metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tri­aqua­tris­­(μ4-pyridine-3,5-di­carboxyl­ato)dicerium(III)]

aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of General Eduction Center, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 26 December 2010; accepted 4 January 2011; online 15 January 2011)

The asymmetric unit of the title compound, [Ce2(C7H3NO4)3(H2O)3]n, contains two CeIII cations, three pyridine-3,5-dicarboxyl­ate (pyd) anions and three coordinated water mol­ecules. One CeIII cation is coordinated by seven carboxyl­ate O atoms from six pyd anions and two water mol­ecules in a square-face-capped square-anti­prismatic geometry. Another CeIII cation is coordinated by seven O atoms from six pdy anions and one water mol­ecule in a bicapped trigonal–prismatic geometry. The pdy anions bridge the CeIII cations, forming the three-dimensional polymeric structure. The crystal structure contains extensive O—H⋯O, O—H⋯N and weak C—H⋯O hydrogen bonds. ππ stacking is present in the crystal structure, the shortest centroid–centroid distance between parallel pyridine rings being 3.509 (4) Å.

Related literature

3,5-PydH2 can be easily deprotonated to the N-donor multidentate anion (pyd2−), enabling the ligand to act as a bridge to 3d and/or 4f metal ions, see: Jia et al. (2006[Jia, J.-H., Lin, X., Blake, A. J., Champness, N. R., Hubberstey, P., Shao, L.-M., Walker, G., Wilson, C. & Schroder, M. (2006). Inorg. Chem. 45, 8838-8840.]). For related structures, see: Guo et al. (2009[Guo, H.-F., Qin, L. & Hao, X.-Y. (2009). Acta Cryst. E65, m1214-m1215.]); Li (2007[Li, F. (2007). Acta Cryst. E63, m73-m74.]); Yi et al. (2009[Yi, J.-L., Fu, Z.-Y. & Liao, S. (2009). J. Coord. Chem. 62, 2290-2298.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce2(C7H3NO4)3(H2O)3]

  • Mr = 829.60

  • Triclinic, [P \overline 1]

  • a = 8.959 (3) Å

  • b = 9.429 (3) Å

  • c = 14.582 (4) Å

  • α = 98.115 (6)°

  • β = 95.501 (6)°

  • γ = 105.030 (6)°

  • V = 1166.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.94 mm−1

  • T = 295 K

  • 0.15 × 0.08 × 0.02 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.756, Tmax = 0.975

  • 12583 measured reflections

  • 5586 independent reflections

  • 2847 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.076

  • S = 0.74

  • 5586 reflections

  • 370 parameters

  • H-atom parameters not refined

  • Δρmax = 1.36 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Selected bond lengths (Å)

Ce1—O1i 2.349 (6)
Ce1—O3 2.773 (5)
Ce1—O4 2.570 (5)
Ce1—O5ii 2.384 (5)
Ce1—O7 2.538 (5)
Ce1—O9 2.538 (5)
Ce1—O11iii 2.405 (5)
Ce1—O13 2.560 (5)
Ce2—O2iv 2.404 (5)
Ce2—O3 2.594 (5)
Ce2—O6v 2.431 (5)
Ce2—O7 2.847 (6)
Ce2—O8 2.657 (6)
Ce2—O10vi 2.526 (5)
Ce2—O12iii 2.444 (5)
Ce2—O14 2.606 (6)
Ce2—O15 2.646 (6)
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) -x+1, -y, -z+1; (v) x+1, y+1, z; (vi) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O4vii 0.82 2.28 2.901 (7) 132
O13—H13B⋯N1viii 0.81 1.87 2.659 (9) 164
O14—H14A⋯N2vi 0.89 2.06 2.802 (9) 140
O14—H14B⋯O10vi 0.88 2.40 3.031 (9) 129
O15—H15A⋯O10vi 0.82 2.40 2.853 (9) 115
O15—H15B⋯N3 0.82 2.00 2.815 (9) 174
C8—H8⋯O12ix 0.93 2.43 3.354 (9) 172
C12—H12⋯O9 0.93 2.57 3.354 (9) 143
C15—H15⋯O7 0.93 2.38 3.258 (9) 157
Symmetry codes: (vi) x+1, y, z; (vii) -x, -y+1, -z+1; (viii) -x+1, -y+1, -z+1; (ix) -x-1, -y, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

3,5-PydH2 can be easily deprotonated to get a O-donors to N-donor multidentate anion (pyd2-), enabling the ligand to act as a bridge to 3 d and/or 4f metal ions (Jia et al., 2006). Some examples of coordination polymer with 3,5-pydH2 have been reported (Guo et al., 2009; Li, 2007; Yi et al., 2009).

The asymmetric unit of the title compound contain two independent CeIII atoms, three pyridine-3,5-dicarboxylate(3,5-pyd) ligands and three coordinated water molecules. One CeIII atom is coordinated by nine O atoms from six 3,5-pyd groups and two water molecules, forming a square-face capped square antiprism. Another CeIII atom is coordinated by seven O atoms from six 3,5-pdy groups and one O atom from one water molecule, forming a 4,4'-bicapped trigonal prism. By sharing two carboxylate O atoms via a mono atomic bridging mode, two Ce centers are connected into a binuclear unit(Table 1 and Fig.1).

The crystal structure contains an extensive network of classical O—H···O, O—H···N and weak C—H···O hydrogen bonds(full details and symmetry codes are given in Table 2 and Fig. 2).The π···π stacking interactions are also observed, the centroid-centroid distance between the pyridine rings of unbridging 3,5-pyd is 3.509 (4)Å [Cg5iii···Cg5 (N3/C15—C19)] [symmetry code: -x, 1 - y, -z].

Related literature top

3,5-PydH2 can be easily deprotonated to the N-donor multidentate anion (pyd2-), enabling the ligand to act as a bridge to 3d and/or 4f metal ions, see: Jia et al. (2006). For related structures, see: Guo et al. (2009); Li (2007); Yi et al. (2009).

Experimental top

A mixture of Ce(NO3)3.6H2O (0.867 g, 0.2 mmole), 3,5-pydH2 (0.495 g, 0.3 mmol) and 10 ml H2O was sealed in a 25 ml teflon-lined bomb at 423 K for 3 days and then cooled to room temperature. Colorless crystals were collected (yield 45%, based on Ce(NO3)3).

Refinement top

Water H atoms were fixed in chemical sensible positions, thier thermal parameters were fixed as 0.08 Å2. Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity.[Symmetry codes: (i) x, y + 1, z; (ii)-x, -y, -z + 1; (iii) -x, -y + 1, -z; (iv) x + 1, y, z; (v) x + 1, y + 1, z; (vi) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.
Poly[triaquatris(µ4-pyridine-3,5-dicarboxylato)dicerium(III)] top
Crystal data top
[Ce2(C7H3NO4)3(H2O)3]Z = 2
Mr = 829.60F(000) = 796
Triclinic, P1Dx = 2.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.959 (3) ÅCell parameters from 1701 reflections
b = 9.429 (3) Åθ = 2.5–25.0°
c = 14.582 (4) ŵ = 3.94 mm1
α = 98.115 (6)°T = 295 K
β = 95.501 (6)°Columnar, colorless
γ = 105.030 (6)°0.15 × 0.08 × 0.02 mm
V = 1166.4 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5586 independent reflections
Radiation source: fine-focus sealed tube2847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 9 pixels mm-1θmax = 28.4°, θmin = 1.4°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1212
Tmin = 0.756, Tmax = 0.975l = 1819
12583 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters not refined
S = 0.74 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
5586 reflections(Δ/σ)max = 0.002
370 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Ce2(C7H3NO4)3(H2O)3]γ = 105.030 (6)°
Mr = 829.60V = 1166.4 (6) Å3
Triclinic, P1Z = 2
a = 8.959 (3) ÅMo Kα radiation
b = 9.429 (3) ŵ = 3.94 mm1
c = 14.582 (4) ÅT = 295 K
α = 98.115 (6)°0.15 × 0.08 × 0.02 mm
β = 95.501 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5586 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2847 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.975Rint = 0.090
12583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.076H-atom parameters not refined
S = 0.74Δρmax = 1.36 e Å3
5586 reflectionsΔρmin = 1.15 e Å3
370 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.04398 (5)0.35570 (5)0.33964 (3)0.0181 (2)
Ce20.35910 (5)0.23588 (5)0.22599 (3)0.0168 (2)
O10.2438 (6)0.1610 (6)0.6274 (3)0.0264 (17)
O20.4960 (6)0.1188 (6)0.6760 (3)0.0237 (17)
O30.2578 (5)0.3334 (5)0.3765 (3)0.0215 (17)
O40.0764 (6)0.2234 (5)0.4572 (3)0.0229 (17)
O50.1974 (5)0.4732 (5)0.3614 (3)0.0217 (17)
O60.4502 (6)0.5346 (5)0.3038 (3)0.0222 (17)
O70.0313 (6)0.1587 (5)0.2310 (3)0.0222 (17)
O80.1594 (6)0.0047 (6)0.2628 (4)0.038 (2)
O90.2542 (6)0.2878 (6)0.1987 (3)0.032 (2)
O100.4582 (6)0.3168 (6)0.1098 (3)0.0328 (19)
O110.0774 (6)0.4892 (6)0.2348 (3)0.032 (2)
O120.2635 (6)0.5672 (5)0.1697 (3)0.0273 (17)
O130.1027 (6)0.5939 (6)0.4542 (3)0.0318 (19)
O140.3991 (6)0.0037 (6)0.1307 (4)0.040 (2)
O150.2259 (7)0.1451 (7)0.0501 (4)0.048 (3)
N10.6058 (7)0.2665 (7)0.5638 (4)0.022 (2)
N20.3912 (7)0.1665 (7)0.1751 (4)0.025 (2)
N30.0159 (7)0.2521 (7)0.0258 (4)0.024 (2)
C10.5675 (9)0.1464 (8)0.6054 (4)0.021 (3)
C20.4160 (8)0.0545 (7)0.5953 (4)0.014 (2)
C30.3002 (8)0.0911 (7)0.5431 (4)0.016 (3)
C40.3367 (8)0.2156 (8)0.4998 (5)0.016 (3)
C50.4931 (9)0.2967 (8)0.5117 (5)0.022 (3)
C60.3835 (10)0.0854 (8)0.6374 (5)0.022 (3)
C70.2161 (9)0.2597 (8)0.4410 (5)0.022 (3)
C80.4043 (9)0.2893 (8)0.2140 (5)0.026 (3)
C90.2820 (8)0.3157 (8)0.2669 (4)0.017 (3)
C100.1376 (8)0.2142 (8)0.2774 (5)0.019 (3)
C110.1195 (8)0.0880 (8)0.2375 (5)0.016 (2)
C120.2506 (9)0.0689 (8)0.1882 (5)0.024 (3)
C130.3132 (8)0.4542 (8)0.3137 (5)0.016 (2)
C140.0358 (9)0.0273 (9)0.2447 (5)0.022 (3)
C150.1092 (9)0.2494 (8)0.0402 (5)0.024 (3)
C160.2283 (8)0.3167 (8)0.0422 (5)0.019 (3)
C170.2543 (8)0.3915 (8)0.0296 (5)0.018 (2)
C180.1586 (8)0.3997 (8)0.0992 (4)0.015 (2)
C190.0426 (8)0.3287 (8)0.0939 (5)0.020 (3)
C200.3221 (9)0.3057 (8)0.1236 (5)0.022 (3)
C210.1691 (9)0.4919 (8)0.1739 (5)0.021 (3)
H10.645600.123800.642500.0250*
H30.197500.032800.536700.0190*
H50.519900.377600.480900.0260*
H80.500900.360000.204700.0310*
H100.052300.230900.311300.0220*
H120.239900.017600.162700.0290*
H13A0.059000.659400.447300.0800*
H13B0.192100.620400.443900.0800*
H14A0.423000.089000.133600.0800*
H14B0.478000.053000.109000.0800*
H150.092600.198200.088500.0280*
H15A0.300200.164100.020500.0800*
H15B0.159800.182500.030100.0800*
H170.335500.436100.031500.0210*
H190.021600.334000.140600.0250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.0143 (3)0.0185 (3)0.0231 (3)0.0042 (2)0.0029 (2)0.0094 (2)
Ce20.0132 (3)0.0182 (3)0.0212 (3)0.0055 (2)0.0018 (2)0.0091 (2)
O10.021 (3)0.023 (3)0.035 (3)0.002 (3)0.008 (3)0.017 (3)
O20.021 (3)0.026 (3)0.028 (3)0.010 (3)0.001 (2)0.014 (3)
O30.020 (3)0.028 (3)0.020 (3)0.007 (2)0.005 (2)0.014 (2)
O40.018 (3)0.031 (3)0.023 (3)0.009 (3)0.003 (2)0.011 (3)
O50.017 (3)0.018 (3)0.031 (3)0.007 (2)0.002 (2)0.007 (2)
O60.019 (3)0.021 (3)0.029 (3)0.007 (2)0.004 (2)0.009 (2)
O70.019 (3)0.016 (3)0.031 (3)0.002 (2)0.002 (2)0.008 (2)
O80.014 (3)0.027 (4)0.075 (5)0.006 (3)0.002 (3)0.016 (3)
O90.047 (4)0.034 (4)0.017 (3)0.013 (3)0.002 (3)0.005 (3)
O100.015 (3)0.057 (4)0.028 (3)0.007 (3)0.008 (3)0.015 (3)
O110.035 (4)0.044 (4)0.027 (3)0.016 (3)0.013 (3)0.022 (3)
O120.029 (3)0.023 (3)0.037 (3)0.012 (3)0.006 (3)0.019 (3)
O130.020 (3)0.025 (3)0.050 (4)0.006 (3)0.003 (3)0.007 (3)
O140.047 (4)0.022 (4)0.059 (4)0.023 (3)0.003 (3)0.011 (3)
O150.057 (4)0.063 (5)0.033 (4)0.041 (4)0.010 (3)0.001 (3)
N10.021 (4)0.019 (4)0.025 (4)0.001 (3)0.001 (3)0.010 (3)
N20.021 (4)0.019 (4)0.036 (4)0.008 (3)0.001 (3)0.011 (3)
N30.027 (4)0.031 (4)0.019 (4)0.014 (3)0.004 (3)0.007 (3)
C10.030 (5)0.025 (5)0.006 (4)0.011 (4)0.008 (3)0.001 (3)
C20.019 (4)0.012 (4)0.013 (4)0.006 (3)0.002 (3)0.002 (3)
C30.008 (4)0.020 (5)0.021 (4)0.002 (3)0.007 (3)0.007 (3)
C40.014 (4)0.020 (5)0.017 (4)0.005 (3)0.005 (3)0.012 (3)
C50.022 (5)0.019 (5)0.024 (5)0.004 (4)0.005 (4)0.005 (4)
C60.035 (6)0.016 (5)0.015 (4)0.012 (4)0.003 (4)0.001 (3)
C70.024 (5)0.020 (5)0.021 (4)0.012 (4)0.002 (4)0.005 (4)
C80.019 (5)0.023 (5)0.032 (5)0.004 (4)0.001 (4)0.002 (4)
C90.017 (4)0.019 (5)0.015 (4)0.008 (4)0.002 (3)0.001 (3)
C100.010 (4)0.025 (5)0.024 (4)0.008 (4)0.004 (3)0.007 (4)
C110.017 (4)0.018 (4)0.012 (4)0.003 (3)0.000 (3)0.002 (3)
C120.031 (5)0.016 (5)0.027 (5)0.006 (4)0.005 (4)0.009 (4)
C130.011 (4)0.016 (4)0.020 (4)0.005 (4)0.005 (3)0.006 (3)
C140.023 (5)0.020 (5)0.023 (5)0.005 (4)0.002 (4)0.004 (4)
C150.031 (5)0.022 (5)0.020 (5)0.005 (4)0.006 (4)0.011 (4)
C160.015 (4)0.021 (5)0.020 (4)0.000 (4)0.002 (3)0.007 (4)
C170.015 (4)0.018 (4)0.024 (4)0.012 (3)0.001 (3)0.004 (3)
C180.012 (4)0.018 (4)0.014 (4)0.001 (3)0.001 (3)0.002 (3)
C190.014 (4)0.032 (5)0.021 (4)0.011 (4)0.009 (3)0.011 (4)
C200.033 (5)0.013 (4)0.022 (5)0.004 (4)0.008 (4)0.007 (3)
C210.026 (5)0.011 (5)0.027 (5)0.004 (4)0.001 (4)0.008 (4)
Geometric parameters (Å, º) top
Ce1—O1i2.349 (6)O15—H15A0.8200
Ce1—O32.773 (5)N1—C51.319 (10)
Ce1—O42.570 (5)N1—C11.342 (9)
Ce1—O5ii2.384 (5)N2—C81.343 (10)
Ce1—O72.538 (5)N2—C121.332 (10)
Ce1—O92.538 (5)N3—C151.333 (10)
Ce1—O11iii2.405 (5)N3—C191.346 (9)
Ce1—O132.560 (5)C1—C21.389 (11)
Ce2—O2iv2.404 (5)C2—C61.505 (10)
Ce2—O32.594 (5)C2—C31.372 (10)
Ce2—O6v2.431 (5)C3—C41.391 (10)
Ce2—O72.847 (6)C4—C51.392 (11)
Ce2—O82.657 (6)C4—C71.494 (11)
Ce2—O10vi2.526 (5)C8—C91.375 (11)
Ce2—O12iii2.444 (5)C9—C131.532 (10)
Ce2—O142.606 (6)C9—C101.375 (10)
Ce2—O152.646 (6)C10—C111.376 (10)
O1—C61.253 (10)C11—C121.383 (11)
O2—C61.240 (10)C11—C141.511 (11)
O3—C71.275 (9)C15—C161.376 (11)
O4—C71.264 (10)C16—C171.377 (10)
O5—C131.259 (9)C16—C201.519 (11)
O6—C131.247 (9)C17—C181.388 (10)
O7—C141.293 (10)C18—C211.497 (10)
O8—C141.236 (10)C18—C191.376 (11)
O9—C201.255 (9)C1—H10.9300
O10—C201.250 (10)C3—H30.9300
O11—C211.268 (9)C5—H50.9300
O12—C211.238 (10)C8—H80.9300
O13—H13B0.8100C10—H100.9300
O13—H13A0.8200C12—H120.9300
O14—H14A0.8900C15—H150.9300
O14—H14B0.8800C17—H170.9300
O15—H15B0.8200C19—H190.9300
O3—Ce1—O448.97 (15)Ce1iii—O11—C21139.0 (5)
O3—Ce1—O763.21 (15)Ce2iii—O12—C21147.9 (5)
O3—Ce1—O9136.42 (15)Ce1—O13—H13B109.00
O3—Ce1—O1374.86 (16)H13A—O13—H13B110.00
O3—Ce1—O5ii142.09 (15)Ce1—O13—H13A109.00
O1i—Ce1—O3116.29 (16)H14A—O14—H14B105.00
O3—Ce1—O11iii81.13 (16)Ce2—O14—H14A146.00
O4—Ce1—O778.59 (15)Ce2—O14—H14B89.00
O4—Ce1—O9138.31 (16)Ce2—O15—H15A103.00
O4—Ce1—O1384.43 (15)H15A—O15—H15B109.00
O4—Ce1—O5ii130.62 (15)Ce2—O15—H15B119.00
O1i—Ce1—O471.74 (17)C1—N1—C5117.6 (7)
O4—Ce1—O11iii130.01 (18)C8—N2—C12116.8 (7)
O7—Ce1—O976.13 (17)C15—N3—C19115.7 (7)
O7—Ce1—O13135.85 (17)N1—C1—C2122.7 (7)
O5ii—Ce1—O7148.48 (15)C1—C2—C3118.5 (6)
O1i—Ce1—O786.99 (17)C1—C2—C6119.9 (7)
O7—Ce1—O11iii81.55 (16)C3—C2—C6121.6 (7)
O9—Ce1—O13135.94 (17)C2—C3—C4119.9 (7)
O5ii—Ce1—O973.22 (16)C3—C4—C5116.8 (7)
O1i—Ce1—O974.33 (17)C5—C4—C7120.8 (7)
O9—Ce1—O11iii77.93 (17)C3—C4—C7122.3 (7)
O5ii—Ce1—O1367.88 (17)N1—C5—C4124.4 (7)
O1i—Ce1—O13125.59 (16)O1—C6—C2116.4 (7)
O11iii—Ce1—O1378.89 (16)O1—C6—O2125.6 (7)
O1i—Ce1—O5ii91.67 (18)O2—C6—C2118.0 (7)
O5ii—Ce1—O11iii85.06 (17)O3—C7—C4118.9 (7)
O1i—Ce1—O11iii151.80 (16)O3—C7—O4122.2 (7)
O3—Ce2—O761.49 (13)O4—C7—C4118.9 (6)
O3—Ce2—O876.02 (16)N2—C8—C9123.3 (7)
O3—Ce2—O14142.80 (16)C8—C9—C10118.4 (7)
O3—Ce2—O15132.35 (17)C8—C9—C13118.8 (7)
O3—Ce2—O10vi142.82 (16)C10—C9—C13122.9 (6)
O3—Ce2—O6v71.96 (15)C9—C10—C11119.9 (7)
O3—Ce2—O12iii81.25 (15)C10—C11—C12117.5 (7)
O2iv—Ce2—O386.49 (15)C12—C11—C14119.6 (7)
O7—Ce2—O847.39 (15)C10—C11—C14122.9 (7)
O7—Ce2—O14103.05 (15)N2—C12—C11124.1 (7)
O7—Ce2—O1573.85 (16)O5—C13—C9116.3 (6)
O7—Ce2—O10vi137.07 (15)O6—C13—C9117.7 (6)
O6v—Ce2—O7126.71 (16)O5—C13—O6126.1 (7)
O7—Ce2—O12iii73.06 (16)O8—C14—C11120.8 (7)
O2iv—Ce2—O7115.52 (16)O7—C14—O8122.7 (8)
O8—Ce2—O1469.99 (17)O7—C14—C11116.6 (7)
O8—Ce2—O1586.20 (19)N3—C15—C16124.9 (7)
O8—Ce2—O10vi141.16 (17)C15—C16—C20118.4 (7)
O6v—Ce2—O8141.34 (16)C17—C16—C20123.8 (7)
O8—Ce2—O12iii120.16 (17)C15—C16—C17117.8 (7)
O2iv—Ce2—O872.51 (18)C16—C17—C18119.5 (7)
O14—Ce2—O1560.51 (19)C17—C18—C19117.7 (6)
O10vi—Ce2—O1472.40 (17)C17—C18—C21122.5 (7)
O6v—Ce2—O14130.08 (18)C19—C18—C21119.6 (6)
O12iii—Ce2—O14129.11 (16)N3—C19—C18124.4 (7)
O2iv—Ce2—O1469.45 (17)O9—C20—C16116.5 (7)
O10vi—Ce2—O1566.93 (18)O10—C20—C16117.2 (6)
O6v—Ce2—O15131.76 (17)O9—C20—O10126.4 (7)
O12iii—Ce2—O1570.20 (17)O12—C21—C18117.4 (7)
O2iv—Ce2—O15129.76 (18)O11—C21—O12125.5 (7)
O6v—Ce2—O10vi73.31 (16)O11—C21—C18117.1 (7)
O10vi—Ce2—O12iii77.76 (17)N1—C1—H1119.00
O2iv—Ce2—O10vi102.93 (17)C2—C1—H1119.00
O6v—Ce2—O12iii75.75 (16)C2—C3—H3120.00
O2iv—Ce2—O6v84.34 (17)C4—C3—H3120.00
O2iv—Ce2—O12iii159.05 (16)N1—C5—H5118.00
Ce1i—O1—C6151.9 (5)C4—C5—H5118.00
Ce2iv—O2—C6159.8 (5)N2—C8—H8118.00
Ce1—O3—Ce2111.94 (16)C9—C8—H8118.00
Ce1—O3—C789.4 (4)C9—C10—H10120.00
Ce2—O3—C7126.0 (4)C11—C10—H10120.00
Ce1—O4—C799.2 (4)N2—C12—H12118.00
Ce1vii—O5—C13133.9 (4)C11—C12—H12118.00
Ce2viii—O6—C13147.4 (5)N3—C15—H15118.00
Ce1—O7—Ce2111.32 (17)C16—C15—H15118.00
Ce1—O7—C14127.9 (4)C16—C17—H17120.00
Ce2—O7—C1489.2 (5)C18—C17—H17120.00
Ce2—O8—C1499.6 (5)N3—C19—H19118.00
Ce1—O9—C20155.6 (5)C18—C19—H19118.00
Ce2ix—O10—C20118.3 (4)
O4—Ce1—O3—Ce2127.0 (2)O14—Ce2—O10vi—C20vi71.9 (5)
O4—Ce1—O3—C72.0 (4)O15—Ce2—O10vi—C20vi136.7 (6)
O7—Ce1—O3—Ce228.62 (16)O3—Ce2—O6v—C13v160.2 (9)
O7—Ce1—O3—C7100.4 (4)O7—Ce2—O6v—C13v170.1 (8)
O9—Ce1—O3—Ce25.6 (3)O8—Ce2—O6v—C13v124.7 (8)
O9—Ce1—O3—C7123.5 (4)O14—Ce2—O6v—C13v15.1 (9)
O13—Ce1—O3—Ce2137.1 (2)O15—Ce2—O6v—C13v68.5 (9)
O13—Ce1—O3—C793.8 (4)O3—Ce2—O12iii—C21iii29.8 (9)
O5ii—Ce1—O3—Ce2126.3 (2)O7—Ce2—O12iii—C21iii33.0 (9)
O5ii—Ce1—O3—C7104.7 (4)O8—Ce2—O12iii—C21iii38.4 (9)
O1i—Ce1—O3—Ce2100.26 (19)O14—Ce2—O12iii—C21iii126.2 (8)
O1i—Ce1—O3—C728.8 (4)O15—Ce2—O12iii—C21iii111.5 (9)
O11iii—Ce1—O3—Ce256.34 (18)O3—Ce2—O2iv—C6iv123.2 (14)
O11iii—Ce1—O3—C7174.6 (4)O7—Ce2—O2iv—C6iv179.2 (13)
O3—Ce1—O4—C72.1 (4)O8—Ce2—O2iv—C6iv160.3 (14)
O7—Ce1—O4—C766.4 (4)O14—Ce2—O2iv—C6iv85.7 (14)
O9—Ce1—O4—C7119.9 (4)O15—Ce2—O2iv—C6iv91.0 (14)
O13—Ce1—O4—C772.7 (4)Ce1i—O1—C6—O212.2 (16)
O5ii—Ce1—O4—C7127.1 (4)Ce1i—O1—C6—C2170.3 (7)
O1i—Ce1—O4—C7157.0 (4)Ce2iv—O2—C6—O120.9 (19)
O11iii—Ce1—O4—C72.2 (5)Ce2iv—O2—C6—C2161.7 (10)
O3—Ce1—O7—Ce225.76 (14)Ce1—O3—C7—O43.7 (7)
O3—Ce1—O7—C1480.9 (6)Ce1—O3—C7—C4175.9 (6)
O4—Ce1—O7—Ce275.35 (18)Ce2—O3—C7—O4113.4 (7)
O4—Ce1—O7—C1431.3 (6)Ce2—O3—C7—C467.0 (8)
O9—Ce1—O7—Ce2138.1 (2)Ce1—O4—C7—O34.0 (7)
O9—Ce1—O7—C14115.3 (6)Ce1—O4—C7—C4175.6 (6)
O13—Ce1—O7—Ce25.8 (3)Ce1vii—O5—C13—O674.3 (9)
O13—Ce1—O7—C14100.8 (6)Ce1vii—O5—C13—C9108.1 (6)
O5ii—Ce1—O7—Ce2124.4 (3)Ce2viii—O6—C13—O578.9 (11)
O5ii—Ce1—O7—C14129.0 (6)Ce2viii—O6—C13—C9103.6 (9)
O1i—Ce1—O7—Ce2147.32 (18)Ce1—O7—C14—O8106.4 (8)
O1i—Ce1—O7—C1440.7 (6)Ce1—O7—C14—C1173.6 (8)
O11iii—Ce1—O7—Ce258.52 (18)Ce2—O7—C14—O810.4 (7)
O11iii—Ce1—O7—C14165.2 (6)Ce2—O7—C14—C11169.6 (6)
O3—Ce1—O9—C2081.5 (12)Ce2—O8—C14—O711.3 (8)
O4—Ce1—O9—C20156.9 (11)Ce2—O8—C14—C11168.7 (6)
O7—Ce1—O9—C20102.6 (12)Ce1—O9—C20—O10119.1 (11)
O13—Ce1—O9—C2041.3 (13)Ce1—O9—C20—C1660.1 (14)
O5ii—Ce1—O9—C2070.0 (12)Ce2ix—O10—C20—O916.0 (10)
O1i—Ce1—O9—C20166.6 (12)Ce2ix—O10—C20—C16164.8 (5)
O11iii—Ce1—O9—C2018.5 (12)Ce1iii—O11—C21—O1223.5 (12)
O3—Ce1—O5ii—C13ii146.4 (6)Ce1iii—O11—C21—C18154.5 (5)
O4—Ce1—O5ii—C13ii141.4 (6)Ce2iii—O12—C21—O119.9 (14)
O7—Ce1—O5ii—C13ii12.8 (8)Ce2iii—O12—C21—C18168.1 (5)
O9—Ce1—O5ii—C13ii1.1 (6)C5—N1—C1—C20.2 (10)
O13—Ce1—O5ii—C13ii157.7 (6)C1—N1—C5—C42.4 (11)
O3—Ce1—O1i—C6i159.3 (10)C12—N2—C8—C91.3 (11)
O4—Ce1—O1i—C6i179.7 (10)C8—N2—C12—C111.0 (11)
O7—Ce1—O1i—C6i101.3 (10)C19—N3—C15—C160.7 (11)
O9—Ce1—O1i—C6i24.9 (10)C15—N3—C19—C181.0 (11)
O13—Ce1—O1i—C6i110.9 (10)N1—C1—C2—C32.2 (10)
O3—Ce1—O11iii—C21iii46.7 (7)N1—C1—C2—C6175.0 (6)
O4—Ce1—O11iii—C21iii50.0 (8)C1—C2—C3—C41.7 (9)
O7—Ce1—O11iii—C21iii17.4 (7)C6—C2—C3—C4175.4 (6)
O9—Ce1—O11iii—C21iii94.9 (7)C1—C2—C6—O1178.4 (6)
O13—Ce1—O11iii—C21iii122.9 (7)C1—C2—C6—O23.9 (10)
O7—Ce2—O3—Ce125.70 (14)C3—C2—C6—O14.6 (10)
O7—Ce2—O3—C780.5 (6)C3—C2—C6—O2173.2 (6)
O8—Ce2—O3—Ce174.50 (19)C2—C3—C4—C50.7 (10)
O8—Ce2—O3—C731.7 (6)C2—C3—C4—C7179.1 (6)
O14—Ce2—O3—Ce198.8 (3)C3—C4—C5—N12.8 (11)
O14—Ce2—O3—C77.4 (7)C7—C4—C5—N1178.7 (7)
O15—Ce2—O3—Ce13.1 (3)C3—C4—C7—O3153.3 (7)
O15—Ce2—O3—C7103.1 (6)C3—C4—C7—O427.1 (10)
O10vi—Ce2—O3—Ce1105.8 (3)C5—C4—C7—O325.1 (10)
O10vi—Ce2—O3—C7148.0 (5)C5—C4—C7—O4154.5 (7)
O6v—Ce2—O3—Ce1127.5 (2)N2—C8—C9—C102.7 (11)
O6v—Ce2—O3—C7126.3 (6)N2—C8—C9—C13175.7 (6)
O12iii—Ce2—O3—Ce149.71 (18)C8—C9—C10—C111.8 (10)
O12iii—Ce2—O3—C7155.9 (6)C13—C9—C10—C11176.5 (7)
O2iv—Ce2—O3—Ce1147.3 (2)C8—C9—C13—O5180.0 (6)
O2iv—Ce2—O3—C741.1 (6)C8—C9—C13—O62.2 (10)
O3—Ce2—O7—Ce128.16 (15)C10—C9—C13—O51.7 (10)
O3—Ce2—O7—C14102.8 (4)C10—C9—C13—O6176.1 (7)
O8—Ce2—O7—Ce1125.4 (3)C9—C10—C11—C120.4 (11)
O8—Ce2—O7—C145.5 (4)C9—C10—C11—C14179.0 (7)
O14—Ce2—O7—Ce1171.72 (18)C10—C11—C12—N21.8 (11)
O14—Ce2—O7—C1440.8 (4)C14—C11—C12—N2177.6 (7)
O15—Ce2—O7—Ce1134.7 (2)C10—C11—C14—O7159.1 (7)
O15—Ce2—O7—C1494.4 (4)C10—C11—C14—O820.9 (11)
O10vi—Ce2—O7—Ce1110.2 (2)C12—C11—C14—O721.5 (10)
O10vi—Ce2—O7—C14118.9 (4)C12—C11—C14—O8158.5 (7)
O6v—Ce2—O7—Ce14.2 (2)N3—C15—C16—C170.6 (12)
O6v—Ce2—O7—C14135.1 (4)N3—C15—C16—C20178.8 (7)
O12iii—Ce2—O7—Ce160.96 (17)C15—C16—C17—C181.6 (11)
O12iii—Ce2—O7—C14168.1 (4)C20—C16—C17—C18177.7 (7)
O2iv—Ce2—O7—Ce198.5 (2)C15—C16—C20—O926.0 (10)
O2iv—Ce2—O7—C1432.4 (4)C15—C16—C20—O10154.8 (7)
O3—Ce2—O8—C1469.8 (5)C17—C16—C20—O9153.4 (7)
O7—Ce2—O8—C145.9 (4)C17—C16—C20—O1025.9 (11)
O14—Ce2—O8—C14125.6 (5)C16—C17—C18—C191.4 (11)
O15—Ce2—O8—C1465.6 (5)C16—C17—C18—C21173.6 (7)
O10vi—Ce2—O8—C14110.5 (5)C17—C18—C19—N30.0 (11)
O6v—Ce2—O8—C14104.5 (5)C21—C18—C19—N3175.1 (7)
O12iii—Ce2—O8—C141.2 (5)C17—C18—C21—O11178.9 (7)
O2iv—Ce2—O8—C14160.5 (5)C17—C18—C21—O122.9 (11)
O3—Ce2—O10vi—C20vi92.8 (6)C19—C18—C21—O116.2 (10)
O7—Ce2—O10vi—C20vi162.3 (5)C19—C18—C21—O12172.0 (7)
O8—Ce2—O10vi—C20vi86.8 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x, y1, z; (viii) x1, y1, z; (ix) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O4x0.822.282.901 (7)132
O13—H13B···N1xi0.811.872.659 (9)164
O14—H14A···N2vi0.892.062.802 (9)140
O14—H14B···O10vi0.882.403.031 (9)129
O15—H15A···O10vi0.822.402.853 (9)115
O15—H15B···N30.822.002.815 (9)174
C8—H8···O12xii0.932.433.354 (9)172
C12—H12···O90.932.573.354 (9)143
C15—H15···O70.932.383.258 (9)157
Symmetry codes: (vi) x+1, y, z; (x) x, y+1, z+1; (xi) x+1, y+1, z+1; (xii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ce2(C7H3NO4)3(H2O)3]
Mr829.60
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.959 (3), 9.429 (3), 14.582 (4)
α, β, γ (°)98.115 (6), 95.501 (6), 105.030 (6)
V3)1166.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.94
Crystal size (mm)0.15 × 0.08 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.756, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
12583, 5586, 2847
Rint0.090
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.076, 0.74
No. of reflections5586
No. of parameters370
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.36, 1.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ce1—O1i2.349 (6)Ce2—O32.594 (5)
Ce1—O32.773 (5)Ce2—O6v2.431 (5)
Ce1—O42.570 (5)Ce2—O72.847 (6)
Ce1—O5ii2.384 (5)Ce2—O82.657 (6)
Ce1—O72.538 (5)Ce2—O10vi2.526 (5)
Ce1—O92.538 (5)Ce2—O12iii2.444 (5)
Ce1—O11iii2.405 (5)Ce2—O142.606 (6)
Ce1—O132.560 (5)Ce2—O152.646 (6)
Ce2—O2iv2.404 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x+1, y+1, z; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O4vii0.822.282.901 (7)132
O13—H13B···N1viii0.811.872.659 (9)164
O14—H14A···N2vi0.892.062.802 (9)140
O14—H14B···O10vi0.882.403.031 (9)129
O15—H15A···O10vi0.822.402.853 (9)115
O15—H15B···N30.822.002.815 (9)174
C8—H8···O12ix0.932.433.354 (9)172
C12—H12···O90.932.573.354 (9)143
C15—H15···O70.932.383.258 (9)157
Symmetry codes: (vi) x+1, y, z; (vii) x, y+1, z+1; (viii) x+1, y+1, z+1; (ix) x1, y, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, H.-F., Qin, L. & Hao, X.-Y. (2009). Acta Cryst. E65, m1214–m1215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, J.-H., Lin, X., Blake, A. J., Champness, N. R., Hubberstey, P., Shao, L.-M., Walker, G., Wilson, C. & Schroder, M. (2006). Inorg. Chem. 45, 8838–8840.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, F. (2007). Acta Cryst. E63, m73–m74.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, J.-L., Fu, Z.-Y. & Liao, S. (2009). J. Coord. Chem. 62, 2290–2298.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds