organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-4-eth­­oxy­benzo­yl)-N′-(2-meth­­oxy­phen­yl)thio­urea

aCollege of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: hujinghan62@163.com

(Received 16 December 2010; accepted 29 December 2010; online 12 January 2011)

In the title compound, C17H17ClN2O3S, the central carbonyl­thio­urea unit is nearly planar [maximum atomic deviation = 0.019 (3) Å] and makes dihedral angles of 2.47 (7) and 17.76 (6)° with the terminal benzene rings. An intra­molecular N—H⋯O hydrogen bond occurs. Weak inter­molecular C—H⋯S and C—H⋯Cl hydrogen bonding is observed in the crystal structure.

Related literature

For applications of thio­urea derivatives, see: Antholine & Taketa (1982[Antholine, W. & Taketa, F. (1982). J. Inorg. Biochem. 16, 145-154.]); Schroeder (1955[Schroeder, D. C. (1955). Chem. Rev. 50, 181-228.]). For related structures, see: Yusof & Yamin (2004a[Yusof, M. S. M. & Yamin, B. M. (2004a). Acta Cryst. E60, o1998-o1999.],b[Yusof, M. S. M. & Yamin, B. M. (2004b). Acta Cryst. E60, o1687-o1688.]); Ali et al. (2004[Ali, H., Halim, S. N. A., Khamis, N. A., Yusof, M. S. & Yamin, B. M. (2004). Acta Cryst. E60, o1497-o1498.]). For related acyl­thio­urea derivatives, see: Zhang et al. (2003[Zhang, Y.-M., Xian, L. & Wei, T.-B. (2003). Acta Cryst. C59, m473-m474.], 2006[Zhang, Y.-M., Cao, C., Lin, Q. & Wei, T.-B. (2006). Acta Cryst. E62, o1791-o1792.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17ClN2O3S

  • Mr = 364.84

  • Triclinic, [P \overline 1]

  • a = 7.8238 (8) Å

  • b = 8.4791 (11) Å

  • c = 14.9867 (13) Å

  • α = 76.365 (7)°

  • β = 89.384 (5)°

  • γ = 62.647 (4)°

  • V = 852.65 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.38 × 0.35 × 0.27 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.908

  • 4903 measured reflections

  • 3314 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.216

  • S = 1.06

  • 3314 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.88 2.613 (3) 143
C6—H6⋯S1i 0.93 2.86 3.468 (2) 124
C14—H14⋯Cl1ii 0.93 2.81 3.680 (3) 156
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y+1, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea derivatives have been studied for their potential use in agriculture, medicine and analytical chemistry (Schroeder, 1955; Antholine & Taketa, 1982). As part of our ongoing work on acylthiourea derivatives (Zhang et al., 2003; Zhang et al., 2006), we present here the structure of the title thiourea derivative, (I).

Benzoylthiourea derivatives can be synthesized from the reaction between benzoylisothiocyanate and amine compounds. In the title compound, (I), the molecular structure and dimensions are similar to those in other benzoylthiourea derivatives, such as N-(2-chlorophenyl)-N'-(4-methoxybenzoyl)thiourea (Yusof & Yamin, 2004a), N-(4-methoxybenzoyl-N'-(o-tolyl)thiourea (Yusof & Yamin, 2004b) and N-(p-methoxybenzoyl)-N'-(o-methoxyphenyl)thiourea (Ali et al., 2004). The molecule maintains its trans-cis configuration with respect to the position of the 3-chloro-4-ethoxybenzoyl and 2-methoxyphenyl groups relative to the S atom across the thiourea C—N bonds.

The central carbonyl thiourea moiety (S1/O2/N1/N2/C9/C10), the 2-methoxyphenyl group (C11–C16/O3/C23) and the 3-chloro-4-ethoxybenzoyl (C1–C6/C8/O1) group are individually planar. The C10—S1, C10—N1 and C10—N2 bond lengths are1.665 (2), 1.392 (2) and 1.333 (3) Å, respectively, comparable with those in N-(2-chlorophenyl)-N'- (4-methoxybenzoyl)-thiourea [CS = 1.662 (2) Å, C8—N1 = 1.386 (3) Å and C8—N2 = 1.331 (3) Å; Yusof & Yamin, 2004a] and other benzoylthiourea derivatives. There is one intramolecular hydrogen bonds, via N2—H2···O2; as a result, one pseudo-six-membered rings, is formed (Fig. 1).

Related literature top

For applications of thiourea derivatives, see: Antholine & Taketa (1982); Schroeder (1955). For related structures, see: Yusof & Yamin (2004a,b); Ali et al. (2004). For related acylthiourea derivatives, see: Zhang et al. (2003, 2006).

Experimental top

Potassium thiocyanate (7.5 mmol), 3-chloro-4-ethoxybenzoyl chloride (5 mmol), PEG-400 (3% with respect to ammonium thiocyanate) and dichloromethane (20 ml) were placed in a dried flask and stirred at room temperature for 1 h, then 2-methoxyaniline (5 mmol) was added. The mixture was stirred for 0.5 h at room temperature and a precipitate was formed. This was filtered off, washed with water and dried. yellow single crystals of (I) were obtained from an ethanol–dimethylformamide (1:1) solution.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene) and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown with 50% probability displacement ellipsoids.
N-(3-Chloro-4-ethoxybenzoyl)-N'-(2-methoxyphenyl)thiourea top
Crystal data top
C17H17ClN2O3SZ = 2
Mr = 364.84F(000) = 380
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8238 (8) ÅCell parameters from 2087 reflections
b = 8.4791 (11) Åθ = 2.8–29.3°
c = 14.9867 (13) ŵ = 0.36 mm1
α = 76.365 (7)°T = 296 K
β = 89.384 (5)°Block, yellow
γ = 62.647 (4)°0.38 × 0.35 × 0.27 mm
V = 852.65 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3314 independent reflections
Radiation source: fine-focus sealed tube2679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.874, Tmax = 0.908k = 109
4903 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1281P)2 + 0.5121P]
where P = (Fo2 + 2Fc2)/3
3314 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
C17H17ClN2O3Sγ = 62.647 (4)°
Mr = 364.84V = 852.65 (16) Å3
Triclinic, P1Z = 2
a = 7.8238 (8) ÅMo Kα radiation
b = 8.4791 (11) ŵ = 0.36 mm1
c = 14.9867 (13) ÅT = 296 K
α = 76.365 (7)°0.38 × 0.35 × 0.27 mm
β = 89.384 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2679 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.908Rint = 0.012
4903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
3314 reflectionsΔρmin = 0.85 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7479 (5)0.3322 (4)0.6563 (2)0.0500 (7)
C20.9023 (5)0.1588 (4)0.6605 (2)0.0484 (7)
C31.0005 (5)0.1342 (4)0.5825 (2)0.0535 (7)
H31.10370.02010.58320.064*
C40.9454 (5)0.2778 (4)0.5048 (2)0.0507 (7)
H41.01230.25910.45340.061*
C50.7916 (4)0.4512 (4)0.50087 (19)0.0455 (7)
C60.6918 (4)0.4750 (4)0.5784 (2)0.0467 (7)
H60.58680.58830.57720.056*
C71.0853 (5)0.1587 (4)0.7415 (2)0.0600 (8)
H7A1.21060.16680.72890.072*
H7B1.04210.19910.69500.072*
C81.0993 (6)0.2751 (5)0.8357 (3)0.0758 (11)
H8A1.14180.23330.88090.114*
H8B1.19050.40080.83960.114*
H8C0.97450.26590.84720.114*
C90.7458 (4)0.5941 (4)0.4133 (2)0.0488 (7)
C100.5447 (4)0.9307 (4)0.34023 (19)0.0435 (6)
C110.5829 (4)1.0267 (4)0.17305 (19)0.0438 (6)
C120.7042 (4)0.9479 (4)0.1091 (2)0.0465 (7)
C130.6871 (5)1.0502 (4)0.0204 (2)0.0557 (8)
H130.76750.99620.02170.067*
C140.5509 (5)1.2321 (5)0.0058 (2)0.0607 (8)
H140.53901.30180.06570.073*
C150.4325 (5)1.3110 (4)0.0562 (2)0.0624 (9)
H150.34131.43460.03790.075*
C160.4464 (5)1.2103 (4)0.1452 (2)0.0552 (8)
H160.36411.26560.18630.066*
C230.9845 (6)0.6837 (5)0.0906 (3)0.0777 (12)
H23A0.93230.68010.03390.117*
H23B1.07160.56080.12540.117*
H23C1.05330.75410.07700.117*
Cl10.6221 (2)0.36762 (17)0.75042 (8)0.0918 (4)
N10.6147 (4)0.7725 (3)0.41304 (16)0.0461 (6)
H10.57050.78770.46480.055*
N20.6167 (4)0.9049 (3)0.26084 (16)0.0480 (6)
H20.69940.79280.26380.058*
O10.9466 (4)0.0284 (3)0.74006 (15)0.0597 (6)
O20.8217 (4)0.5561 (3)0.34440 (15)0.0700 (7)
O30.8333 (4)0.7658 (3)0.14238 (16)0.0636 (7)
S10.38700 (13)1.12797 (11)0.36170 (5)0.0603 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0574 (17)0.0502 (16)0.0453 (16)0.0268 (14)0.0093 (13)0.0143 (13)
C20.0594 (18)0.0439 (15)0.0419 (15)0.0256 (14)0.0015 (12)0.0080 (12)
C30.0589 (18)0.0428 (15)0.0447 (16)0.0135 (13)0.0026 (13)0.0086 (13)
C40.0574 (17)0.0429 (15)0.0420 (15)0.0150 (13)0.0073 (12)0.0120 (12)
C50.0512 (16)0.0412 (14)0.0407 (15)0.0183 (13)0.0019 (12)0.0115 (12)
C60.0514 (16)0.0394 (14)0.0470 (16)0.0188 (13)0.0064 (12)0.0128 (12)
C70.067 (2)0.0490 (17)0.0524 (18)0.0226 (16)0.0052 (15)0.0028 (14)
C80.087 (3)0.062 (2)0.067 (2)0.037 (2)0.006 (2)0.0087 (18)
C90.0557 (17)0.0391 (14)0.0419 (15)0.0151 (13)0.0026 (12)0.0086 (12)
C100.0443 (15)0.0400 (14)0.0414 (14)0.0151 (12)0.0039 (11)0.0124 (11)
C110.0467 (15)0.0392 (14)0.0383 (14)0.0154 (12)0.0033 (11)0.0080 (11)
C120.0498 (16)0.0395 (14)0.0442 (15)0.0168 (12)0.0060 (12)0.0091 (12)
C130.0631 (19)0.0518 (17)0.0456 (16)0.0220 (15)0.0154 (14)0.0119 (13)
C140.068 (2)0.0560 (19)0.0449 (17)0.0253 (16)0.0057 (14)0.0015 (14)
C150.0605 (19)0.0432 (16)0.0551 (18)0.0080 (14)0.0061 (15)0.0023 (14)
C160.0524 (17)0.0445 (16)0.0475 (16)0.0079 (13)0.0095 (13)0.0066 (13)
C230.069 (2)0.053 (2)0.090 (3)0.0121 (17)0.032 (2)0.0168 (19)
Cl10.1143 (9)0.0876 (8)0.0697 (7)0.0445 (7)0.0403 (6)0.0216 (5)
N10.0549 (14)0.0374 (12)0.0348 (11)0.0131 (10)0.0070 (10)0.0083 (9)
N20.0556 (14)0.0361 (12)0.0380 (12)0.0101 (10)0.0073 (10)0.0092 (10)
O10.0798 (16)0.0468 (12)0.0420 (11)0.0253 (11)0.0027 (10)0.0027 (9)
O20.0962 (18)0.0416 (11)0.0400 (12)0.0062 (12)0.0159 (11)0.0103 (9)
O30.0711 (15)0.0417 (11)0.0552 (13)0.0089 (10)0.0227 (11)0.0106 (10)
S10.0673 (6)0.0436 (5)0.0466 (5)0.0055 (4)0.0105 (4)0.0144 (3)
Geometric parameters (Å, º) top
C1—C61.371 (4)C10—N21.333 (4)
C1—C21.397 (4)C10—N11.392 (4)
C1—Cl11.716 (3)C10—S11.665 (3)
C2—O11.341 (4)C11—C161.384 (4)
C2—C31.396 (4)C11—C121.402 (4)
C3—C41.373 (4)C11—N21.408 (4)
C3—H30.9300C12—O31.367 (3)
C4—C51.395 (4)C12—C131.375 (4)
C4—H40.9300C13—C141.372 (5)
C5—C61.395 (4)C13—H130.9300
C5—C91.477 (4)C14—C151.369 (5)
C6—H60.9300C14—H140.9300
C7—O11.448 (4)C15—C161.379 (4)
C7—C81.492 (5)C15—H150.9300
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C23—O31.402 (4)
C8—H8A0.9600C23—H23A0.9600
C8—H8B0.9600C23—H23B0.9600
C8—H8C0.9600C23—H23C0.9600
C9—O21.221 (4)N1—H10.8600
C9—N11.383 (4)N2—H20.8600
C6—C1—C2121.7 (3)N2—C10—S1127.6 (2)
C6—C1—Cl1118.8 (2)N1—C10—S1117.5 (2)
C2—C1—Cl1119.4 (2)C16—C11—C12118.5 (3)
O1—C2—C3124.8 (3)C16—C11—N2127.1 (3)
O1—C2—C1117.2 (3)C12—C11—N2114.4 (2)
C3—C2—C1118.0 (3)O3—C12—C13124.7 (3)
C4—C3—C2120.2 (3)O3—C12—C11114.4 (2)
C4—C3—H3119.9C13—C12—C11120.9 (3)
C2—C3—H3119.9C14—C13—C12119.7 (3)
C3—C4—C5121.7 (3)C14—C13—H13120.2
C3—C4—H4119.1C12—C13—H13120.2
C5—C4—H4119.1C15—C14—C13120.0 (3)
C6—C5—C4118.0 (3)C15—C14—H14120.0
C6—C5—C9125.4 (3)C13—C14—H14120.0
C4—C5—C9116.6 (3)C14—C15—C16121.1 (3)
C1—C6—C5120.3 (3)C14—C15—H15119.4
C1—C6—H6119.9C16—C15—H15119.4
C5—C6—H6119.9C15—C16—C11119.8 (3)
O1—C7—C8106.8 (3)C15—C16—H16120.1
O1—C7—H7A110.4C11—C16—H16120.1
C8—C7—H7A110.4O3—C23—H23A109.5
O1—C7—H7B110.4O3—C23—H23B109.5
C8—C7—H7B110.4H23A—C23—H23B109.5
H7A—C7—H7B108.6O3—C23—H23C109.5
C7—C8—H8A109.5H23A—C23—H23C109.5
C7—C8—H8B109.5H23B—C23—H23C109.5
H8A—C8—H8B109.5C9—N1—C10128.7 (2)
C7—C8—H8C109.5C9—N1—H1115.6
H8A—C8—H8C109.5C10—N1—H1115.6
H8B—C8—H8C109.5C10—N2—C11132.1 (2)
O2—C9—N1121.6 (3)C10—N2—H2114.0
O2—C9—C5121.3 (3)C11—N2—H2114.0
N1—C9—C5117.1 (3)C2—O1—C7118.0 (2)
N2—C10—N1114.8 (2)C12—O3—C23118.7 (3)
C6—C1—C2—O1179.6 (3)O3—C12—C13—C14179.5 (3)
Cl1—C1—C2—O11.3 (4)C11—C12—C13—C140.6 (5)
C6—C1—C2—C30.4 (5)C12—C13—C14—C150.1 (6)
Cl1—C1—C2—C3179.5 (2)C13—C14—C15—C160.5 (6)
O1—C2—C3—C4178.9 (3)C14—C15—C16—C110.6 (6)
C1—C2—C3—C40.2 (5)C12—C11—C16—C150.1 (5)
C2—C3—C4—C50.1 (5)N2—C11—C16—C15179.8 (3)
C3—C4—C5—C60.9 (5)O2—C9—N1—C101.6 (5)
C3—C4—C5—C9179.8 (3)C5—C9—N1—C10178.8 (3)
C2—C1—C6—C51.3 (5)N2—C10—N1—C90.9 (5)
Cl1—C1—C6—C5179.6 (2)S1—C10—N1—C9179.7 (3)
C4—C5—C6—C11.5 (5)N1—C10—N2—C11179.6 (3)
C9—C5—C6—C1179.8 (3)S1—C10—N2—C111.8 (5)
C6—C5—C9—O2169.5 (3)C16—C11—N2—C106.2 (5)
C4—C5—C9—O29.2 (5)C12—C11—N2—C10173.6 (3)
C6—C5—C9—N111.0 (5)C3—C2—O1—C710.3 (5)
C4—C5—C9—N1170.3 (3)C1—C2—O1—C7170.6 (3)
C16—C11—C12—O3179.5 (3)C8—C7—O1—C2177.0 (3)
N2—C11—C12—O30.7 (4)C13—C12—O3—C2313.3 (5)
C16—C11—C12—C130.5 (5)C11—C12—O3—C23167.8 (3)
N2—C11—C12—C13179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.882.613 (3)143
C6—H6···S1i0.932.863.468 (2)124
C14—H14···Cl1ii0.932.813.680 (3)156
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC17H17ClN2O3S
Mr364.84
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8238 (8), 8.4791 (11), 14.9867 (13)
α, β, γ (°)76.365 (7), 89.384 (5), 62.647 (4)
V3)852.65 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.38 × 0.35 × 0.27
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.874, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
4903, 3314, 2679
Rint0.012
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.216, 1.06
No. of reflections3314
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.85

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.882.613 (3)143
C6—H6···S1i0.932.863.468 (2)124
C14—H14···Cl1ii0.932.813.680 (3)156
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z1.
 

Acknowledgements

We acknowledge the support of the Colleges and Universities Graduate Advisor Research Project in Gansu Province, China (No. 0804–11)

References

First citationAli, H., Halim, S. N. A., Khamis, N. A., Yusof, M. S. & Yamin, B. M. (2004). Acta Cryst. E60, o1497–o1498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAntholine, W. & Taketa, F. (1982). J. Inorg. Biochem. 16, 145–154.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSchroeder, D. C. (1955). Chem. Rev. 50, 181–228.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M. & Yamin, B. M. (2004a). Acta Cryst. E60, o1998–o1999.  CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M. & Yamin, B. M. (2004b). Acta Cryst. E60, o1687–o1688.  CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-M., Cao, C., Lin, Q. & Wei, T.-B. (2006). Acta Cryst. E62, o1791–o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-M., Xian, L. & Wei, T.-B. (2003). Acta Cryst. C59, m473–m474.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds