organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(2-iso­propyl-2H-tetra­zol-5-yl)phen­yl]di­methyl­silane

aSchool of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu Road, Jinan, People's Republic of China
*Correspondence e-mail: fsy@sdu.edu.cn

(Received 8 December 2010; accepted 5 January 2011; online 12 January 2011)

The title compound, C22H28N8Si, has crystallographic 2 symmetry with the Si atom located on a twofold rotation axis. The tetra­zole ring is oriented at a dihedral angle of 5.32 (18)° with respect to the benzene ring. A C—H⋯π inter­action occurs between adjacent mol­ecules in the crystal structure.

Related literature

For applications of tetra­zole compounds, see: Bhandari et al. (2000[Bhandari, S., Mahon, M. F., Molloy, K. C., Palmer, J. S. & Sayers, S. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1053-1060.]). For the synthesis of tetra­zole derivatives, see: Demko & Sharpless (2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.]).

[Scheme 1]

Experimental

Crystal data
  • C22H28N8Si

  • Mr = 432.61

  • Orthorhombic, P b c n

  • a = 7.2722 (14) Å

  • b = 11.536 (2) Å

  • c = 28.444 (6) Å

  • V = 2386.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.46 × 0.37 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.991

  • 12923 measured reflections

  • 2613 independent reflections

  • 1827 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.207

  • S = 1.14

  • 2613 reflections

  • 144 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the tetra­zole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9BCgi 0.96 2.86 3.738 (5) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the application of tetrazoles in coordination chemistry, medicinal chemistry and material science (Bhandari et al., 2000), series of organic compounds with tetrazole group have been synthesized through different methods. Since a safe, convenient and envrironmentally friendly procedure for the synthesis of 5-substituted 1H-tetrazoles in water was reported by Demko and Sharpless (2001), synthesis of such compounds has been developed rapidly. However, due to the difficult in synthesis, tetrazole functional silane was never reported to our best knowledge. Here, we reported the synthesis and crystal structure of the title compound(I), namely, bis(4-(2-isopropyl-2H-tetrazol- 5-yl)phenyl)dimethylsilane.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The phenyl and tetrazole rings are not coplanar, and the two rings twisted to each other at a dihedral angle of 5.32 (18)°. The crystal packing is stablized by C—H···π interaction (Table 1).

Related literature top

For applications of tetrazole compounds, see: Bhandari et al. (2000). For the synthesis of tetrazole derivatives, see: Demko & Sharpless (2001).

Experimental top

Tert-butyl lithium (4 mmol) in 3.08 ml n-pentane solution and 5-(4-bromophenyl)-2-isopropyl-2H-tetrazole (0.54 g, 2 mmol) were reacted at 195 K in 20 ml e ther. To the resulted solution was added dimethyldichlorosilane (0.13 g, 1 mmol), the solution was warmed slowly to room temperature and stirred overnight. Then the solution was filtered. The volatiles were removed from the resulting filtrate by vacuum distillation. The residue was purified by column chromatography using ethyl acetate/n-hexane as eluent to afford the pure compound. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation methanol solvent.

Refinement top

The H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
Bis[4-(2-isopropyl-2H-tetrazol-5-yl)phenyl]dimethylsilane top
Crystal data top
C22H28N8SiF(000) = 920
Mr = 432.61Dx = 1.204 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1662 reflections
a = 7.2722 (14) Åθ = 2.9–20.6°
b = 11.536 (2) ŵ = 0.12 mm1
c = 28.444 (6) ÅT = 298 K
V = 2386.2 (8) Å3Plate, colourless
Z = 40.46 × 0.37 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2613 independent reflections
Radiation source: fine-focus sealed tube1827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.945, Tmax = 0.991k = 1410
12923 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0693P)2 + 1.6746P]
where P = (Fo2 + 2Fc2)/3
2613 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H28N8SiV = 2386.2 (8) Å3
Mr = 432.61Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 7.2722 (14) ŵ = 0.12 mm1
b = 11.536 (2) ÅT = 298 K
c = 28.444 (6) Å0.46 × 0.37 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2613 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1827 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.991Rint = 0.049
12923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.14Δρmax = 0.32 e Å3
2613 reflectionsΔρmin = 0.19 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.00000.80602 (11)0.25000.0536 (4)
N10.5087 (4)0.4553 (2)0.40351 (9)0.0610 (8)
N20.5050 (4)0.3688 (2)0.43454 (10)0.0634 (8)
N30.3420 (5)0.3270 (3)0.44279 (12)0.0804 (10)
N40.2291 (4)0.3870 (3)0.41648 (11)0.0748 (9)
C10.1069 (4)0.7079 (3)0.29478 (10)0.0473 (7)
C20.2904 (5)0.7098 (3)0.30746 (12)0.0600 (9)
H20.36680.76550.29420.072*
C30.3639 (5)0.6321 (3)0.33902 (12)0.0604 (9)
H30.48830.63610.34650.072*
C40.2560 (4)0.5490 (3)0.35956 (10)0.0489 (8)
C50.0720 (5)0.5455 (3)0.34793 (12)0.0679 (10)
H50.00420.49030.36170.082*
C60.0004 (5)0.6231 (3)0.31617 (12)0.0663 (10)
H60.12390.61860.30870.080*
C70.3320 (5)0.4640 (3)0.39285 (10)0.0512 (8)
C80.6736 (6)0.3243 (3)0.45759 (14)0.0759 (11)
H80.63170.27260.48280.091*
C90.7768 (6)0.4185 (4)0.48099 (16)0.0952 (15)
H9A0.87320.38590.49990.143*
H9B0.69490.46220.50070.143*
H9C0.82920.46870.45760.143*
C100.7788 (6)0.2512 (4)0.42484 (17)0.1005 (15)
H10A0.69970.19250.41200.151*
H10B0.87880.21510.44130.151*
H10C0.82640.29820.39980.151*
C110.1814 (6)0.8966 (3)0.22270 (15)0.0823 (13)
H11A0.27150.84740.20820.123*
H11B0.23940.94310.24640.123*
H11C0.12730.94610.19940.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0603 (8)0.0454 (7)0.0552 (7)0.0000.0171 (6)0.000
N10.0659 (18)0.0600 (18)0.0569 (16)0.0010 (15)0.0129 (14)0.0044 (14)
N20.081 (2)0.0553 (17)0.0538 (16)0.0102 (16)0.0108 (16)0.0096 (13)
N30.084 (2)0.080 (2)0.078 (2)0.009 (2)0.0036 (19)0.0279 (18)
N40.073 (2)0.080 (2)0.071 (2)0.0060 (17)0.0105 (17)0.0253 (18)
C10.0533 (18)0.0454 (17)0.0431 (15)0.0011 (14)0.0056 (14)0.0048 (14)
C20.055 (2)0.054 (2)0.071 (2)0.0136 (16)0.0133 (17)0.0106 (17)
C30.0481 (19)0.063 (2)0.070 (2)0.0021 (17)0.0174 (16)0.0072 (18)
C40.0549 (18)0.0506 (18)0.0413 (15)0.0002 (14)0.0045 (14)0.0031 (14)
C50.058 (2)0.079 (3)0.066 (2)0.0155 (18)0.0068 (18)0.021 (2)
C60.0496 (19)0.084 (3)0.065 (2)0.0095 (19)0.0155 (17)0.0157 (19)
C70.061 (2)0.0526 (19)0.0403 (15)0.0018 (15)0.0083 (15)0.0028 (15)
C80.090 (3)0.071 (3)0.067 (2)0.014 (2)0.018 (2)0.012 (2)
C90.105 (3)0.078 (3)0.103 (3)0.013 (3)0.047 (3)0.014 (3)
C100.089 (3)0.094 (3)0.119 (4)0.026 (3)0.008 (3)0.022 (3)
C110.088 (3)0.073 (3)0.085 (3)0.024 (2)0.025 (2)0.028 (2)
Geometric parameters (Å, º) top
Si1—C111.853 (4)C4—C71.471 (4)
Si1—C11i1.853 (4)C5—C61.374 (5)
Si1—C1i1.873 (3)C5—H50.9300
Si1—C11.873 (3)C6—H60.9300
N1—C71.324 (4)C8—C101.471 (6)
N1—N21.332 (4)C8—C91.479 (5)
N2—N31.301 (4)C8—H80.9800
N2—C81.483 (4)C9—H9A0.9600
N3—N41.309 (4)C9—H9B0.9600
N4—C71.342 (4)C9—H9C0.9600
C1—C21.382 (4)C10—H10A0.9600
C1—C61.388 (4)C10—H10B0.9600
C2—C31.377 (4)C10—H10C0.9600
C2—H20.9300C11—H11A0.9600
C3—C41.370 (4)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.379 (4)
C11—Si1—C11i111.4 (3)C1—C6—H6118.8
C11—Si1—C1i110.56 (16)N1—C7—N4112.1 (3)
C11i—Si1—C1i109.28 (16)N1—C7—C4124.2 (3)
C11—Si1—C1109.28 (16)N4—C7—C4123.6 (3)
C11i—Si1—C1110.56 (16)C10—C8—C9116.3 (4)
C1i—Si1—C1105.63 (19)C10—C8—N2110.4 (3)
C7—N1—N2100.9 (3)C9—C8—N2111.3 (3)
N3—N2—N1114.6 (3)C10—C8—H8106.0
N3—N2—C8123.1 (3)C9—C8—H8106.0
N1—N2—C8122.4 (3)N2—C8—H8106.0
N2—N3—N4105.8 (3)C8—C9—H9A109.5
N3—N4—C7106.6 (3)C8—C9—H9B109.5
C2—C1—C6115.8 (3)H9A—C9—H9B109.5
C2—C1—Si1124.7 (2)C8—C9—H9C109.5
C6—C1—Si1119.5 (2)H9A—C9—H9C109.5
C3—C2—C1122.4 (3)H9B—C9—H9C109.5
C3—C2—H2118.8C8—C10—H10A109.5
C1—C2—H2118.8C8—C10—H10B109.5
C4—C3—C2120.7 (3)H10A—C10—H10B109.5
C4—C3—H3119.6C8—C10—H10C109.5
C2—C3—H3119.6H10A—C10—H10C109.5
C3—C4—C5118.3 (3)H10B—C10—H10C109.5
C3—C4—C7121.7 (3)Si1—C11—H11A109.5
C5—C4—C7120.0 (3)Si1—C11—H11B109.5
C6—C5—C4120.4 (3)H11A—C11—H11B109.5
C6—C5—H5119.8Si1—C11—H11C109.5
C4—C5—H5119.8H11A—C11—H11C109.5
C5—C6—C1122.4 (3)H11B—C11—H11C109.5
C5—C6—H6118.8
C7—N1—N2—N30.1 (4)C7—C4—C5—C6178.7 (3)
C7—N1—N2—C8179.8 (3)C4—C5—C6—C10.5 (6)
N1—N2—N3—N40.0 (4)C2—C1—C6—C50.1 (5)
C8—N2—N3—N4180.0 (3)Si1—C1—C6—C5177.4 (3)
N2—N3—N4—C70.2 (4)N2—N1—C7—N40.2 (4)
C11—Si1—C1—C24.3 (3)N2—N1—C7—C4179.4 (3)
C11i—Si1—C1—C2118.6 (3)N3—N4—C7—N10.3 (4)
C1i—Si1—C1—C2123.2 (3)N3—N4—C7—C4179.4 (3)
C11—Si1—C1—C6173.0 (3)C3—C4—C7—N14.4 (5)
C11i—Si1—C1—C664.1 (3)C5—C4—C7—N1174.9 (3)
C1i—Si1—C1—C654.0 (2)C3—C4—C7—N4174.7 (3)
C6—C1—C2—C30.5 (5)C5—C4—C7—N46.0 (5)
Si1—C1—C2—C3176.9 (3)N3—N2—C8—C10103.6 (4)
C1—C2—C3—C40.3 (5)N1—N2—C8—C1076.3 (5)
C2—C3—C4—C50.2 (5)N3—N2—C8—C9125.6 (4)
C2—C3—C4—C7179.1 (3)N1—N2—C8—C954.4 (5)
C3—C4—C5—C60.6 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the tetrazole ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cgii0.962.863.738 (5)152
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H28N8Si
Mr432.61
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)7.2722 (14), 11.536 (2), 28.444 (6)
V3)2386.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.46 × 0.37 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.945, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12923, 2613, 1827
Rint0.049
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.207, 1.14
No. of reflections2613
No. of parameters144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the tetrazole ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cgi0.962.863.738 (5)152
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Testing Centre of Shandong Normal University for the diffraction measurements and are grateful for financial support from the National Natural Science Foundation of China (No. 20874057) and the Key Natural Science Foundation of Shandong Province of China (No. Z2007B02).

References

First citationBhandari, S., Mahon, M. F., Molloy, K. C., Palmer, J. S. & Sayers, S. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1053–1060.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds