organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(E)-(1-Phenyl­ethyl­­idene)amino]­urea methanol monosolvate

aDepartment of Chemistry, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China, and bGuanlian Middle School of Wuning, Jiangxi Wuning 332302, People's Republic of China
*Correspondence e-mail: niexuliang1981@163.com

(Received 28 December 2010; accepted 4 January 2011; online 12 January 2011)

In the title compound, C9H11N3O·CH4O, the semicarbazone moiety is nearly planar [maximum deviation = 0.017 (2) Å] and is twisted by a dihedral angle of 29.40 (13)° with respect to the phenyl ring. The semicarbazone moiety and phenyl ring are located on opposite sides of the C=N bond, showing the E configuration. An inter­molecular O—H⋯O and N—H⋯O hydrogen-bonding network occurs in the crystal structure.

Related literature

For general background and applications of semicarbazone derivatives, see: Chandra & Gupta (2005[Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089-1094.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591-o1592.],b[Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619-o1620.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O·CH4O

  • Mr = 209.25

  • Monoclinic, P 21 /n

  • a = 6.629 (3) Å

  • b = 8.371 (4) Å

  • c = 20.329 (9) Å

  • β = 99.181 (5)°

  • V = 1113.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 8148 measured reflections

  • 2057 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.07

  • 2057 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.93 2.745 (2) 177
N2—H8⋯O1ii 0.86 2.10 2.936 (2) 164
N3—H3A⋯O2iii 0.86 2.12 2.953 (2) 164
N3—H3B⋯O2 0.86 2.36 3.042 (2) 137
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. It is widely used in field of organometalics (Chandra & Gupta, 2005). Several crystal structures have recently reported by Fun et al., 2009a,b. Here we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the semicarbazone group is nearly planar, with the maximum deviation of 0.017 (2) Å. The mean plane of semicarbazone group and the benzene ring makes a dihedral angle of 29.40 (13)°. In the crystal structure there is also a methanol molecular which is stabilized by N—H···O hydrogen bond with the semicarbazone group. The methanol molecular further linked the semicarbazone group adjacent into a one-dimensional chain by N—H···O hydrogen bonds formed along the b axis. These chains are further linked via pairs of O—H···O hydrogen bonds involving the methanol O atoms and semicarbazone O atoms to a two-dimensional hydrogen bonds framework (Fig. 3).

Related literature top

For general background and applications of semicarbazone derivatives, see: Chandra & Gupta (2005). For related structures, see: Fun et al. (2009a,b).

Experimental top

Semicarbazide hydrochloride (11 g, 0.1 mol) was dissolved in water (100 ml), and sodium acetate (16.4 g, 0.2 mol) was added and dissolved by stirring at room temperature. To this, acetophenone (11.4 g, 0.095 mol) in ethanol (60 ml) was then added, and the mixture stirred well for 2 h at 323 K using a modified Vilsmeier-Haak reaction. The separated crystals were filtered, washed with cold water and recrystallized from methanol solution.

Refinement top

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.93–0.96, O—H = 0.82 and N—H = 0.86 Å, with Uiso(H) = 1.5 Ueq(C,O) for methyl and hydroxyl H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing a one-dimensional chain down the b axis; H-bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of (I), showing a two-dimensional sheet; H-bonds are shown as dashed lines.
[(E)-(1-Phenylethylidene)amino]urea methanol monosolvate top
Crystal data top
C9H11N3O·CH4OF(000) = 448
Mr = 209.25Dx = 1.248 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2808 reflections
a = 6.629 (3) Åθ = 2.6–28.2°
b = 8.371 (4) ŵ = 0.09 mm1
c = 20.329 (9) ÅT = 296 K
β = 99.181 (5)°Block, colourless
V = 1113.6 (8) Å30.24 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1617 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.5°, θmin = 2.6°
ϕ and ω scansh = 88
8148 measured reflectionsk = 910
2057 independent reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.3389P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2057 reflectionsΔρmax = 0.26 e Å3
140 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (4)
Crystal data top
C9H11N3O·CH4OV = 1113.6 (8) Å3
Mr = 209.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.629 (3) ŵ = 0.09 mm1
b = 8.371 (4) ÅT = 296 K
c = 20.329 (9) Å0.24 × 0.22 × 0.18 mm
β = 99.181 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1617 reflections with I > 2σ(I)
8148 measured reflectionsRint = 0.027
2057 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
2057 reflectionsΔρmin = 0.18 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0487 (3)0.6825 (3)0.73837 (11)0.0636 (6)
H10.02330.74790.70100.076*
C20.0980 (3)0.5772 (3)0.75182 (11)0.0630 (6)
H20.22330.57170.72380.076*
C30.0590 (3)0.4793 (3)0.80720 (10)0.0550 (6)
H30.15820.40760.81630.066*
C40.1262 (3)0.4875 (2)0.84901 (9)0.0438 (5)
H40.15040.42160.88630.053*
C50.2773 (2)0.5931 (2)0.83614 (8)0.0371 (4)
C60.2342 (3)0.6916 (2)0.78033 (10)0.0521 (5)
H60.33190.76450.77120.063*
C70.6059 (3)0.7470 (2)0.88452 (10)0.0509 (5)
H7A0.64570.77520.93050.076*
H7B0.52680.83220.86170.076*
H7C0.72570.72940.86450.076*
C80.4800 (2)0.5973 (2)0.87964 (8)0.0362 (4)
C90.7858 (2)0.3143 (2)0.97715 (8)0.0361 (4)
C100.0959 (4)0.0359 (3)0.89062 (11)0.0673 (6)
H10A0.02770.09670.87980.101*
H10B0.06270.07460.89570.101*
H10C0.17620.04660.85550.101*
N10.5332 (2)0.46585 (17)0.91022 (7)0.0362 (4)
N20.7209 (2)0.45770 (17)0.95027 (7)0.0398 (4)
H80.79570.54160.95820.048*
O10.96431 (17)0.30074 (14)1.00688 (6)0.0458 (4)
N30.6552 (2)0.19317 (18)0.96944 (9)0.0526 (5)
H3A0.69270.10070.98530.063*
H3B0.53300.20710.94860.063*
O20.20857 (19)0.09309 (17)0.95077 (7)0.0544 (4)
H2A0.13700.15380.96880.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0641 (14)0.0727 (15)0.0482 (12)0.0140 (12)0.0092 (10)0.0110 (11)
C20.0449 (11)0.0791 (16)0.0569 (13)0.0150 (11)0.0162 (10)0.0122 (12)
C30.0361 (10)0.0651 (13)0.0613 (13)0.0020 (9)0.0001 (9)0.0118 (11)
C40.0392 (9)0.0484 (11)0.0427 (10)0.0015 (8)0.0032 (8)0.0004 (8)
C50.0372 (9)0.0385 (9)0.0344 (9)0.0060 (7)0.0021 (7)0.0030 (7)
C60.0502 (11)0.0547 (12)0.0484 (11)0.0029 (9)0.0009 (9)0.0092 (9)
C70.0467 (10)0.0442 (11)0.0569 (12)0.0038 (8)0.0063 (9)0.0047 (9)
