organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4Z)-4-[(2,6-Diiso­propyl­anilino)(phen­yl)methyl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Media and Design, Asia University, Taichung 413, Taiwan, and bDepartment of Biotechnology, Asia University, Taichung 413, Taiwan
*Correspondence e-mail: cychang@asia.edu.tw

(Received 10 December 2010; accepted 5 January 2011; online 12 January 2011)

In the title compound, C29H31N3O, the three terminal benzene rings are oriented at dihedral angles of 20.7 (3), 65.8 (3) and 72.6 (3)° with respect to the central pyrazolone ring. Intra­molecular N—H⋯O hydrogen bonding occurs between the imine and carbonyl groups. Inter­molecular C—H⋯π inter­actions are present in the crystal structure.

Related literature

For the catalysis of olefins polymerization by complexes containing N,O-bidentate ligands, see: Wang et al. (1998[Wang, C.-M., Friedrich, S., Younkin, T.-R., Li, R.-T., Grubbs, R. H., Bansleben, D. A. & Day, M. W. (1998). Organometallics, 17, 3149-3151.]); Connor et al. (2003[Connor, E. F., Younkin, T. R., Henderson, J. I., Waltman, A. W. & Grubbs, R. H. (2003). Chem. Commun. 18, 2272-2273.]); Sun et al. (2003[Sun, W.-H., Yang, H., Li, Z. & Li, Y. (2003). Organometallics, 22, 3678-3683.]); Lü et al. (2006[Lü, X.-Q., Bao, F., Kang, B.-S., Wu, Q., Liu, H.-Q. & Zhu, F.-M. (2006). J. Organomet. Chem. 691, 821-828.]). For related structures, see: Wang et al. (2003[Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430-o432.]); Li et al. (2009[Li, J., Li, J.-Z., Li, J.-Q., Zhang, H.-Q. & Li, J.-M. (2009). Acta Cryst. E65, o1824.]); Xu et al. (2010[Xu, H.-Z., Yang, Y.-X. & Zhu, Y.-Q. (2010). Acta Cryst. E66, o1123.]).

[Scheme 1]

Experimental

Crystal data
  • C29H31N3O

  • Mr = 437.57

  • Orthorhombic, P n a 21

  • a = 12.9094 (6) Å

  • b = 10.6947 (5) Å

  • c = 17.9676 (8) Å

  • V = 2480.6 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 110 K

  • 0.6 × 0.5 × 0.4 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.702, Tmax = 1.00

  • 8437 measured reflections

  • 3755 independent reflections

  • 3643 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.09

  • 3755 reflections

  • 302 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1293 Friedel pairs

  • Flack parameter: 0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C18–C23 and N1,N2,C1–C3 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O 0.80 (2) 1.95 (2) 2.6734 (17) 149 (3)
C9—H9ACg1i 0.95 2.73 3.601 (2) 153
C14—H14ACg2ii 0.96 2.76 3.467 (2) 132
Symmetry codes: (i) [-x+2, -y+1, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Ketoimine is an important family of N,O-bidentate ligands because of their ease of preparation and modification of steric and electronic effects. They are particularly interested for catalysis. For instance, their Cu complexes have shown to be effective in norbornene (NBE) polymerization (Lü et al., 2006) in the presence of MAO and the Ni-based systems are used in ethylene polymerization (Wang et al., 1998; Connor et al., 2003; Sun et al., 2003). As part of this work, the title compound (I) was prepared from β-diketone and 2,6-diisopropylaniline.

The molecular structure of (I) is shown in Fig. 1. The dihedral angles between the pyrazolone ring and C5–C10, C12–C17 and C18–C23 phenyl rings are 20.7 (3), 65.8 (3) and 72.6 (3)°, respectively. The C11–N3 distance of 1.333 (3) Å is similar to that for a C–N single bond (1.338 (8) Å (Li et al., 2009) but is much longer than that for a C=N double bond (1.318 (3)Å) (Lü et al., 2006) in pyrazolone compounds.

A strong intramolecular N(3)—H(3 A)···O hydrogen bond (Table 1.) is observed with N···O distance of 2.672 (2) Å, which is much shorter than their van der Waals radius. The intermolecular C—H···π interactions are present in the crystal structure (Table 1).

Related literature top

For the catalysis of olefins polymerization by complexes containing N,O-bidentate ligands, see: Wang et al. (1998); Connor et al. (2003); Sun et al. (2003); Lü et al. (2006). For related structures, see: Wang et al. (2003); Li et al. (2009); Xu et al. (2010).

Experimental top

The title compound was synthesized by refluxing a mixture of 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (10 mmol) and 2,6-diisopropylaniline (10 mmol) in ethanol (60 ml) for 16 h. Volatile materials were removed under vacuum and the residue was washed twice from cold ethanol solution to give yellow solids. The resulting solids were recrystallized from ethanol solution to yield yellow crystals after 2 d.

Refinement top

The imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H = 0.95–1.00 Å, Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), thermal ellipsoids for non-H atoms are shown at 25% probability levels.
(4Z)-4-[(2,6-Diisopropylanilino)(phenyl)methylidene]-3-methyl- 1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C29H31N3OF(000) = 936
Mr = 437.57Dx = 1.172 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 7431 reflections
a = 12.9094 (6) Åθ = 4.1–71.6°
b = 10.6947 (5) ŵ = 0.56 mm1
c = 17.9676 (8) ÅT = 110 K
V = 2480.6 (2) Å3Parallelpiped, yellow
Z = 40.6 × 0.5 × 0.4 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
3755 independent reflections
Radiation source: Enhance (Cu) X-ray Source3643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.0690 pixels mm-1θmax = 71.6°, θmin = 4.8°
ω scansh = 1215
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1312
Tmin = 0.702, Tmax = 1.00l = 2218
8437 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3755 reflectionsΔρmax = 0.27 e Å3
302 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1293 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
C29H31N3OV = 2480.6 (2) Å3
Mr = 437.57Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 12.9094 (6) ŵ = 0.56 mm1
b = 10.6947 (5) ÅT = 110 K
c = 17.9676 (8) Å0.6 × 0.5 × 0.4 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
3755 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3643 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 1.00Rint = 0.026
8437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.27 e Å3
S = 1.09Δρmin = 0.21 e Å3
3755 reflectionsAbsolute structure: Flack (1983), 1293 Friedel pairs
302 parametersAbsolute structure parameter: 0.2 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.91287 (8)0.45238 (12)0.24514 (7)0.0298 (3)
N10.93713 (10)0.44539 (12)0.37452 (8)0.0264 (3)
N20.87895 (11)0.47065 (13)0.43864 (8)0.0277 (3)
N30.72027 (10)0.52807 (13)0.21416 (8)0.0249 (3)
H3A0.7776 (18)0.502 (2)0.2066 (14)0.032 (5)*
C10.88237 (12)0.46862 (13)0.31018 (10)0.0252 (3)
C20.78251 (11)0.51329 (14)0.33598 (10)0.0243 (3)
C30.78841 (12)0.50848 (14)0.41567 (10)0.0252 (3)
C40.70441 (13)0.53150 (18)0.47178 (11)0.0333 (4)
H4A0.73260.52140.52210.050*
H4B0.64810.47140.46410.050*
H4C0.67770.61670.46580.050*
C51.04093 (11)0.40332 (14)0.38254 (10)0.0274 (3)
C61.08976 (13)0.34062 (15)0.32476 (11)0.0316 (4)
H6A1.05470.32690.27900.038*
C71.19107 (14)0.29789 (16)0.33456 (12)0.0368 (4)
H7A1.22520.25540.29510.044*
C81.24239 (13)0.31699 (16)0.40159 (11)0.0361 (4)
H8A1.31070.28610.40840.043*
C91.19329 (14)0.38119 (17)0.45825 (12)0.0365 (4)
H9A1.22880.39560.50380.044*
C101.09248 (13)0.42494 (17)0.44944 (10)0.0326 (4)
H10A1.05920.46910.48860.039*
C110.70334 (12)0.54389 (14)0.28638 (9)0.0227 (3)
C120.59977 (12)0.58874 (14)0.31176 (9)0.0250 (3)
C130.58906 (14)0.70320 (16)0.34759 (11)0.0330 (4)
H13A0.64770.75570.35420.040*
C140.49253 (15)0.74109 (18)0.37387 (12)0.0407 (4)
H14A0.48540.81940.39830.049*
C150.40749 (14)0.6652 (2)0.36452 (13)0.0447 (5)
H15A0.34180.69100.38270.054*
C160.41744 (14)0.5512 (2)0.32857 (13)0.0438 (5)
H16A0.35860.49890.32240.053*
C170.51324 (13)0.51316 (17)0.30150 (11)0.0322 (4)
H17A0.51960.43570.27610.039*
C180.65579 (11)0.56969 (14)0.15362 (9)0.0234 (3)
C190.65238 (11)0.69774 (14)0.13647 (9)0.0260 (3)
C200.59414 (11)0.73324 (15)0.07474 (10)0.0285 (3)
H20A0.58910.81930.06220.034*
C210.54324 (11)0.64521 (16)0.03119 (10)0.0296 (3)
H21A0.50430.67140.01090.035*
C220.54908 (12)0.51948 (16)0.04900 (10)0.0285 (3)
H22A0.51440.45990.01870.034*
C230.60517 (11)0.47919 (15)0.11070 (9)0.0253 (3)
C240.71736 (13)0.79226 (16)0.17900 (10)0.0305 (4)
H24A0.72390.76170.23140.037*
C250.82671 (14)0.79704 (18)0.14543 (12)0.0387 (4)
H25A0.85600.71260.14420.058*
H25B0.87080.85120.17600.058*
H25C0.82310.83040.09470.058*
C260.66815 (17)0.92275 (18)0.18176 (13)0.0439 (5)
H26A0.59860.91680.20340.066*
H26B0.66330.95670.13120.066*
H26C0.71100.97810.21240.066*
C270.61474 (14)0.34042 (16)0.12972 (11)0.0331 (4)
H27A0.62630.33370.18460.040*
C280.7098 (2)0.2853 (2)0.09084 (16)0.0579 (6)
H28A0.77120.33450.10380.087*
H28B0.69940.28740.03680.087*
H28C0.71970.19860.10700.087*
C290.5179 (2)0.2645 (2)0.11084 (16)0.0581 (7)
H29A0.52890.17690.12470.087*
H29B0.50420.27010.05730.087*
H29C0.45860.29800.13840.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0258 (5)0.0416 (6)0.0220 (6)0.0060 (4)0.0012 (4)0.0005 (5)
N10.0249 (6)0.0309 (6)0.0234 (7)0.0021 (5)0.0020 (5)0.0028 (6)
N20.0303 (7)0.0319 (7)0.0208 (7)0.0063 (5)0.0024 (5)0.0025 (6)
N30.0206 (6)0.0307 (7)0.0233 (7)0.0047 (5)0.0019 (5)0.0008 (5)
C10.0231 (7)0.0250 (7)0.0274 (9)0.0023 (5)0.0018 (6)0.0021 (6)
C20.0246 (7)0.0242 (7)0.0241 (9)0.0028 (5)0.0005 (6)0.0005 (6)
C30.0281 (7)0.0252 (7)0.0221 (8)0.0054 (6)0.0010 (6)0.0009 (6)
C40.0324 (8)0.0442 (10)0.0232 (9)0.0026 (7)0.0024 (7)0.0020 (7)
C50.0267 (7)0.0242 (6)0.0314 (9)0.0038 (5)0.0055 (6)0.0070 (6)
C60.0311 (8)0.0282 (7)0.0354 (10)0.0029 (6)0.0109 (6)0.0003 (7)
C70.0336 (9)0.0310 (8)0.0459 (12)0.0070 (7)0.0096 (8)0.0029 (8)
C80.0285 (8)0.0316 (8)0.0483 (12)0.0022 (7)0.0113 (8)0.0074 (7)
C90.0327 (8)0.0411 (9)0.0355 (10)0.0039 (7)0.0126 (7)0.0075 (8)
C100.0298 (8)0.0388 (9)0.0292 (9)0.0037 (6)0.0039 (7)0.0054 (7)
C110.0249 (7)0.0207 (6)0.0224 (8)0.0028 (5)0.0003 (6)0.0002 (6)
C120.0266 (7)0.0290 (7)0.0194 (8)0.0020 (5)0.0012 (6)0.0054 (6)
C130.0383 (9)0.0283 (8)0.0324 (9)0.0034 (6)0.0065 (7)0.0028 (7)
C140.0475 (10)0.0383 (8)0.0363 (10)0.0168 (7)0.0092 (9)0.0069 (9)
C150.0309 (9)0.0629 (12)0.0403 (11)0.0185 (8)0.0105 (7)0.0127 (9)
C160.0273 (8)0.0613 (12)0.0428 (12)0.0018 (8)0.0036 (7)0.0079 (10)
C170.0279 (8)0.0375 (8)0.0310 (10)0.0024 (6)0.0005 (7)0.0020 (7)
C180.0198 (6)0.0297 (7)0.0205 (7)0.0028 (5)0.0020 (6)0.0014 (6)
C190.0229 (7)0.0300 (7)0.0251 (8)0.0009 (5)0.0068 (6)0.0015 (6)
C200.0272 (8)0.0285 (7)0.0297 (9)0.0052 (6)0.0074 (6)0.0071 (7)
C210.0207 (7)0.0421 (9)0.0259 (8)0.0055 (6)0.0001 (6)0.0081 (7)
C220.0229 (7)0.0365 (8)0.0262 (9)0.0004 (6)0.0016 (6)0.0002 (7)
C230.0224 (6)0.0304 (8)0.0231 (8)0.0007 (5)0.0014 (6)0.0004 (6)
C240.0336 (8)0.0295 (8)0.0283 (9)0.0029 (6)0.0052 (7)0.0005 (6)
C250.0325 (8)0.0419 (9)0.0418 (11)0.0094 (7)0.0048 (8)0.0044 (8)
C260.0485 (11)0.0328 (9)0.0504 (13)0.0002 (7)0.0082 (9)0.0057 (9)
C270.0433 (9)0.0287 (8)0.0272 (9)0.0015 (7)0.0068 (7)0.0003 (7)
C280.0776 (16)0.0373 (10)0.0587 (16)0.0200 (10)0.0137 (12)0.0005 (10)
C290.0722 (15)0.0434 (11)0.0586 (15)0.0228 (10)0.0260 (12)0.0142 (11)
Geometric parameters (Å, º) top
O—C11.245 (2)C15—H15A0.9500
N1—C11.378 (2)C16—C171.390 (3)
N1—N21.402 (2)C16—H16A0.9500
N1—C51.421 (2)C17—H17A0.9500
N2—C31.304 (2)C18—C191.404 (2)
N3—C111.327 (2)C18—C231.400 (2)
N3—C181.440 (2)C19—C201.393 (2)
N3—H3A0.80 (2)C19—C241.520 (2)
C1—C21.451 (2)C20—C211.389 (3)
C2—C111.395 (2)C20—H20A0.9500
C2—C31.435 (2)C21—C221.384 (2)
C3—C41.501 (2)C21—H21A0.9500
C4—H4A0.9800C22—C231.392 (2)
C4—H4B0.9800C22—H22A0.9500
C4—H4C0.9800C23—C271.528 (2)
C5—C61.387 (3)C24—C251.536 (2)
C5—C101.393 (2)C24—C261.534 (2)
C6—C71.397 (2)C24—H24A1.0000
C6—H6A0.9500C25—H25A0.9800
C7—C81.390 (3)C25—H25B0.9800
C7—H7A0.9500C25—H25C0.9800
C8—C91.382 (3)C26—H26A0.9800
C8—H8A0.9500C26—H26B0.9800
C9—C101.392 (3)C26—H26C0.9800
C9—H9A0.9500C27—C281.531 (3)
C10—H10A0.9500C27—C291.529 (3)
C11—C121.492 (2)C27—H27A1.0000
C12—C131.390 (2)C28—H28A0.9800
C12—C171.391 (2)C28—H28B0.9800
C13—C141.393 (2)C28—H28C0.9800
C13—H13A0.9500C29—H29A0.9800
C14—C151.375 (3)C29—H29B0.9800
C14—H14A0.9500C29—H29C0.9800
C15—C161.386 (3)
C1—N1—N2112.33 (12)C12—C17—C16119.86 (18)
C1—N1—C5128.77 (15)C12—C17—H17A120.1
N2—N1—C5118.88 (14)C16—C17—H17A120.1
C3—N2—N1106.26 (13)C19—C18—C23122.60 (14)
C11—N3—C18127.16 (14)C19—C18—N3119.03 (14)
C11—N3—H3A111.2 (18)C23—C18—N3118.19 (14)
C18—N3—H3A120.9 (19)C20—C19—C18117.23 (15)
O—C1—N1126.87 (14)C20—C19—C24121.14 (15)
O—C1—C2128.80 (15)C18—C19—C24121.40 (14)
N1—C1—C2104.32 (14)C21—C20—C19121.27 (15)
C11—C2—C3133.22 (15)C21—C20—H20A119.4
C11—C2—C1121.61 (16)C19—C20—H20A119.4
C3—C2—C1105.06 (14)C22—C21—C20120.15 (15)
N2—C3—C2112.00 (15)C22—C21—H21A119.9
N2—C3—C4119.07 (16)C20—C21—H21A119.9
C2—C3—C4128.76 (15)C21—C22—C23120.86 (15)
C3—C4—H4A109.5C21—C22—H22A119.6
C3—C4—H4B109.5C23—C22—H22A119.6
H4A—C4—H4B109.5C22—C23—C18117.87 (15)
C3—C4—H4C109.5C22—C23—C27121.38 (15)
H4A—C4—H4C109.5C18—C23—C27120.71 (14)
H4B—C4—H4C109.5C19—C24—C25109.39 (14)
C6—C5—C10120.58 (15)C19—C24—C26113.12 (15)
C6—C5—N1120.37 (15)C25—C24—C26111.28 (15)
C10—C5—N1119.05 (16)C19—C24—H24A107.6
C5—C6—C7119.29 (17)C25—C24—H24A107.6
C5—C6—H6A120.4C26—C24—H24A107.6
C7—C6—H6A120.4C24—C25—H25A109.5
C8—C7—C6120.51 (19)C24—C25—H25B109.5
C8—C7—H7A119.7H25A—C25—H25B109.5
C6—C7—H7A119.7C24—C25—H25C109.5
C9—C8—C7119.53 (16)H25A—C25—H25C109.5
C9—C8—H8A120.2H25B—C25—H25C109.5
C7—C8—H8A120.2C24—C26—H26A109.5
C8—C9—C10120.80 (17)C24—C26—H26B109.5
C8—C9—H9A119.6H26A—C26—H26B109.5
C10—C9—H9A119.6C24—C26—H26C109.5
C9—C10—C5119.27 (18)H26A—C26—H26C109.5
C9—C10—H10A120.4H26B—C26—H26C109.5
C5—C10—H10A120.4C28—C27—C23109.70 (16)
N3—C11—C2118.31 (14)C28—C27—C29110.5 (2)
N3—C11—C12119.19 (14)C23—C27—C29113.57 (16)
C2—C11—C12122.46 (15)C28—C27—H27A107.6
C13—C12—C17119.56 (15)C23—C27—H27A107.6
C13—C12—C11120.92 (14)C29—C27—H27A107.6
C17—C12—C11119.49 (15)C27—C28—H28A109.5
C12—C13—C14120.14 (17)C27—C28—H28B109.5
C12—C13—H13A119.9H28A—C28—H28B109.5
C14—C13—H13A119.9C27—C28—H28C109.5
C15—C14—C13120.07 (19)H28A—C28—H28C109.5
C15—C14—H14A120.0H28B—C28—H28C109.5
C13—C14—H14A120.0C27—C29—H29A109.5
C14—C15—C16120.14 (17)C27—C29—H29B109.5
C14—C15—H15A119.9H29A—C29—H29B109.5
C16—C15—H15A119.9C27—C29—H29C109.5
C15—C16—C17120.22 (18)H29A—C29—H29C109.5
C15—C16—H16A119.9H29B—C29—H29C109.5
C17—C16—H16A119.9
C1—N1—N2—C30.44 (16)C2—C11—C12—C1366.2 (2)
C5—N1—N2—C3179.29 (13)N3—C11—C12—C1765.8 (2)
N2—N1—C1—O178.34 (15)C2—C11—C12—C17111.77 (19)
C5—N1—C1—O2.9 (2)C17—C12—C13—C140.8 (3)
N2—N1—C1—C20.69 (15)C11—C12—C13—C14177.13 (17)
C5—N1—C1—C2178.02 (13)C12—C13—C14—C150.1 (3)
O—C1—C2—C110.8 (2)C13—C14—C15—C160.4 (3)
N1—C1—C2—C11178.21 (14)C14—C15—C16—C170.3 (3)
O—C1—C2—C3177.56 (16)C13—C12—C17—C161.5 (3)
N1—C1—C2—C31.45 (16)C11—C12—C17—C16176.53 (18)
N1—N2—C3—C21.44 (17)C15—C16—C17—C121.2 (3)
N1—N2—C3—C4174.25 (14)C11—N3—C18—C1972.6 (2)
C11—C2—C3—N2178.08 (16)C11—N3—C18—C23112.15 (18)
C1—C2—C3—N21.86 (18)C23—C18—C19—C201.2 (2)
C11—C2—C3—C42.9 (3)N3—C18—C19—C20176.16 (14)
C1—C2—C3—C4173.31 (15)C23—C18—C19—C24173.31 (14)
C1—N1—C5—C621.9 (2)N3—C18—C19—C241.7 (2)
N2—N1—C5—C6159.49 (14)C18—C19—C20—C211.2 (2)
C1—N1—C5—C10158.71 (16)C24—C19—C20—C21173.28 (14)
N2—N1—C5—C1019.9 (2)C19—C20—C21—C220.5 (2)
C10—C5—C6—C70.7 (3)C20—C21—C22—C230.4 (2)
N1—C5—C6—C7178.67 (15)C21—C22—C23—C180.4 (2)
C5—C6—C7—C80.5 (3)C21—C22—C23—C27178.27 (15)
C6—C7—C8—C91.4 (3)C19—C18—C23—C220.4 (2)
C7—C8—C9—C101.2 (3)N3—C18—C23—C22175.40 (14)
C8—C9—C10—C50.0 (3)C19—C18—C23—C27177.48 (15)
C6—C5—C10—C91.0 (2)N3—C18—C23—C272.5 (2)
N1—C5—C10—C9178.42 (15)C20—C19—C24—C2590.19 (18)
C18—N3—C11—C2170.51 (14)C18—C19—C24—C2584.08 (19)
C18—N3—C11—C1211.8 (2)C20—C19—C24—C2634.5 (2)
C3—C2—C11—N3173.95 (17)C18—C19—C24—C26151.26 (16)
C1—C2—C11—N31.8 (2)C22—C23—C27—C2889.8 (2)
C3—C2—C11—C123.7 (3)C18—C23—C27—C2888.0 (2)
C1—C2—C11—C12179.36 (13)C22—C23—C27—C2934.4 (2)
N3—C11—C12—C13116.23 (18)C18—C23—C27—C29147.85 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and N1,N2,C1–C3 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O0.80 (2)1.95 (2)2.6734 (17)149 (3)
C9—H9A···Cg1i0.952.733.601 (2)153
C14—H14A···Cg2ii0.962.763.467 (2)132
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC29H31N3O
Mr437.57
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)110
a, b, c (Å)12.9094 (6), 10.6947 (5), 17.9676 (8)
V3)2480.6 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.702, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
8437, 3755, 3643
Rint0.026
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.09
No. of reflections3755
No. of parameters302
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21
Absolute structureFlack (1983), 1293 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and N1,N2,C1–C3 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O0.80 (2)1.95 (2)2.6734 (17)149 (3)
C9—H9A···Cg1i0.952.733.601 (2)153
C14—H14A···Cg2ii0.962.763.467 (2)132
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x1/2, y+3/2, z.
 

Acknowledgements

We gratefully acknowledge financial support in part from the National Science Council, Taiwan. Helpful comments from the reviewers are also greatly appreciated.

References

First citationConnor, E. F., Younkin, T. R., Henderson, J. I., Waltman, A. W. & Grubbs, R. H. (2003). Chem. Commun. 18, 2272–2273.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J., Li, J.-Z., Li, J.-Q., Zhang, H.-Q. & Li, J.-M. (2009). Acta Cryst. E65, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLü, X.-Q., Bao, F., Kang, B.-S., Wu, Q., Liu, H.-Q. & Zhu, F.-M. (2006). J. Organomet. Chem. 691, 821–828.  Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W.-H., Yang, H., Li, Z. & Li, Y. (2003). Organometallics, 22, 3678–3683.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-M., Friedrich, S., Younkin, T.-R., Li, R.-T., Grubbs, R. H., Bansleben, D. A. & Day, M. W. (1998). Organometallics, 17, 3149–3151.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, H.-Z., Yang, Y.-X. & Zhu, Y.-Q. (2010). Acta Cryst. E66, o1123.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds