organic compounds
2,2′-Azanediyldiethanaminium pyridine-2,5-dicarboxylate
aFaculty of Chemistry, Tarbiat Moallem University, 15614 Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: haghabozorg@yahoo.com
The 4H15N32+·C7H3NO42−, consists of diethylenetriaminium (2,2′-azanediyldiethanaminium) cations and pyridine-2,5-dicarboxylate anions, which are linked by N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds. C—H⋯π interactions are also observed. In the anion, the carboxylate groups are oriented at dihedral angles of 11.04 (15) and 6.31 (14)° with respect to the pyridine ring.
of the title compound, CRelated literature
For general background to proton-transfer compounds, see: Sheshmani et al. (2007); Aghabozorg et al. (2008a,b,c); Derikvand et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810054413/xu5129sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810054413/xu5129Isup2.hkl
Diethylenetriamine (0.28 g, 0.29 ml, 2.66 mmol) was added to a solution of pyridine-2,5-dicarboxylic acid (0.45 g, 2.66 mmol) in methanol (50 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a pale yellow solution in water. Suitable crystals were isolated after one week (yield; 0.55 g, 76.5%).
H atoms bonded to N atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 Å for aromatic and 0.97 Å for methylene, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The unit-cell packing diagram for the title molecule. | |
Fig. 3. Intermolecular C—H···π interactions for the title molecule. |
C4H15N32+·C7H3NO42− | F(000) = 576.0 |
Mr = 270.29 | Dx = 1.345 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3595 reflections |
a = 10.485 (2) Å | θ = 2.5–29.2° |
b = 7.7016 (15) Å | µ = 0.10 mm−1 |
c = 17.254 (4) Å | T = 298 K |
β = 106.67 (3)° | Block, yellow |
V = 1334.7 (5) Å3 | 0.3 × 0.3 × 0.15 mm |
Z = 4 |
Stoe IPDS II diffractometer | 3593 independent reflections |
Radiation source: fine-focus sealed tube | 2523 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
Detector resolution: 0.15 mm pixels mm-1 | θmax = 29.2°, θmin = 2.5° |
rotation method scans | h = −14→13 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2005) | k = −10→10 |
Tmin = 0.967, Tmax = 0.983 | l = −23→23 |
14267 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.087 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.184 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0436P)2 + 0.9032P] where P = (Fo2 + 2Fc2)/3 |
3593 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C4H15N32+·C7H3NO42− | V = 1334.7 (5) Å3 |
Mr = 270.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.485 (2) Å | µ = 0.10 mm−1 |
b = 7.7016 (15) Å | T = 298 K |
c = 17.254 (4) Å | 0.3 × 0.3 × 0.15 mm |
β = 106.67 (3)° |
Stoe IPDS II diffractometer | 3593 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2005) | 2523 reflections with I > 2σ(I) |
Tmin = 0.967, Tmax = 0.983 | Rint = 0.099 |
14267 measured reflections |
R[F2 > 2σ(F2)] = 0.087 | 0 restraints |
wR(F2) = 0.184 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.18 | Δρmax = 0.39 e Å−3 |
3593 reflections | Δρmin = −0.28 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6009 (2) | 0.1955 (4) | 0.15541 (15) | 0.0729 (8) | |
O2 | 0.60280 (19) | 0.3262 (3) | 0.04174 (12) | 0.0548 (6) | |
O3 | 1.29302 (19) | 0.1713 (3) | 0.26621 (13) | 0.0551 (6) | |
O4 | 1.28741 (19) | 0.3736 (3) | 0.17248 (12) | 0.0509 (5) | |
N1 | 0.8735 (2) | 0.3611 (3) | 0.09555 (13) | 0.0391 (5) | |
N2 | 0.4579 (2) | −0.0627 (3) | 0.21118 (15) | 0.0382 (5) | |
N3 | 0.2987 (2) | −0.0099 (3) | 0.04917 (15) | 0.0460 (6) | |
N4 | 0.3271 (3) | 0.3560 (4) | 0.01663 (16) | 0.0443 (6) | |
C1 | 0.8097 (2) | 0.2669 (3) | 0.13871 (15) | 0.0327 (5) | |
C2 | 0.8779 (3) | 0.1723 (4) | 0.20632 (17) | 0.0436 (6) | |
H2 | 0.8315 | 0.1112 | 0.2361 | 0.052* | |
C3 | 1.0150 (3) | 0.1698 (4) | 0.22901 (16) | 0.0422 (6) | |
H3 | 1.0619 | 0.1033 | 0.2729 | 0.051* | |
C4 | 1.0825 (2) | 0.2672 (3) | 0.18589 (15) | 0.0341 (5) | |
C5 | 1.0069 (3) | 0.3606 (3) | 0.12018 (16) | 0.0381 (6) | |
H5 | 1.0515 | 0.4273 | 0.0913 | 0.046* | |
C6 | 0.6586 (2) | 0.2626 (3) | 0.10991 (16) | 0.0381 (6) | |
C7 | 1.2334 (3) | 0.2704 (4) | 0.21038 (16) | 0.0401 (6) | |
C8 | 0.3824 (3) | −0.2064 (4) | 0.16064 (19) | 0.0496 (7) | |
H8A | 0.3570 | −0.2911 | 0.1951 | 0.059* | |
H8B | 0.4386 | −0.2640 | 0.1326 | 0.059* | |
C9 | 0.2599 (3) | −0.1373 (4) | 0.09994 (18) | 0.0475 (7) | |
H9A | 0.2120 | −0.2316 | 0.0669 | 0.057* | |
H9B | 0.2015 | −0.0841 | 0.1277 | 0.057* | |
C10 | 0.1898 (3) | 0.0876 (4) | −0.00271 (17) | 0.0474 (7) | |
H10A | 0.1346 | 0.1334 | 0.0290 | 0.057* | |
H10B | 0.1353 | 0.0113 | −0.0437 | 0.057* | |
C11 | 0.2408 (3) | 0.2359 (4) | −0.04313 (17) | 0.0525 (8) | |
H11A | 0.2909 | 0.1892 | −0.0777 | 0.063* | |
H11B | 0.1657 | 0.3001 | −0.0770 | 0.063* | |
H2A | 0.539 (3) | −0.100 (4) | 0.249 (2) | 0.058 (9)* | |
H2B | 0.486 (3) | 0.011 (4) | 0.1790 (18) | 0.044 (8)* | |
H2C | 0.405 (4) | 0.010 (5) | 0.238 (2) | 0.069 (10)* | |
H3A | 0.352 (4) | −0.064 (5) | 0.018 (2) | 0.083 (12)* | |
H4A | 0.417 (4) | 0.320 (4) | 0.032 (2) | 0.059 (9)* | |
H4B | 0.300 (4) | 0.365 (5) | 0.064 (2) | 0.068 (11)* | |
H4C | 0.322 (4) | 0.463 (5) | −0.006 (2) | 0.078 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0440 (12) | 0.103 (2) | 0.0698 (15) | −0.0193 (12) | 0.0137 (11) | 0.0258 (14) |
O2 | 0.0361 (10) | 0.0691 (14) | 0.0538 (12) | 0.0065 (10) | 0.0041 (9) | 0.0145 (11) |
O3 | 0.0376 (10) | 0.0646 (14) | 0.0590 (13) | 0.0127 (10) | 0.0074 (9) | 0.0041 (11) |
O4 | 0.0381 (10) | 0.0631 (13) | 0.0544 (12) | −0.0137 (9) | 0.0176 (9) | −0.0085 (10) |
N1 | 0.0391 (11) | 0.0379 (11) | 0.0397 (11) | −0.0011 (9) | 0.0103 (9) | 0.0061 (9) |
N2 | 0.0306 (11) | 0.0380 (12) | 0.0428 (12) | −0.0004 (9) | 0.0055 (10) | 0.0057 (10) |
N3 | 0.0443 (13) | 0.0444 (13) | 0.0448 (13) | 0.0052 (10) | 0.0055 (10) | 0.0025 (11) |
N4 | 0.0377 (12) | 0.0476 (14) | 0.0454 (14) | 0.0005 (11) | 0.0084 (10) | 0.0097 (11) |
C1 | 0.0326 (11) | 0.0284 (11) | 0.0369 (12) | 0.0018 (9) | 0.0096 (10) | 0.0012 (10) |
C2 | 0.0364 (13) | 0.0458 (15) | 0.0480 (15) | −0.0022 (11) | 0.0108 (11) | 0.0151 (12) |
C3 | 0.0366 (13) | 0.0429 (14) | 0.0450 (14) | 0.0023 (11) | 0.0083 (11) | 0.0119 (12) |
C4 | 0.0336 (12) | 0.0303 (12) | 0.0387 (13) | −0.0013 (10) | 0.0108 (10) | −0.0055 (10) |
C6 | 0.0323 (12) | 0.0391 (13) | 0.0414 (14) | −0.0006 (10) | 0.0084 (10) | 0.0004 (11) |
C7 | 0.0333 (12) | 0.0418 (14) | 0.0446 (14) | −0.0002 (11) | 0.0105 (11) | −0.0114 (12) |
C8 | 0.0522 (17) | 0.0348 (14) | 0.0556 (17) | −0.0015 (12) | 0.0056 (14) | 0.0031 (12) |
C9 | 0.0450 (15) | 0.0411 (14) | 0.0493 (15) | −0.0075 (12) | 0.0021 (12) | −0.0018 (13) |
C10 | 0.0462 (15) | 0.0427 (15) | 0.0451 (15) | 0.0017 (12) | 0.0000 (12) | −0.0072 (12) |
C11 | 0.0604 (18) | 0.0531 (17) | 0.0379 (14) | 0.0071 (15) | 0.0040 (13) | 0.0039 (13) |
C5 | 0.0414 (13) | 0.0343 (12) | 0.0403 (13) | −0.0041 (11) | 0.0146 (11) | 0.0039 (11) |
O1—C6 | 1.233 (3) | C1—C6 | 1.519 (3) |
O2—C6 | 1.253 (3) | C2—C3 | 1.378 (4) |
O3—C7 | 1.248 (3) | C2—H2 | 0.9300 |
O4—C7 | 1.262 (3) | C3—C4 | 1.385 (4) |
N1—C5 | 1.340 (3) | C3—H3 | 0.9300 |
N1—C1 | 1.347 (3) | C4—C5 | 1.384 (4) |
N2—C8 | 1.489 (4) | C4—C7 | 1.516 (3) |
N2—H2A | 0.96 (3) | C8—C9 | 1.503 (4) |
N2—H2B | 0.90 (3) | C8—H8A | 0.9700 |
N2—H2C | 1.00 (4) | C8—H8B | 0.9700 |
N3—C10 | 1.444 (4) | C9—H9A | 0.9700 |
N3—C9 | 1.450 (4) | C9—H9B | 0.9700 |
N3—H3A | 0.98 (4) | C10—C11 | 1.514 (4) |
N4—C11 | 1.484 (4) | C10—H10A | 0.9700 |
N4—H4A | 0.94 (4) | C10—H10B | 0.9700 |
N4—H4B | 0.95 (4) | C11—H11A | 0.9700 |
N4—H4C | 0.91 (4) | C11—H11B | 0.9700 |
C1—C2 | 1.387 (3) | C5—H5 | 0.9300 |
C5—N1—C1 | 117.5 (2) | O3—C7—O4 | 125.9 (2) |
C8—N2—H2A | 113.6 (19) | O3—C7—C4 | 117.2 (2) |
C8—N2—H2B | 108.7 (19) | O4—C7—C4 | 117.0 (2) |
H2A—N2—H2B | 103 (3) | N2—C8—C9 | 110.5 (2) |
C8—N2—H2C | 115 (2) | N2—C8—H8A | 109.6 |
H2A—N2—H2C | 111 (3) | C9—C8—H8A | 109.6 |
H2B—N2—H2C | 105 (3) | N2—C8—H8B | 109.6 |
C10—N3—C9 | 114.7 (2) | C9—C8—H8B | 109.6 |
C10—N3—H3A | 111 (2) | H8A—C8—H8B | 108.1 |
C9—N3—H3A | 111 (2) | N3—C9—C8 | 109.2 (2) |
C11—N4—H4A | 112 (2) | N3—C9—H9A | 109.8 |
C11—N4—H4B | 112 (2) | C8—C9—H9A | 109.8 |
H4A—N4—H4B | 107 (3) | N3—C9—H9B | 109.8 |
C11—N4—H4C | 108 (2) | C8—C9—H9B | 109.8 |
H4A—N4—H4C | 109 (3) | H9A—C9—H9B | 108.3 |
H4B—N4—H4C | 108 (3) | N3—C10—C11 | 110.9 (2) |
N1—C1—C2 | 122.0 (2) | N3—C10—H10A | 109.5 |
N1—C1—C6 | 117.9 (2) | C11—C10—H10A | 109.5 |
C2—C1—C6 | 120.1 (2) | N3—C10—H10B | 109.5 |
C3—C2—C1 | 119.4 (2) | C11—C10—H10B | 109.5 |
C3—C2—H2 | 120.3 | H10A—C10—H10B | 108.0 |
C1—C2—H2 | 120.3 | N4—C11—C10 | 112.1 (2) |
C2—C3—C4 | 119.5 (2) | N4—C11—H11A | 109.2 |
C2—C3—H3 | 120.3 | C10—C11—H11A | 109.2 |
C4—C3—H3 | 120.3 | N4—C11—H11B | 109.2 |
C5—C4—C3 | 117.4 (2) | C10—C11—H11B | 109.2 |
C5—C4—C7 | 121.8 (2) | H11A—C11—H11B | 107.9 |
C3—C4—C7 | 120.8 (2) | N1—C5—C4 | 124.2 (2) |
O1—C6—O2 | 125.4 (2) | N1—C5—H5 | 117.9 |
O1—C6—C1 | 117.2 (2) | C4—C5—H5 | 117.9 |
O2—C6—C1 | 117.4 (2) | ||
C5—N1—C1—C2 | 0.1 (4) | C5—C4—C7—O3 | −174.3 (2) |
C5—N1—C1—C6 | −178.4 (2) | C3—C4—C7—O3 | 5.8 (4) |
N1—C1—C2—C3 | −2.0 (4) | C5—C4—C7—O4 | 5.8 (4) |
C6—C1—C2—C3 | 176.4 (3) | C3—C4—C7—O4 | −174.1 (2) |
C1—C2—C3—C4 | 2.6 (4) | C10—N3—C9—C8 | −170.1 (2) |
C2—C3—C4—C5 | −1.3 (4) | N2—C8—C9—N3 | 58.8 (3) |
C2—C3—C4—C7 | 178.6 (3) | C9—N3—C10—C11 | 170.9 (2) |
N1—C1—C6—O1 | −170.7 (3) | N3—C10—C11—N4 | −58.1 (3) |
C2—C1—C6—O1 | 10.9 (4) | C1—N1—C5—C4 | 1.3 (4) |
N1—C1—C6—O2 | 9.9 (4) | C3—C4—C5—N1 | −0.7 (4) |
C2—C1—C6—O2 | −168.6 (3) | C7—C4—C5—N1 | 179.4 (2) |
Cg is the centroid of the pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3i | 0.96 (3) | 2.56 (3) | 3.254 (3) | 130 (2) |
N2—H2A···O4i | 0.96 (3) | 1.94 (3) | 2.886 (3) | 169 (3) |
N2—H2B···O1 | 0.90 (3) | 1.98 (3) | 2.821 (4) | 155 (3) |
N2—H2C···O3ii | 0.99 (4) | 1.87 (4) | 2.843 (3) | 167 (3) |
N3—H3A···O2iii | 0.97 (4) | 2.38 (4) | 3.223 (3) | 145 (3) |
N4—H4A···O2 | 0.95 (4) | 1.91 (4) | 2.807 (4) | 158 (3) |
N4—H4B···O4ii | 0.94 (4) | 1.92 (3) | 2.840 (3) | 167 (4) |
N4—H4C···O2iv | 0.91 (4) | 1.98 (4) | 2.823 (4) | 154 (4) |
N4—H4C···N1iv | 0.91 (4) | 2.57 (4) | 3.253 (4) | 133 (3) |
C8—H8A···O1v | 0.97 | 2.49 | 3.218 (4) | 132 |
C3—H3···Cgi | 0.93 | 2.83 | 3.588 (3) | 139 |
C10—H10B···Cgiii | 0.97 | 2.91 | 3.846 (3) | 161 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z; (v) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C4H15N32+·C7H3NO42− |
Mr | 270.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 10.485 (2), 7.7016 (15), 17.254 (4) |
β (°) | 106.67 (3) |
V (Å3) | 1334.7 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.3 × 0.3 × 0.15 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2005) |
Tmin, Tmax | 0.967, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14267, 3593, 2523 |
Rint | 0.099 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.087, 0.184, 1.18 |
No. of reflections | 3593 |
No. of parameters | 200 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.28 |
Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cg is the centroid of the pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3i | 0.96 (3) | 2.56 (3) | 3.254 (3) | 130 (2) |
N2—H2A···O4i | 0.96 (3) | 1.94 (3) | 2.886 (3) | 169 (3) |
N2—H2B···O1 | 0.90 (3) | 1.98 (3) | 2.821 (4) | 155 (3) |
N2—H2C···O3ii | 0.99 (4) | 1.87 (4) | 2.843 (3) | 167 (3) |
N3—H3A···O2iii | 0.97 (4) | 2.38 (4) | 3.223 (3) | 145 (3) |
N4—H4A···O2 | 0.95 (4) | 1.91 (4) | 2.807 (4) | 158 (3) |
N4—H4B···O4ii | 0.94 (4) | 1.92 (3) | 2.840 (3) | 167 (4) |
N4—H4C···O2iv | 0.91 (4) | 1.98 (4) | 2.823 (4) | 154 (4) |
N4—H4C···N1iv | 0.91 (4) | 2.57 (4) | 3.253 (4) | 133 (3) |
C8—H8A···O1v | 0.9700 | 2.4900 | 3.218 (4) | 132 |
C3—H3···Cgi | 0.93 | 2.83 | 3.588 (3) | 139 |
C10—H10B···Cgiii | 0.97 | 2.91 | 3.846 (3) | 161 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z; (v) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We are grateful to Tarbiat Moallem University for financial support.
References
Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008a). Acta Cryst. E64, o230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008b). Acta Cryst. E64, o740. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008c). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Derikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheshmani, S., Aghabozorg, H. & Ghadermazi, M. (2007). Acta Cryst. E63, o2869. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Proton transfer is very important in physics, chemistry and biochemistry. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has already synthesized proton transfer compounds with different proton donors and acceptors (Sheshmani et al., 2007; Aghabozorg et al., 2008a; Aghabozorg et al., 2008b; Aghabozorg et al., 2008c; Derikvand et al., 2009). We herein report the crystal structure of the title compound.
The molecular structure of the title compound is shown in Fig. 1. The crystal structure shows that two protons from two carboxylic acid groups are transferred to two N atoms of the diethylenetriamine.
As can be seen from the packing diagram (Fig. 2), there are variety intera and intermolecular N—H···O, N—H···N and C—H···O hydrogen bonds (Table 1) in the crystal structure
Also, as shown in Fig. 3, there are C—H···π interactions between C10—H10B bond of diethylenetriaminium ion and pyridine ring and C3—H3 bond of pyridine-2,5-dicarboxylate ion and symmetry-related pyridine ring in the crystal structure [distance from centroid = 2.91 and 2.83 Å; angle = 161 and 139 ° and symmetry codes: 1 - x, -y, -z and 2 - x, -1/2 + y, 1/2 - z, respectively].
Intermolecular N—H···O, N—H···N and C—H···O hydrogen bonds and C—H···π interactions in this compound seem to be effective in the stabilization of the crystal structure, resulting in the formation of a three-dimensional supramolecular structure.