metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m199-m200

catena-Poly[[(2,2′-bi­pyridine-κ2N,N′)cadmium]-μ3-4-nitro­phthalato-κ4O:O′,O′′:O′′′]

aCollege of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China, and bNational Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, People's Republic of China
*Correspondence e-mail: dearweili@gmail.comm

(Received 21 December 2010; accepted 5 January 2011; online 15 January 2011)

In the title polymeric compound, [Cd(C8H3NO6)(C10H8N2)]n, two O atoms from both carboxyl­ate groups of a nitro­phthalate anion coordinate to the CdII cation, forming a seven-membered chelate ring and two carboxyl­ate O atoms from another two nitro­phthalate anions and a 2,2′-bipyridine ligand coordinate to the Cd cation to complete the distorted octa­hedral coordination geometry. The carboxyl­ate groups of the nitro­phthalate anion adopt a syn–anti bridging mode, linking adjacent CdII cations and forming a polymeric chain running along the a axis. Weak intra- and inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of coordination polymers, see: Long & Yaghi (2009[Long, J.-L. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213-1214.]); Kurmoo et al. (2009[Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353-1379.]); Cheetham et al. (2006[Cheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780-4795.]). For related complexes with 4-nitro­phthalate ligands, see: Guo & Guo (2007[Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595-m597.]); Xu et al. (2009[Xu, B.-Y., Xie, T., Lu, S.-J., Xue, B. & Li, W. (2009). Acta Cryst. E65, m856-m857.]); He et al. (2010[He, M., Li, Q.-F., Xie, T., Xu, G.-M., Yu, J. & Li, W. (2010). Chin. J. Struct. Chem. 29, 582-586.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H3NO6)(C10H8N2)]

  • Mr = 477.70

  • Monoclinic, P 21 /c

  • a = 7.3327 (4) Å

  • b = 17.3786 (9) Å

  • c = 13.3859 (7) Å

  • β = 98.149 (2)°

  • V = 1688.57 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.50 × 0.30 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.624, Tmax = 0.911

  • 19676 measured reflections

  • 3825 independent reflections

  • 3452 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.03

  • 3825 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1i 2.2820 (15)
Cd1—O2 2.3165 (14)
Cd1—O3ii 2.3570 (15)
Cd1—O4 2.4753 (16)
Cd1—N2 2.3659 (18)
Cd1—N3 2.3979 (17)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O5iii 0.93 2.49 3.349 (3) 154
C9—H9⋯O3ii 0.93 2.39 3.037 (3) 126
C12—H12⋯O3iv 0.93 2.56 3.490 (3) 177
C15—H15⋯O3iv 0.93 2.56 3.493 (3) 176
C18—H18⋯O2i 0.93 2.43 3.235 (3) 145
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of coordination complexes and polymers have attracted considerable attention since they can exhibit various fascinating structure topologies and have potential applications in gas adsorption and magnetism (Long & Yaghi, 2009; Kurmoo et al., 2009). During the past decades, large amount of coordination complexes and polymers have been successfully prepared and reported, in which polycarboxylates have been widely used as bridging ligands to construct coordination complexes and polymers (Cheetham et al., 2006). 4-Nitrophthalic acid is a good candidate in the polycarboxylate family because it has two carboxylate groups that can supply four potential O-donor atoms. However, only a few reports exist of coordination complexes and polymers related to 4-nitrophthalic acid have been published to our knowledge (Guo et al., 2007; Xu et al., 2009; He et al., 2010). In order to enrich the metal-4-nitrophthalate coordination complexes and polymers, we employed this ligand to assemble with cadmium ion in the presence of ancillary 2,2'-bipyridine ligand and obtained the title one-dimensional coordination polymer [Cd(4-nitrophthalate)(2,2'-bpy)]n.

As shown from Fig. 1, the asymmetric unit of the title compound (I) has a Cd(II) ion, a 4-nitrophthalate and a 2,2'-bipyridine ligand. Cd1 ion has a distorted octahedral coordination environment comprising of two nitrogen atoms from a chelating 2,2'-bipyridine ligand, two oxygen atoms from both of the syn-anti carboxylates of a chelating 4-nitrophthalate ligand and two oxygen atoms from other two syn-anti carboxylates of two different crystallographic symmetric 4-nitrophthalate ligands. Each Cd(II) ion is linked to adjacent two Cd(II) ions by two syn-anti carboxylates from one 4-nitrophthalate ligand and other two syn–anti carboxylates from two different 4-nitrophthalate ligands to form a chained structure along the a axis with alternating Cd···Cd distances of 4.198 (5) and 5.094 (1)Å (Fig. 2).

Related literature top

For applications of coordination polymers, see: Long & Yaghi (2009); Kurmoo et al. (2009); Cheetham et al. (2006). For related complexes with 4-nitrophthalate ligands, see: Guo et al. (2007); Xu et al. (2009); He et al. (2010).

Experimental top

Cd(NO3)2.4H2O (0.25 mmol, 0.077 g), 4-nitrophthalic acid (0.25 mmol, 0.052 g), 2,2'-bipyridine (0.25 mmol, 0.039 g) and NaOH (0.5 mmol, 0.020 g) were well mixed in 8 ml distilled water, and the solution was stirred for 30 min and then transferred into a 23 ml Teflon-lined bomb at 423 K for 3 d and slowly cooled to room temperature. Colorless crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. [Symmetry code: (A) -x, 1 - y, 1 - z; (B) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. The one-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.
catena-Poly[[(2,2'-bipyridine-κ2N,N')cadmium]- µ3-4-nitrophthalato-κ4O:O',O'':O'''] top
Crystal data top
[Cd(C8H3NO6)(C10H8N2)]F(000) = 944
Mr = 477.70Dx = 1.879 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5075 reflections
a = 7.3327 (4) Åθ = 2.8–27.6°
b = 17.3786 (9) ŵ = 1.34 mm1
c = 13.3859 (7) ÅT = 293 K
β = 98.149 (2)°Sheet, colorless
V = 1688.57 (15) Å30.50 × 0.30 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3825 independent reflections
Radiation source: fine-focus sealed tube3452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.624, Tmax = 0.911k = 2122
19676 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0234P)2 + 1.1148P]
where P = (Fo2 + 2Fc2)/3
3825 reflections(Δ/σ)max = 0.003
253 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cd(C8H3NO6)(C10H8N2)]V = 1688.57 (15) Å3
Mr = 477.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3327 (4) ŵ = 1.34 mm1
b = 17.3786 (9) ÅT = 293 K
c = 13.3859 (7) Å0.50 × 0.30 × 0.07 mm
β = 98.149 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3825 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3452 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.911Rint = 0.027
19676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
3825 reflectionsΔρmin = 0.31 e Å3
253 parameters
Special details top

Experimental. Calcd for C18H11N3O6Cd (Mr = 477.71): C, 45.26; H, 2.32; N, 8.80%. Found: C, 45.34; H, 2.27; N, 8.85%. FT—IR (KBr) 3450 b, 3099 w, 3068 w, 3037 w, 1590 vs, 1551 m, 1513 s, 1495 s, 1439 s, 1422 s,1392 s, 1360 s, 1316 w, 1245 m, 1170 m, 1161 m, 1066 w, 1016 s, 905 m, 830 s,771 s, 740 s, 725 w. Thermogravimetric analysis (TGA) shows that compound (I) has a good thermal stability and exhibits no weight loss untill 200 °C.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.285437 (18)0.580935 (8)0.487418 (10)0.02454 (6)
C100.7094 (3)0.77702 (15)0.51077 (19)0.0466 (6)
H100.81000.78850.47820.056*
O10.0364 (2)0.41748 (8)0.63597 (11)0.0330 (3)
O30.5668 (2)0.41313 (9)0.65772 (12)0.0361 (3)
O20.17615 (18)0.46901 (8)0.55187 (10)0.0279 (3)
O40.5555 (2)0.53373 (10)0.60322 (11)0.0400 (4)
C60.3977 (3)0.50255 (11)0.74051 (14)0.0250 (4)
N30.1434 (2)0.65808 (10)0.60339 (13)0.0311 (4)
C70.1086 (2)0.45463 (11)0.63060 (14)0.0233 (4)
N10.0788 (3)0.57744 (11)0.96042 (15)0.0440 (5)
C10.2082 (2)0.48689 (11)0.72851 (13)0.0233 (4)
N20.4489 (3)0.69724 (10)0.52417 (14)0.0365 (4)
C20.1054 (3)0.50831 (11)0.80376 (14)0.0269 (4)
H20.01940.49660.79790.032*
C30.1915 (3)0.54717 (13)0.88696 (15)0.0327 (4)
C140.2403 (3)0.71869 (12)0.64530 (15)0.0327 (4)
C40.3784 (3)0.56177 (15)0.90138 (17)0.0415 (5)
H40.43360.58690.95930.050*
C50.4821 (3)0.53847 (14)0.82832 (16)0.0373 (5)
H50.60860.54680.83770.045*
C160.0198 (4)0.73882 (15)0.75846 (19)0.0498 (6)
H160.02020.76550.81150.060*
C170.0804 (3)0.67790 (14)0.71452 (18)0.0434 (5)
H170.18980.66300.73650.052*
C180.0145 (3)0.63920 (12)0.63669 (16)0.0348 (5)
H180.08280.59830.60620.042*
C150.1801 (4)0.76022 (14)0.72341 (18)0.0460 (6)
H150.24770.80210.75170.055*
O50.0883 (3)0.57084 (11)0.94263 (14)0.0521 (5)
C80.5143 (2)0.48150 (12)0.66069 (14)0.0273 (4)
C130.4092 (3)0.74003 (12)0.60168 (16)0.0331 (4)
O60.1566 (3)0.60768 (16)1.03689 (18)0.0875 (8)
C120.5195 (3)0.80256 (13)0.63640 (18)0.0418 (5)
H120.49170.83170.69050.050*
C90.5963 (3)0.71551 (14)0.48055 (19)0.0444 (6)
H90.62380.68530.42730.053*
C110.6697 (3)0.82089 (14)0.5902 (2)0.0462 (6)
H110.74370.86270.61250.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02554 (9)0.02418 (9)0.02423 (8)0.00343 (5)0.00470 (6)0.00128 (5)
C100.0415 (14)0.0370 (13)0.0619 (16)0.0108 (10)0.0092 (12)0.0012 (11)
O10.0276 (7)0.0398 (9)0.0307 (7)0.0110 (6)0.0014 (6)0.0029 (6)
O30.0315 (8)0.0406 (9)0.0370 (8)0.0067 (6)0.0079 (6)0.0058 (6)
O20.0283 (7)0.0326 (8)0.0230 (7)0.0045 (6)0.0045 (5)0.0015 (5)
O40.0322 (8)0.0532 (10)0.0360 (8)0.0075 (7)0.0097 (6)0.0086 (7)
C60.0229 (9)0.0276 (10)0.0245 (9)0.0005 (7)0.0035 (7)0.0007 (7)
N30.0359 (10)0.0253 (9)0.0314 (9)0.0009 (7)0.0026 (7)0.0025 (7)
C70.0216 (9)0.0226 (9)0.0253 (9)0.0017 (7)0.0015 (7)0.0004 (7)
N10.0506 (13)0.0439 (12)0.0410 (11)0.0024 (9)0.0183 (10)0.0138 (9)
C10.0239 (9)0.0229 (9)0.0232 (9)0.0011 (7)0.0033 (7)0.0014 (7)
N20.0397 (10)0.0297 (9)0.0403 (10)0.0058 (8)0.0065 (8)0.0051 (8)
C20.0232 (9)0.0292 (10)0.0290 (10)0.0019 (8)0.0065 (8)0.0019 (8)
C30.0374 (11)0.0334 (11)0.0292 (10)0.0018 (9)0.0112 (9)0.0046 (8)
C140.0424 (12)0.0250 (10)0.0298 (10)0.0021 (9)0.0016 (9)0.0016 (8)
C40.0394 (13)0.0540 (14)0.0305 (11)0.0083 (11)0.0029 (9)0.0149 (10)
C50.0257 (10)0.0533 (14)0.0325 (11)0.0066 (9)0.0022 (9)0.0087 (10)
C160.0688 (17)0.0414 (14)0.0428 (13)0.0051 (12)0.0198 (12)0.0086 (11)
C170.0475 (14)0.0390 (13)0.0461 (13)0.0065 (10)0.0157 (11)0.0033 (10)
C180.0379 (12)0.0280 (11)0.0385 (11)0.0023 (9)0.0051 (9)0.0007 (9)
C150.0609 (16)0.0359 (13)0.0414 (13)0.0025 (11)0.0075 (11)0.0114 (10)
O50.0425 (10)0.0660 (12)0.0510 (10)0.0134 (8)0.0179 (8)0.0088 (9)
C80.0174 (9)0.0397 (12)0.0243 (9)0.0034 (8)0.0013 (7)0.0032 (8)
C130.0388 (12)0.0249 (10)0.0337 (10)0.0007 (9)0.0011 (9)0.0001 (8)
O60.0757 (15)0.121 (2)0.0728 (15)0.0328 (15)0.0343 (12)0.0668 (15)
C120.0493 (14)0.0288 (12)0.0448 (13)0.0029 (10)0.0016 (11)0.0065 (9)
C90.0452 (14)0.0385 (13)0.0514 (14)0.0088 (10)0.0130 (11)0.0079 (11)
C110.0466 (14)0.0287 (12)0.0603 (15)0.0109 (10)0.0030 (12)0.0031 (11)
Geometric parameters (Å, º) top
Cd1—O1i2.2820 (15)N2—C91.337 (3)
Cd1—O22.3165 (14)N2—C131.342 (3)
Cd1—O3ii2.3570 (15)C2—C31.377 (3)
Cd1—O42.4753 (16)C2—H20.9300
Cd1—N22.3659 (18)C3—C41.380 (3)
Cd1—N32.3979 (17)C14—C151.393 (3)
C10—C111.372 (4)C14—C131.489 (3)
C10—C91.378 (3)C4—C51.382 (3)
C10—H100.9300C4—H40.9300
O1—C71.255 (2)C5—H50.9300
O3—C81.251 (2)C16—C171.373 (4)
O2—C71.252 (2)C16—C151.377 (4)
O4—C81.254 (2)C16—H160.9300
C6—C51.396 (3)C17—C181.384 (3)
C6—C11.403 (3)C17—H170.9300
C6—C81.505 (3)C18—H180.9300
N3—C181.339 (3)C15—H150.9300
N3—C141.347 (3)C13—C121.395 (3)
C7—C11.515 (3)C12—C111.375 (4)
N1—O61.218 (3)C12—H120.9300
N1—O51.220 (3)C9—H90.9300
N1—C31.469 (3)C11—H110.9300
C1—C21.392 (3)
O1i—Cd1—O289.78 (5)C3—C2—H2120.6
O1i—Cd1—O3ii79.46 (5)C1—C2—H2120.6
O2—Cd1—O3ii124.57 (5)C2—C3—C4122.41 (18)
O1i—Cd1—N2118.03 (6)C2—C3—N1118.68 (19)
O2—Cd1—N2146.28 (6)C4—C3—N1118.84 (19)
O3ii—Cd1—N281.69 (6)N3—C14—C15120.9 (2)
O1i—Cd1—N394.91 (6)N3—C14—C13116.74 (18)
O2—Cd1—N391.34 (5)C15—C14—C13122.3 (2)
O3ii—Cd1—N3143.29 (6)C3—C4—C5118.8 (2)
N2—Cd1—N368.99 (6)C3—C4—H4120.6
O1i—Cd1—O4160.78 (5)C5—C4—H4120.6
O2—Cd1—O477.10 (5)C4—C5—C6120.3 (2)
O3ii—Cd1—O496.33 (5)C4—C5—H5119.8
N2—Cd1—O479.41 (6)C6—C5—H5119.8
N3—Cd1—O499.33 (6)C17—C16—C15119.6 (2)
C11—C10—C9118.3 (2)C17—C16—H16120.2
C11—C10—H10120.9C15—C16—H16120.2
C9—C10—H10120.9C16—C17—C18118.3 (2)
C7—O1—Cd1i123.37 (12)C16—C17—H17120.8
C8—O3—Cd1ii99.45 (12)C18—C17—H17120.8
C7—O2—Cd1132.87 (12)N3—C18—C17122.8 (2)
C8—O4—Cd1112.52 (12)N3—C18—H18118.6
C5—C6—C1119.77 (17)C17—C18—H18118.6
C5—C6—C8118.59 (17)C16—C15—C14119.5 (2)
C1—C6—C8121.64 (17)C16—C15—H15120.3
C18—N3—C14118.85 (18)C14—C15—H15120.3
C18—N3—Cd1123.62 (14)O3—C8—O4124.44 (18)
C14—N3—Cd1117.07 (14)O3—C8—C6117.51 (17)
O2—C7—O1126.20 (17)O4—C8—C6118.04 (18)
O2—C7—C1117.06 (16)N2—C13—C12120.7 (2)
O1—C7—C1116.71 (16)N2—C13—C14116.68 (19)
O6—N1—O5122.8 (2)C12—C13—C14122.6 (2)
O6—N1—C3118.4 (2)C11—C12—C13119.6 (2)
O5—N1—C3118.72 (19)C11—C12—H12120.2
C2—C1—C6119.66 (17)C13—C12—H12120.2
C2—C1—C7118.75 (16)N2—C9—C10123.1 (2)
C6—C1—C7121.28 (16)N2—C9—H9118.5
C9—N2—C13118.92 (19)C10—C9—H9118.5
C9—N2—Cd1121.94 (15)C10—C11—C12119.4 (2)
C13—N2—Cd1118.37 (14)C10—C11—H11120.3
C3—C2—C1118.88 (18)C12—C11—H11120.3
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5iii0.932.493.349 (3)154
C9—H9···O3ii0.932.393.037 (3)126
C12—H12···O3iv0.932.563.490 (3)177
C15—H15···O3iv0.932.563.493 (3)176
C18—H18···O2i0.932.433.235 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H3NO6)(C10H8N2)]
Mr477.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3327 (4), 17.3786 (9), 13.3859 (7)
β (°) 98.149 (2)
V3)1688.57 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.50 × 0.30 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.624, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
19676, 3825, 3452
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.03
No. of reflections3825
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O1i2.2820 (15)Cd1—O42.4753 (16)
Cd1—O22.3165 (14)Cd1—N22.3659 (18)
Cd1—O3ii2.3570 (15)Cd1—N32.3979 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5iii0.932.493.349 (3)154
C9—H9···O3ii0.932.393.037 (3)126
C12—H12···O3iv0.932.563.490 (3)177
C15—H15···O3iv0.932.563.493 (3)176
C18—H18···O2i0.932.433.235 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Science and Technology Foundation of Guizhou Province, China (No. [2008]2216).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780–4795.  Web of Science CrossRef Google Scholar
First citationGuo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595–m597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, M., Li, Q.-F., Xie, T., Xu, G.-M., Yu, J. & Li, W. (2010). Chin. J. Struct. Chem. 29, 582-586.  CAS Google Scholar
First citationKurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLong, J.-L. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, B.-Y., Xie, T., Lu, S.-J., Xue, B. & Li, W. (2009). Acta Cryst. E65, m856–m857.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m199-m200
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds