organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Azanediyl­diethanaminium pyridine-2,5-di­carboxyl­ate

aFaculty of Chemistry, Tarbiat Moallem University, 15614 Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 23 December 2010; accepted 27 December 2010; online 8 January 2011)

The crystal structure of the title compound, C4H15N32+·C7H3NO42−, consists of diethyl­enetriaminium (2,2′-azanediyl­diethanaminium) cations and pyridine-2,5-dicarboxyl­ate anions, which are linked by N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds. C—H⋯π inter­actions are also observed. In the anion, the carboxyl­ate groups are oriented at dihedral angles of 11.04 (15) and 6.31 (14)° with respect to the pyridine ring.

Related literature

For general background to proton-transfer compounds, see: Sheshmani et al. (2007[Sheshmani, S., Aghabozorg, H. & Ghadermazi, M. (2007). Acta Cryst. E63, o2869.]); Aghabozorg et al. (2008a[Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008a). Acta Cryst. E64, o230.],b[Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008b). Acta Cryst. E64, o740.],c[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008c). J. Iran. Chem. Soc. 5, 184-227.]); Derikvand et al. (2009[Derikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173.]).

[Scheme 1]

Experimental

Crystal data
  • C4H15N32+·C7H3NO42−

  • Mr = 270.29

  • Monoclinic, P 21 /c

  • a = 10.485 (2) Å

  • b = 7.7016 (15) Å

  • c = 17.254 (4) Å

  • β = 106.67 (3)°

  • V = 1334.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.3 × 0.3 × 0.15 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.967, Tmax = 0.983

  • 14267 measured reflections

  • 3593 independent reflections

  • 2523 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.184

  • S = 1.18

  • 3593 reflections

  • 200 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.96 (3) 2.56 (3) 3.254 (3) 130 (2)
N2—H2A⋯O4i 0.96 (3) 1.94 (3) 2.886 (3) 169 (3)
N2—H2B⋯O1 0.90 (3) 1.98 (3) 2.821 (4) 155 (3)
N2—H2C⋯O3ii 0.99 (4) 1.87 (4) 2.843 (3) 167 (3)
N3—H3A⋯O2iii 0.97 (4) 2.38 (4) 3.223 (3) 145 (3)
N4—H4A⋯O2 0.95 (4) 1.91 (4) 2.807 (4) 158 (3)
N4—H4B⋯O4ii 0.94 (4) 1.92 (3) 2.840 (3) 167 (4)
N4—H4C⋯O2iv 0.91 (4) 1.98 (4) 2.823 (4) 154 (4)
N4—H4C⋯N1iv 0.91 (4) 2.57 (4) 3.253 (4) 133 (3)
C8—H8A⋯O1v 0.97 2.49 3.218 (4) 132
C3—H3⋯Cgi 0.93 2.83 3.588 (3) 139
C10—H10BCgiii 0.97 2.91 3.846 (3) 161
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y, -z; (iv) -x+1, -y+1, -z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Proton transfer is very important in physics, chemistry and biochemistry. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has already synthesized proton transfer compounds with different proton donors and acceptors (Sheshmani et al., 2007; Aghabozorg et al., 2008a; Aghabozorg et al., 2008b; Aghabozorg et al., 2008c; Derikvand et al., 2009). We herein report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The crystal structure shows that two protons from two carboxylic acid groups are transferred to two N atoms of the diethylenetriamine.

As can be seen from the packing diagram (Fig. 2), there are variety intera and intermolecular N—H···O, N—H···N and C—H···O hydrogen bonds (Table 1) in the crystal structure

Also, as shown in Fig. 3, there are C—H···π interactions between C10—H10B bond of diethylenetriaminium ion and pyridine ring and C3—H3 bond of pyridine-2,5-dicarboxylate ion and symmetry-related pyridine ring in the crystal structure [distance from centroid = 2.91 and 2.83 Å; angle = 161 and 139 ° and symmetry codes: 1 - x, -y, -z and 2 - x, -1/2 + y, 1/2 - z, respectively].

Intermolecular N—H···O, N—H···N and C—H···O hydrogen bonds and C—H···π interactions in this compound seem to be effective in the stabilization of the crystal structure, resulting in the formation of a three-dimensional supramolecular structure.

Related literature top

For general background to proton-transfer compounds, see: Sheshmani et al. (2007); Aghabozorg et al. (2008a,b,c); Derikvand et al. (2009).

Experimental top

Diethylenetriamine (0.28 g, 0.29 ml, 2.66 mmol) was added to a solution of pyridine-2,5-dicarboxylic acid (0.45 g, 2.66 mmol) in methanol (50 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a pale yellow solution in water. Suitable crystals were isolated after one week (yield; 0.55 g, 76.5%).

Refinement top

H atoms bonded to N atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 Å for aromatic and 0.97 Å for methylene, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The unit-cell packing diagram for the title molecule.
[Figure 3] Fig. 3. Intermolecular C—H···π interactions for the title molecule.
2,2'-Azanediyldiethanaminium pyridine-2,5-dicarboxylate top
Crystal data top
C4H15N32+·C7H3NO42F(000) = 576.0
Mr = 270.29Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3595 reflections
a = 10.485 (2) Åθ = 2.5–29.2°
b = 7.7016 (15) ŵ = 0.10 mm1
c = 17.254 (4) ÅT = 298 K
β = 106.67 (3)°Block, yellow
V = 1334.7 (5) Å30.3 × 0.3 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
3593 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.5°
rotation method scansh = 1413
Absorption correction: integration
(X-RED32; Stoe & Cie, 2005)
k = 1010
Tmin = 0.967, Tmax = 0.983l = 2323
14267 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.9032P]
where P = (Fo2 + 2Fc2)/3
3593 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C4H15N32+·C7H3NO42V = 1334.7 (5) Å3
Mr = 270.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.485 (2) ŵ = 0.10 mm1
b = 7.7016 (15) ÅT = 298 K
c = 17.254 (4) Å0.3 × 0.3 × 0.15 mm
β = 106.67 (3)°
Data collection top
Stoe IPDS II
diffractometer
3593 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2005)
2523 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.983Rint = 0.099
14267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.39 e Å3
3593 reflectionsΔρmin = 0.28 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6009 (2)0.1955 (4)0.15541 (15)0.0729 (8)
O20.60280 (19)0.3262 (3)0.04174 (12)0.0548 (6)
O31.29302 (19)0.1713 (3)0.26621 (13)0.0551 (6)
O41.28741 (19)0.3736 (3)0.17248 (12)0.0509 (5)
N10.8735 (2)0.3611 (3)0.09555 (13)0.0391 (5)
N20.4579 (2)0.0627 (3)0.21118 (15)0.0382 (5)
N30.2987 (2)0.0099 (3)0.04917 (15)0.0460 (6)
N40.3271 (3)0.3560 (4)0.01663 (16)0.0443 (6)
C10.8097 (2)0.2669 (3)0.13871 (15)0.0327 (5)
C20.8779 (3)0.1723 (4)0.20632 (17)0.0436 (6)
H20.83150.11120.23610.052*
C31.0150 (3)0.1698 (4)0.22901 (16)0.0422 (6)
H31.06190.10330.27290.051*
C41.0825 (2)0.2672 (3)0.18589 (15)0.0341 (5)
C51.0069 (3)0.3606 (3)0.12018 (16)0.0381 (6)
H51.05150.42730.09130.046*
C60.6586 (2)0.2626 (3)0.10991 (16)0.0381 (6)
C71.2334 (3)0.2704 (4)0.21038 (16)0.0401 (6)
C80.3824 (3)0.2064 (4)0.16064 (19)0.0496 (7)
H8A0.35700.29110.19510.059*
H8B0.43860.26400.13260.059*
C90.2599 (3)0.1373 (4)0.09994 (18)0.0475 (7)
H9A0.21200.23160.06690.057*
H9B0.20150.08410.12770.057*
C100.1898 (3)0.0876 (4)0.00271 (17)0.0474 (7)
H10A0.13460.13340.02900.057*
H10B0.13530.01130.04370.057*
C110.2408 (3)0.2359 (4)0.04313 (17)0.0525 (8)
H11A0.29090.18920.07770.063*
H11B0.16570.30010.07700.063*
H2A0.539 (3)0.100 (4)0.249 (2)0.058 (9)*
H2B0.486 (3)0.011 (4)0.1790 (18)0.044 (8)*
H2C0.405 (4)0.010 (5)0.238 (2)0.069 (10)*
H3A0.352 (4)0.064 (5)0.018 (2)0.083 (12)*
H4A0.417 (4)0.320 (4)0.032 (2)0.059 (9)*
H4B0.300 (4)0.365 (5)0.064 (2)0.068 (11)*
H4C0.322 (4)0.463 (5)0.006 (2)0.078 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0440 (12)0.103 (2)0.0698 (15)0.0193 (12)0.0137 (11)0.0258 (14)
O20.0361 (10)0.0691 (14)0.0538 (12)0.0065 (10)0.0041 (9)0.0145 (11)
O30.0376 (10)0.0646 (14)0.0590 (13)0.0127 (10)0.0074 (9)0.0041 (11)
O40.0381 (10)0.0631 (13)0.0544 (12)0.0137 (9)0.0176 (9)0.0085 (10)
N10.0391 (11)0.0379 (11)0.0397 (11)0.0011 (9)0.0103 (9)0.0061 (9)
N20.0306 (11)0.0380 (12)0.0428 (12)0.0004 (9)0.0055 (10)0.0057 (10)
N30.0443 (13)0.0444 (13)0.0448 (13)0.0052 (10)0.0055 (10)0.0025 (11)
N40.0377 (12)0.0476 (14)0.0454 (14)0.0005 (11)0.0084 (10)0.0097 (11)
C10.0326 (11)0.0284 (11)0.0369 (12)0.0018 (9)0.0096 (10)0.0012 (10)
C20.0364 (13)0.0458 (15)0.0480 (15)0.0022 (11)0.0108 (11)0.0151 (12)
C30.0366 (13)0.0429 (14)0.0450 (14)0.0023 (11)0.0083 (11)0.0119 (12)
C40.0336 (12)0.0303 (12)0.0387 (13)0.0013 (10)0.0108 (10)0.0055 (10)
C60.0323 (12)0.0391 (13)0.0414 (14)0.0006 (10)0.0084 (10)0.0004 (11)
C70.0333 (12)0.0418 (14)0.0446 (14)0.0002 (11)0.0105 (11)0.0114 (12)
C80.0522 (17)0.0348 (14)0.0556 (17)0.0015 (12)0.0056 (14)0.0031 (12)
C90.0450 (15)0.0411 (14)0.0493 (15)0.0075 (12)0.0021 (12)0.0018 (13)
C100.0462 (15)0.0427 (15)0.0451 (15)0.0017 (12)0.0000 (12)0.0072 (12)
C110.0604 (18)0.0531 (17)0.0379 (14)0.0071 (15)0.0040 (13)0.0039 (13)
C50.0414 (13)0.0343 (12)0.0403 (13)0.0041 (11)0.0146 (11)0.0039 (11)
Geometric parameters (Å, º) top
O1—C61.233 (3)C1—C61.519 (3)
O2—C61.253 (3)C2—C31.378 (4)
O3—C71.248 (3)C2—H20.9300
O4—C71.262 (3)C3—C41.385 (4)
N1—C51.340 (3)C3—H30.9300
N1—C11.347 (3)C4—C51.384 (4)
N2—C81.489 (4)C4—C71.516 (3)
N2—H2A0.96 (3)C8—C91.503 (4)
N2—H2B0.90 (3)C8—H8A0.9700
N2—H2C1.00 (4)C8—H8B0.9700
N3—C101.444 (4)C9—H9A0.9700
N3—C91.450 (4)C9—H9B0.9700
N3—H3A0.98 (4)C10—C111.514 (4)
N4—C111.484 (4)C10—H10A0.9700
N4—H4A0.94 (4)C10—H10B0.9700
N4—H4B0.95 (4)C11—H11A0.9700
N4—H4C0.91 (4)C11—H11B0.9700
C1—C21.387 (3)C5—H50.9300
C5—N1—C1117.5 (2)O3—C7—O4125.9 (2)
C8—N2—H2A113.6 (19)O3—C7—C4117.2 (2)
C8—N2—H2B108.7 (19)O4—C7—C4117.0 (2)
H2A—N2—H2B103 (3)N2—C8—C9110.5 (2)
C8—N2—H2C115 (2)N2—C8—H8A109.6
H2A—N2—H2C111 (3)C9—C8—H8A109.6
H2B—N2—H2C105 (3)N2—C8—H8B109.6
C10—N3—C9114.7 (2)C9—C8—H8B109.6
C10—N3—H3A111 (2)H8A—C8—H8B108.1
C9—N3—H3A111 (2)N3—C9—C8109.2 (2)
C11—N4—H4A112 (2)N3—C9—H9A109.8
C11—N4—H4B112 (2)C8—C9—H9A109.8
H4A—N4—H4B107 (3)N3—C9—H9B109.8
C11—N4—H4C108 (2)C8—C9—H9B109.8
H4A—N4—H4C109 (3)H9A—C9—H9B108.3
H4B—N4—H4C108 (3)N3—C10—C11110.9 (2)
N1—C1—C2122.0 (2)N3—C10—H10A109.5
N1—C1—C6117.9 (2)C11—C10—H10A109.5
C2—C1—C6120.1 (2)N3—C10—H10B109.5
C3—C2—C1119.4 (2)C11—C10—H10B109.5
C3—C2—H2120.3H10A—C10—H10B108.0
C1—C2—H2120.3N4—C11—C10112.1 (2)
C2—C3—C4119.5 (2)N4—C11—H11A109.2
C2—C3—H3120.3C10—C11—H11A109.2
C4—C3—H3120.3N4—C11—H11B109.2
C5—C4—C3117.4 (2)C10—C11—H11B109.2
C5—C4—C7121.8 (2)H11A—C11—H11B107.9
C3—C4—C7120.8 (2)N1—C5—C4124.2 (2)
O1—C6—O2125.4 (2)N1—C5—H5117.9
O1—C6—C1117.2 (2)C4—C5—H5117.9
O2—C6—C1117.4 (2)
C5—N1—C1—C20.1 (4)C5—C4—C7—O3174.3 (2)
C5—N1—C1—C6178.4 (2)C3—C4—C7—O35.8 (4)
N1—C1—C2—C32.0 (4)C5—C4—C7—O45.8 (4)
C6—C1—C2—C3176.4 (3)C3—C4—C7—O4174.1 (2)
C1—C2—C3—C42.6 (4)C10—N3—C9—C8170.1 (2)
C2—C3—C4—C51.3 (4)N2—C8—C9—N358.8 (3)
C2—C3—C4—C7178.6 (3)C9—N3—C10—C11170.9 (2)
N1—C1—C6—O1170.7 (3)N3—C10—C11—N458.1 (3)
C2—C1—C6—O110.9 (4)C1—N1—C5—C41.3 (4)
N1—C1—C6—O29.9 (4)C3—C4—C5—N10.7 (4)
C2—C1—C6—O2168.6 (3)C7—C4—C5—N1179.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.96 (3)2.56 (3)3.254 (3)130 (2)
N2—H2A···O4i0.96 (3)1.94 (3)2.886 (3)169 (3)
N2—H2B···O10.90 (3)1.98 (3)2.821 (4)155 (3)
N2—H2C···O3ii0.99 (4)1.87 (4)2.843 (3)167 (3)
N3—H3A···O2iii0.97 (4)2.38 (4)3.223 (3)145 (3)
N4—H4A···O20.95 (4)1.91 (4)2.807 (4)158 (3)
N4—H4B···O4ii0.94 (4)1.92 (3)2.840 (3)167 (4)
N4—H4C···O2iv0.91 (4)1.98 (4)2.823 (4)154 (4)
N4—H4C···N1iv0.91 (4)2.57 (4)3.253 (4)133 (3)
C8—H8A···O1v0.972.493.218 (4)132
C3—H3···Cgi0.932.833.588 (3)139
C10—H10B···Cgiii0.972.913.846 (3)161
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H15N32+·C7H3NO42
Mr270.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.485 (2), 7.7016 (15), 17.254 (4)
β (°) 106.67 (3)
V3)1334.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.3 × 0.15
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.967, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
14267, 3593, 2523
Rint0.099
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.184, 1.18
No. of reflections3593
No. of parameters200
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.28

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.96 (3)2.56 (3)3.254 (3)130 (2)
N2—H2A···O4i0.96 (3)1.94 (3)2.886 (3)169 (3)
N2—H2B···O10.90 (3)1.98 (3)2.821 (4)155 (3)
N2—H2C···O3ii0.99 (4)1.87 (4)2.843 (3)167 (3)
N3—H3A···O2iii0.97 (4)2.38 (4)3.223 (3)145 (3)
N4—H4A···O20.95 (4)1.91 (4)2.807 (4)158 (3)
N4—H4B···O4ii0.94 (4)1.92 (3)2.840 (3)167 (4)
N4—H4C···O2iv0.91 (4)1.98 (4)2.823 (4)154 (4)
N4—H4C···N1iv0.91 (4)2.57 (4)3.253 (4)133 (3)
C8—H8A···O1v0.97002.49003.218 (4)132
C3—H3···Cgi0.932.833.588 (3)139
C10—H10B···Cgiii0.972.913.846 (3)161
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to Tarbiat Moallem University for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008a). Acta Cryst. E64, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008b). Acta Cryst. E64, o740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008c). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationDerikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheshmani, S., Aghabozorg, H. & Ghadermazi, M. (2007). Acta Cryst. E63, o2869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds