organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o313-o314

(2E)-3-[4-(Di­methyl­amino)­phen­yl]-1-(4-fluoro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 4 January 2011; accepted 5 January 2011; online 8 January 2011)

The mean planes of the two benzene rings in the title compound, C17H16FNO, are twisted slightly, making a dihedral angle of 7.8 (1)°. The prop-2-en-1-one group is also twisted slightly with a C—C—C—O torsion angle of −11.6 (3)°. In the crystal, weak inter­molecular C—H⋯O inter­actions link pairs of mol­ecules, forming centrosymmetric dimers.

Related literature

Chalcones are precursors of all flavonoid-type natural products in biosynthesis, see: Marais et al. (2005[Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145-2176.]). For their pharmacological activity, see: Di Carlo et al. (1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]) and for their anti­malarial activity, see: Ram et al. (2000[Ram, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159-2161.]); Troeberg et al. (2000[Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660-669.]). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura et al. (2002[Nakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I. H., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem. 10, 699-706.]). For a review of anti-infective and anti-inflammatory chalcones, see: Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]) and for recent advances in therapeutic chalcones, see: Ni et al. (2004[Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Exper. Opin. Ther. Pat. 14, 1669-1691.]). For related structures, see: Butcher et al. (2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633-o1635.], 2007a[Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007a). Acta Cryst. E63, o3586.],b[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007b). Acta Cryst. E63, o3833.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o3251-o3253.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965-o1966.]); Jing (2009[Jing, L.-H. (2009). Acta Cryst. E65, o2515.]); Sarojini et al. (2007[Sarojini, B. K., Yathirajan, H. S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2945.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16FNO

  • Mr = 269.31

  • Monoclinic, P 21 /c

  • a = 12.8334 (3) Å

  • b = 12.3560 (2) Å

  • c = 9.3922 (2) Å

  • β = 105.965 (2)°

  • V = 1431.87 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.56 × 0.47 × 0.22 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.675, Tmax = 1.000

  • 6644 measured reflections

  • 2929 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.197

  • S = 1.10

  • 2929 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.96 2.56 3.525 (3) 180
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones are known as the precursors of all flavonoid type natural products in biosynthesis (Marais et al., 2005). Chalcones, one of the major classes of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff have been recently subjects of interest for their interesting pharmacological activities (Di Carlo et al., 1999). Many chalcones have been described for their high antimalarial activity, probably as a result of michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000 & Ram et al., 2000). Synthesis and biological activities of some fluorinated chalcone derivatives is published (Nakamura et al., 2002). A review of anti-infective and anti-inflammatory chalcones (Nowakowska, 2007) and recent advances in therapeutic chalcones have been reported (Ni et al., 2004). The crystal structures of few related fluoro chalcones viz., 3-(3,4-dimethoxyphenyl)-1-(4-fluorophenyl)prop-2-en-1-one (Butcher et al., 2006), (2E)-3-(4-fluorophenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one (Butcher et al., 2007a), (2E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007b), a second polymorph of (2E)-1-(4-fluorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (Jasinski, et al., 2009), (E)-3-(4-fluorophenyl)-1-phenyl-2-propen-1-one (Jing, 2009), 1-(4-fluorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Harrison et al., 2006) and 3-(biphenyl-4-yl)-1-(4-fluorophenyl)prop-2-en-1-one (Sarojini et al., 2007) have been reported. In a continuation of our studies and in view of the importance of fluoro chalcones, we report the synthesis and crystal structure of a new chalcone, C17H16FNO, (I).

The mean planes of the two benzene rings in the title compound, C17H16FNO, are twisted slightly being separated by 7.8 (0)° (Fig. 2). The prop-2-en-1-one group is also twisted slightly with a C2—C1—C7—O1 torsion angle of -11.6 (3)°. Bond distances and angles are in normal ranges (Allen et al., 1987). A weak C—H···O intermolecular interaction (Table 1) contributes to crystal packing creating a centrosymmetric dimer (Fig. 3).

Related literature top

Chalcones are precursors of all flavonoid-type natural products in biosynthesis, see: Marais et al. (2005). For their pharmacological activity, see: Di Carlo et al. (1999) and for their antimalarial activity, see: Ram et al. (2000); Troeberg et al. (2000). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura et al. (2002). For a review of anti-infective and anti-inflammatory chalcones, see: Nowakowska (2007) and for recent advances in therapeutic chalcones, see: Ni et al. (2004). For related structures, see: Butcher et al. (2006, 2007a,b); Harrison et al. (2006); Jasinski et al. (2009); Jing (2009); Sarojini et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-Fluoroaetophenone (1.38 g, 0.01 mol) was mixed with 4-(dimethylamino)benzaldehyde (1.49 g, 0.01 mol) and dissolved in ethanol (40 ml) (Fig. 1). To this solution 10 ml of KOH (30%) was added at 273 K. The reaction mixture stirred for 4 h and poured on to crushed ice. The resulting crude solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the solution of the compound in ethyl acetate (M.P.: 383–388 K). Composition: Found (Calculated) for C17H16FNO; C: 75.77 (75.82%); H: 5.96 (5.99%); N: 5.16 (5.20%).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93 Å (aromatic), or 0.96 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (aromatic) or 1.49 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme for C17H16FNO.
[Figure 2] Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate weak a C—H···O intermolecular hydrogen bond interaction creating a layered structure along [101].
(2E)-3-[4-(Dimethylamino)phenyl]-1-(4-fluorophenyl)prop-2-en-1-one top
Crystal data top
C17H16FNOF(000) = 568
Mr = 269.31Dx = 1.249 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3513 reflections
a = 12.8334 (3) Åθ = 2.4–38.6°
b = 12.3560 (2) ŵ = 0.09 mm1
c = 9.3922 (2) ÅT = 295 K
β = 105.965 (2)°Irregular triangular plate, yellow
V = 1431.87 (5) Å30.56 × 0.47 × 0.22 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
2929 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.5081 pixels mm-1θmax = 26.7°, θmin = 2.3°
ϕ and ω scansh = 1615
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1515
Tmin = 0.675, Tmax = 1.000l = 1111
6644 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1067P)2 + 0.0852P]
where P = (Fo2 + 2Fc2)/3
2929 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C17H16FNOV = 1431.87 (5) Å3
Mr = 269.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8334 (3) ŵ = 0.09 mm1
b = 12.3560 (2) ÅT = 295 K
c = 9.3922 (2) Å0.56 × 0.47 × 0.22 mm
β = 105.965 (2)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
2929 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2098 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 1.000Rint = 0.018
6644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.10Δρmax = 0.17 e Å3
2929 reflectionsΔρmin = 0.13 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.15377 (18)0.10045 (18)1.0627 (2)0.1881 (10)
O10.83748 (14)0.47322 (14)0.78907 (19)0.1242 (6)
C10.92349 (14)0.30455 (16)0.8178 (2)0.0850 (5)
C21.0044 (2)0.3397 (2)0.9375 (3)0.1251 (9)
H2A1.00640.41240.96350.150*
C31.0820 (3)0.2720 (3)1.0198 (4)0.1402 (11)
H3A1.13630.29781.09990.168*
C41.0777 (2)0.1681 (3)0.9820 (3)0.1281 (9)
C50.9972 (3)0.1257 (3)0.8685 (4)0.1464 (12)
H5A0.99420.05190.84800.176*
C60.9209 (2)0.1953 (2)0.7859 (3)0.1187 (8)
H6A0.86650.16840.70680.142*
N10.36368 (14)0.37392 (15)0.0182 (2)0.0984 (5)
C70.84180 (15)0.38300 (17)0.7354 (2)0.0894 (5)
C80.76857 (15)0.35318 (16)0.5923 (2)0.0853 (5)
H8A0.77560.28570.55200.102*
C90.69177 (16)0.42082 (15)0.5183 (2)0.0861 (5)
H9A0.68930.48700.56450.103*
C100.61231 (15)0.40735 (14)0.3784 (2)0.0810 (5)
C110.60600 (15)0.31682 (14)0.2863 (2)0.0831 (5)
H11A0.65730.26210.31490.100*
C120.52677 (16)0.30671 (15)0.1558 (2)0.0856 (5)
H12A0.52650.24600.09720.103*
C130.44563 (15)0.38556 (15)0.1076 (2)0.0828 (5)
C140.45373 (18)0.47770 (16)0.1973 (2)0.0968 (6)
H14A0.40370.53340.16840.116*
C150.53447 (19)0.48642 (15)0.3267 (2)0.0963 (6)
H15A0.53730.54880.38310.116*
C160.3540 (2)0.2790 (2)0.1099 (3)0.1289 (9)
H16A0.42040.26810.13640.193*
H16B0.29550.28860.19800.193*
H16C0.33980.21710.05630.193*
C170.2862 (2)0.4610 (2)0.0696 (3)0.1149 (7)
H17A0.25220.47900.00650.172*
H17B0.23210.43810.15690.172*
H17C0.32330.52340.09220.172*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1983 (18)0.1869 (19)0.1399 (14)0.0835 (16)0.0196 (14)0.0050 (13)
O10.1291 (12)0.1024 (11)0.1227 (12)0.0113 (9)0.0033 (10)0.0346 (9)
C10.0812 (10)0.0904 (12)0.0836 (10)0.0030 (9)0.0229 (8)0.0078 (9)
C20.1233 (17)0.1070 (17)0.1222 (18)0.0007 (14)0.0045 (15)0.0236 (14)
C30.1254 (19)0.138 (2)0.125 (2)0.0128 (18)0.0198 (16)0.0143 (18)
C40.1270 (18)0.141 (2)0.1022 (16)0.0355 (17)0.0072 (14)0.0023 (16)
C50.176 (3)0.1129 (19)0.124 (2)0.0376 (19)0.002 (2)0.0146 (16)
C60.1273 (17)0.1016 (16)0.1074 (15)0.0120 (14)0.0010 (14)0.0146 (13)
N10.1038 (11)0.0985 (12)0.0866 (10)0.0089 (9)0.0158 (9)0.0029 (8)
C70.0883 (11)0.0872 (12)0.0932 (11)0.0069 (9)0.0257 (9)0.0135 (9)
C80.0905 (11)0.0770 (10)0.0880 (11)0.0035 (8)0.0238 (9)0.0064 (8)
C90.0930 (11)0.0749 (10)0.0916 (11)0.0034 (8)0.0275 (9)0.0068 (9)
C100.0902 (10)0.0682 (9)0.0866 (10)0.0003 (8)0.0277 (9)0.0002 (8)
C110.0892 (10)0.0692 (9)0.0913 (11)0.0045 (8)0.0253 (9)0.0009 (8)
C120.0975 (11)0.0703 (10)0.0900 (11)0.0007 (8)0.0275 (9)0.0055 (8)
C130.0908 (10)0.0794 (10)0.0786 (10)0.0002 (8)0.0241 (8)0.0067 (8)
C140.1093 (13)0.0786 (11)0.0981 (13)0.0192 (10)0.0211 (11)0.0053 (10)
C150.1172 (14)0.0709 (10)0.0957 (12)0.0115 (10)0.0205 (11)0.0066 (9)
C160.1193 (17)0.138 (2)0.1126 (17)0.0095 (16)0.0036 (14)0.0324 (16)
C170.1095 (15)0.1255 (19)0.1013 (14)0.0171 (14)0.0150 (12)0.0159 (13)
Geometric parameters (Å, º) top
F1—C41.349 (3)C9—C101.434 (3)
O1—C71.231 (2)C9—H9A0.9300
C1—C21.374 (3)C10—C151.386 (3)
C1—C61.381 (3)C10—C111.403 (2)
C1—C71.481 (3)C11—C121.366 (3)
C2—C31.366 (4)C11—H11A0.9300
C2—H2A0.9300C12—C131.407 (3)
C3—C41.330 (4)C12—H12A0.9300
C3—H3A0.9300C13—C141.403 (3)
C4—C51.368 (4)C14—C151.368 (3)
C5—C61.371 (4)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—H6A0.9300C16—H16A0.9600
N1—C131.356 (3)C16—H16B0.9600
N1—C161.440 (3)C16—H16C0.9600
N1—C171.454 (3)C17—H17A0.9600
C7—C81.460 (3)C17—H17B0.9600
C8—C91.333 (3)C17—H17C0.9600
C8—H8A0.9300
C2—C1—C6117.0 (2)C15—C10—C11115.62 (17)
C2—C1—C7119.2 (2)C15—C10—C9120.08 (17)
C6—C1—C7123.72 (19)C11—C10—C9124.30 (17)
C3—C2—C1122.6 (3)C12—C11—C10121.92 (17)
C3—C2—H2A118.7C12—C11—H11A119.0
C1—C2—H2A118.7C10—C11—H11A119.0
C4—C3—C2118.0 (3)C11—C12—C13121.86 (17)
C4—C3—H3A121.0C11—C12—H12A119.1
C2—C3—H3A121.0C13—C12—H12A119.1
C3—C4—F1118.5 (3)N1—C13—C14121.39 (17)
C3—C4—C5123.0 (3)N1—C13—C12122.34 (18)
F1—C4—C5118.4 (3)C14—C13—C12116.27 (17)
C4—C5—C6118.0 (3)C15—C14—C13120.71 (18)
C4—C5—H5A121.0C15—C14—H14A119.6
C6—C5—H5A121.0C13—C14—H14A119.6
C5—C6—C1121.3 (2)C14—C15—C10123.54 (18)
C5—C6—H6A119.3C14—C15—H15A118.2
C1—C6—H6A119.3C10—C15—H15A118.2
C13—N1—C16121.72 (19)N1—C16—H16A109.5
C13—N1—C17120.40 (18)N1—C16—H16B109.5
C16—N1—C17117.76 (19)H16A—C16—H16B109.5
O1—C7—C8121.0 (2)N1—C16—H16C109.5
O1—C7—C1118.93 (18)H16A—C16—H16C109.5
C8—C7—C1120.03 (17)H16B—C16—H16C109.5
C9—C8—C7121.22 (18)N1—C17—H17A109.5
C9—C8—H8A119.4N1—C17—H17B109.5
C7—C8—H8A119.4H17A—C17—H17B109.5
C8—C9—C10129.98 (18)N1—C17—H17C109.5
C8—C9—H9A115.0H17A—C17—H17C109.5
C10—C9—H9A115.0H17B—C17—H17C109.5
C6—C1—C2—C32.2 (4)C8—C9—C10—C15175.4 (2)
C7—C1—C2—C3179.4 (3)C8—C9—C10—C114.1 (3)
C1—C2—C3—C40.5 (5)C15—C10—C11—C121.3 (3)
C2—C3—C4—F1179.8 (3)C9—C10—C11—C12178.19 (17)
C2—C3—C4—C52.5 (6)C10—C11—C12—C131.2 (3)
C3—C4—C5—C63.4 (5)C16—N1—C13—C14179.2 (2)
F1—C4—C5—C6179.2 (3)C17—N1—C13—C144.7 (3)
C4—C5—C6—C11.5 (5)C16—N1—C13—C120.7 (3)
C2—C1—C6—C51.2 (4)C17—N1—C13—C12175.38 (19)
C7—C1—C6—C5178.2 (2)C11—C12—C13—N1176.80 (18)
C2—C1—C7—O111.6 (3)C11—C12—C13—C143.1 (3)
C6—C1—C7—O1165.4 (2)N1—C13—C14—C15177.5 (2)
C2—C1—C7—C8167.9 (2)C12—C13—C14—C152.4 (3)
C6—C1—C7—C815.1 (3)C13—C14—C15—C100.1 (3)
O1—C7—C8—C92.9 (3)C11—C10—C15—C142.0 (3)
C1—C7—C8—C9177.56 (17)C9—C10—C15—C14177.53 (19)
C7—C8—C9—C10179.71 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.962.563.525 (3)180
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H16FNO
Mr269.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.8334 (3), 12.3560 (2), 9.3922 (2)
β (°) 105.965 (2)
V3)1431.87 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.47 × 0.22
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.675, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6644, 2929, 2098
Rint0.018
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.197, 1.10
No. of reflections2929
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.962.563.525 (3)180
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

BN thanks Mangalore University for the use of research facilities and the UGC for financial assistance. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationButcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007a). Acta Cryst. E63, o3586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007b). Acta Cryst. E63, o3833.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o3251–o3253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965–o1966.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJing, L.-H. (2009). Acta Cryst. E65, o2515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I. H., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem. 10, 699–706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNi, L., Meng, C. Q. & Sikorski, J. A. (2004). Exper. Opin. Ther. Pat. 14, 1669–1691.  Web of Science CrossRef CAS Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRam, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTroeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o313-o314
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds