 0.042 (3) | 0.032 (2) | 0.032 (3) | 0.000 (2) | 0.005 (2) | −0.007 (2) |
C7 | 0.029 (2) | 0.037 (2) | 0.036 (3) | −0.0058 (19) | 0.006 (2) | −0.001 (2) |
C8 | 0.038 (2) | 0.034 (2) | 0.020 (2) | −0.0029 (19) | −0.001 (2) | −0.0001 (19) |
C9 | 0.036 (2) | 0.034 (2) | 0.028 (2) | −0.0040 (19) | 0.005 (2) | 0.003 (2) |
C10 | 0.037 (2) | 0.031 (2) | 0.039 (3) | −0.0036 (19) | 0.010 (2) | −0.004 (2) |
Br1—C1 | 1.967 (4) | C4—H4B | 0.9700 |
Br2—C3 | 1.969 (4) | C5—C6 | 1.526 (6) |
Br3—C5 | 1.974 (4) | C5—C7 | 1.532 (6) |
Br4—C8 | 1.964 (4) | C6—H6A | 0.9700 |
C1—C6 | 1.517 (5) | C6—H6B | 0.9700 |
C1—C9 | 1.520 (6) | C7—C8 | 1.525 (6) |
C1—C2 | 1.529 (6) | C7—H7A | 0.9700 |
C2—C3 | 1.522 (6) | C7—H7B | 0.9700 |
C2—H2A | 0.9700 | C8—C10 | 1.522 (6) |
C2—H2B | 0.9700 | C8—C9 | 1.527 (6) |
C3—C10 | 1.522 (6) | C9—H9A | 0.9700 |
C3—C4 | 1.537 (6) | C9—H9B | 0.9700 |
C4—C5 | 1.522 (6) | C10—H10A | 0.9700 |
C4—H4A | 0.9700 | C10—H10B | 0.9700 |
C6—C1—C9 | 110.7 (4) | C1—C6—C5 | 107.4 (3) |
C6—C1—C2 | 110.4 (4) | C1—C6—H6A | 110.2 |
C9—C1—C2 | 110.6 (3) | C5—C6—H6A | 110.2 |
C6—C1—Br1 | 107.6 (3) | C1—C6—H6B | 110.2 |
C9—C1—Br1 | 109.0 (3) | C5—C6—H6B | 110.2 |
C2—C1—Br1 | 108.4 (3) | H6A—C6—H6B | 108.5 |
C3—C2—C1 | 107.3 (3) | C8—C7—C5 | 107.0 (3) |
C3—C2—H2A | 110.3 | C8—C7—H7A | 110.3 |
C1—C2—H2A | 110.3 | C5—C7—H7A | 110.3 |
C3—C2—H2B | 110.3 | C8—C7—H7B | 110.3 |
C1—C2—H2B | 110.3 | C5—C7—H7B | 110.3 |
H2A—C2—H2B | 108.5 | H7A—C7—H7B | 108.6 |
C2—C3—C10 | 110.9 (4) | C10—C8—C7 | 110.7 (3) |
C2—C3—C4 | 110.1 (3) | C10—C8—C9 | 111.0 (3) |
C10—C3—C4 | 110.6 (4) | C7—C8—C9 | 110.2 (3) |
C2—C3—Br2 | 108.7 (3) | C10—C8—Br4 | 108.4 (3) |
C10—C3—Br2 | 108.9 (3) | C7—C8—Br4 | 108.1 (3) |
C4—C3—Br2 | 107.4 (3) | C9—C8—Br4 | 108.3 (3) |
C5—C4—C3 | 106.9 (3) | C1—C9—C8 | 107.2 (3) |
C5—C4—H4A | 110.3 | C1—C9—H9A | 110.3 |
C3—C4—H4A | 110.3 | C8—C9—H9A | 110.3 |
C5—C4—H4B | 110.3 | C1—C9—H9B | 110.3 |
C3—C4—H4B | 110.3 | C8—C9—H9B | 110.3 |
H4A—C4—H4B | 108.6 | H9A—C9—H9B | 108.5 |
C4—C5—C6 | 110.5 (4) | C8—C10—C3 | 107.3 (3) |
C4—C5—C7 | 111.1 (3) | C8—C10—H10A | 110.3 |
C6—C5—C7 | 110.3 (4) | C3—C10—H10A | 110.3 |
C4—C5—Br3 | 108.8 (3) | C8—C10—H10B | 110.3 |
C6—C5—Br3 | 107.3 (3) | C3—C10—H10B | 110.3 |
C7—C5—Br3 | 108.9 (3) | H10A—C10—H10B | 108.5 |
C6—C1—C2—C3 | 61.7 (5) | C4—C5—C7—C8 | −61.2 (4) |
C9—C1—C2—C3 | −61.2 (4) | C6—C5—C7—C8 | 61.6 (4) |
Br1—C1—C2—C3 | 179.3 (3) | Br3—C5—C7—C8 | 179.0 (3) |
C1—C2—C3—C10 | 61.1 (4) | C5—C7—C8—C10 | 61.3 (4) |
C1—C2—C3—C4 | −61.7 (5) | C5—C7—C8—C9 | −61.9 (4) |
C1—C2—C3—Br2 | −179.2 (3) | C5—C7—C8—Br4 | 179.8 (3) |
C2—C3—C4—C5 | 61.8 (5) | C6—C1—C9—C8 | −61.7 (4) |
C10—C3—C4—C5 | −61.2 (4) | C2—C1—C9—C8 | 61.1 (4) |
Br2—C3—C4—C5 | −179.9 (3) | Br1—C1—C9—C8 | −179.9 (3) |
C3—C4—C5—C6 | −61.7 (4) | C10—C8—C9—C1 | −61.1 (4) |
C3—C4—C5—C7 | 61.0 (4) | C7—C8—C9—C1 | 61.9 (4) |
C3—C4—C5—Br3 | −179.2 (3) | Br4—C8—C9—C1 | 180.0 (3) |
C9—C1—C6—C5 | 61.4 (5) | C7—C8—C10—C3 | −62.0 (4) |
C2—C1—C6—C5 | −61.4 (5) | C9—C8—C10—C3 | 60.8 (4) |
Br1—C1—C6—C5 | −179.6 (3) | Br4—C8—C10—C3 | 179.7 (3) |
C4—C5—C6—C1 | 61.8 (5) | C2—C3—C10—C8 | −60.8 (4) |
C7—C5—C6—C1 | −61.3 (4) | C4—C3—C10—C8 | 61.7 (4) |
Br3—C5—C6—C1 | −179.7 (3) | Br2—C3—C10—C8 | 179.5 (3) |
Experimental details
Crystal data | |
Chemical formula | C10H12Br4 |
Mr | 451.84 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 11.7669 (4), 9.0612 (3), 12.1493 (4) |
β (°) | 98.529 (2) |
V (Å3) | 1281.06 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 12.53 |
Crystal size (mm) | 0.35 × 0.32 × 0.24 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.097, 0.153 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7087, 2511, 1892 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.077, 1.01 |
No. of reflections | 2511 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.67 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors thank the National Natural Science Foundation of China (grant No. 20671077) for financial support.
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kim, J., Chen, B., Reineke, T. M., Li, H., Eddaoudi, M., Moler, D. B., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 8239–8247. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kozhushkov, S. I., Yufit, D. S., Boese, R., Bläser, D., Schreiner, P. R. & de Meijere, A. (2005). Eur. J. Org. Chem. 1409–1415. Google Scholar
Li, Q., Rukavishnikov, A. V., Petukhov, P. A., Zaikova, T. O., Jin, C. & Keana, J. F. W. (2003). J. Org. Chem. 68, 4862–4869. Web of Science CrossRef PubMed CAS Google Scholar
Migulin, V. A. & Menger, F. M. (2001). Langmuir, 17, 1324–1327. Web of Science CSD CrossRef CAS Google Scholar
Murray, R. W., Rajadhyaksha, S. N. & Mohan, L. (1989). J. Org. Chem. 54, 5783–5785. CrossRef CAS Web of Science Google Scholar
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360. CSD CrossRef Web of Science Google Scholar
Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1995). J. Chem. Soc. Chem. Commun. pp. 339–340. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Derivatives of adamantane attract a broad interdisciplinary interest as rigid molecular scaffolds for sustaining the structures of polyfunctional species, which find various applications in the chemistry of supramolecular systems, macromolecules, dendrimers and polymers (Kim et al., 2001; Kozhushkov et al., 2005; Li et al., 2003). Thus, adamantanes substituted in the four available bridgehead positions represent a family of rigid tetrahedral building blocks for the synthesis of hydrogen and coordination-bonded framework polymers, and they are paradigmatic for the general principles of crystal design.
The asymmetric unit contain only a 1,3,5,7-Tetrabromoadamantane molecule. The molecular structure is shown in Fig. 1. The conformation of the 1,3,5,7-Tetrabromoadamantane unit is very similar to the conformation in the crystal structure of adamantane and 1,3,5,7–tetraiodoadamantane (Pedireddi et al., 1994; Reddy et al., 1995), with four nearly identical C–Br bons distance [1.967 (4), 1.969 (4), 1.974 (4), 1.964 (4) Å].
In the crystal structure, the intermolecular Br···Br distance is 3.655, 3.724, 3.884, 3.962 Å, respectively. Each molecule is joined to two or three others with Br···Br interactions leading to the crystal packing in a supramolecular 3-dimentional network as shown in Fig. 2.