C80.0360 (9)0.0400 (10)0.0319 (9)0.0005 (7)0.0030 (7)0.0003 (7)
C90.0318 (8)0.0383 (9)0.0365 (9)0.0005 (7)0.0008 (7)0.0000 (7)
C100.0706 (14)0.0675 (15)0.0605 (14)0.0034 (12)0.0005 (12)0.0025 (11)
N10.0310 (7)0.0409 (8)0.0346 (8)0.0004 (6)0.0012 (6)0.0024 (6)
N20.0334 (7)0.0370 (8)0.0450 (9)0.0043 (6)0.0058 (6)0.0042 (6)
O10.0337 (7)0.0422 (7)0.0562 (8)0.0000 (5)0.0085 (6)0.0011 (6)
N30.0356 (8)0.0401 (9)0.0758 (12)0.0042 (7)0.0096 (8)0.0125 (8)
O20.0420 (7)0.0510 (9)0.0658 (9)0.0044 (6)0.0047 (6)0.0037 (7)
Geometric parameters (Å, º) top
C1—C21.372 (3)C7—H7C0.9600
C1—C61.382 (3)C8—N11.285 (2)
C1—H10.9300C9—O11.2453 (19)
C2—C31.383 (3)C9—N31.326 (2)
C2—H20.9300C9—N21.360 (2)
C3—C41.379 (2)C10—O21.411 (2)
C3—H30.9300C10—H10A0.9600
C4—C51.391 (3)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C5—C61.395 (3)N1—N21.3757 (18)
C5—C81.486 (2)N2—H80.8600
C6—H60.9300N3—H3A0.8600
C7—C81.500 (3)N3—H3B0.8600
C7—H7A0.9600O2—H2A0.8200
C7—H7B0.9600
C2—C1—C6120.1 (2)H7A—C7—H7C109.5
C2—C1—H1120.0H7B—C7—H7C109.5
C6—C1—H1120.0N1—C8—C5114.83 (15)
C1—C2—C3119.75 (18)N1—C8—C7125.18 (15)
C1—C2—H2120.1C5—C8—C7119.98 (15)
C3—C2—H2120.1O1—C9—N3122.64 (15)
C4—C3—C2120.3 (2)O1—C9—N2119.38 (15)
C4—C3—H3119.8N3—C9—N2117.96 (14)
C2—C3—H3119.8O2—C10—H10A109.5
C3—C4—C5120.83 (18)O2—C10—H10B109.5
C3—C4—H4119.6H10A—C10—H10B109.5
C5—C4—H4119.6O2—C10—H10C109.5
C4—C5—C6117.92 (16)H10A—C10—H10C109.5
C4—C5—C8120.83 (15)H10B—C10—H10C109.5
C6—C5—C8121.22 (16)C8—N1—N2118.77 (14)
C1—C6—C5121.1 (2)C9—N2—N1118.67 (13)
C1—C6—H6119.5C9—N2—H8120.7
C5—C6—H6119.5N1—N2—H8120.7
C8—C7—H7A109.5C9—N3—H3A120.0
C8—C7—H7B109.5C9—N3—H3B120.0
H7A—C7—H7B109.5H3A—N3—H3B120.0
C8—C7—H7C109.5C10—O2—H2A109.5
C6—C1—C2—C30.5 (3)C6—C5—C8—N1152.23 (17)
C1—C2—C3—C40.2 (3)C4—C5—C8—C7154.55 (18)
C2—C3—C4—C50.4 (3)C6—C5—C8—C727.1 (3)
C3—C4—C5—C60.9 (3)C5—C8—N1—N2178.39 (14)
C3—C4—C5—C8177.47 (17)C7—C8—N1—N20.9 (3)
C2—C1—C6—C51.0 (3)O1—C9—N2—N1171.57 (15)
C4—C5—C6—C11.2 (3)N3—C9—N2—N17.4 (2)
C8—C5—C6—C1177.18 (18)C8—N1—N2—C9173.38 (16)
C4—C5—C8—N126.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.932.745 (2)177
N2—H8···O1ii0.862.102.936 (2)164
N3—H3A···O2iii0.862.122.953 (2)164
N3—H3B···O20.862.363.042 (2)137
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC9H11N3O·CH4O
Mr209.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.629 (3), 8.371 (4), 20.329 (9)
β (°) 99.181 (5)
V3)1113.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8148, 2057, 1617
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.07
No. of reflections2057
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.932.745 (2)177
N2—H8···O1ii0.862.102.936 (2)164
N3—H3A···O2iii0.862.122.953 (2)164
N3—H3B···O20.862.363.042 (2)137
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2; (iii) x+1, y, z+2.
 

Acknowledgements

This work was supported by the Research Foundation of Educational Department of Jiangxi Province [GJJ10421] and the Natural Science Foundation of Jiangxi Agricultural University, China (09003321).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094.  CrossRef Google Scholar
First citationFun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619–o1620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds