metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ2-methano­lato-bis­­(μ-4-methyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazolido-κ2N1:N2)di-μ3-oxido-tetra­kis­[di­methyl­tin(IV)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 January 2011; accepted 12 January 2011; online 22 January 2011)

The title distannoxane, [Sn4(CH3)8(C3H4N3S)2(CH3O)2O2], lies about a center of inversion; the tetra­nuclear mol­ecule features a three-rung-staircase Sn4O4 core in which the two crystallographically independent SnIV atoms are bridged by the triazolide group. The negatively charged N atom of the triazolide group binds to the terminal Sn atom at a shorter distance [Sn—N = 2.239 (2) Å] compared with the neutral N atom that binds to the central Sn atom [Sn← N = 2.757 (3) Å]. The oxide O atom is three-coordinate whereas the methano­late O atom is two-coordinate. The terminal Sn atom is five-coordinate in a cis-C3SnNO trigonal–bipyramidal environment, whereas the central Sn atom is six-coordinate in a C2SnNO3 skew-trapezoidal–bipyramidal geometry.

Related literature

For related distannoxanes, see: Ma et al. (2007[Ma, C.-L., Sun, J.-S., Zhang, R.-F. & Wang, D.-Q. (2007). J. Organomet. Chem. 692, 4029-4042.]); Yu et al. (2006[Yu, H.-X., Ma, J.-F., Xu, G.-H., Li, S.-L., Yang, J., Liu, Y.-Y. & Chen, Y.-X. (2006). J. Organomet. Chem. 691, 3531-3539.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(CH3)8(C3H4N3S)2(CH3O)2O2]

  • Mr = 917.40

  • Triclinic, [P \overline 1]

  • a = 7.3693 (6) Å

  • b = 9.3457 (8) Å

  • c = 11.9930 (9) Å

  • α = 71.681 (7)°

  • β = 76.780 (6)°

  • γ = 77.118 (7)°

  • V = 753.07 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.425, Tmax = 0.546

  • 5805 measured reflections

  • 3328 independent reflections

  • 2919 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.047

  • S = 0.98

  • 3328 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Scheme I, Fig. 1), a distannoxane, was the unexpected product from an attempt at synthesizing a dimethyltin 4,-methyl-4H-1,2,4-triazol-3-thiolate that possesses a tin-sulfur linkage. In the reaction of diorganotin oxides with organic acids (particularly carboxylic acid), tetranuclear distannoxanes are sometimes formed; these compounds have four organic groups. In the present reaction, two of the four organic groups are replaced by methoxide groups.

Tetranuclear Sn4O2(CH3)8(CH3O)2(C3H4N3S)2 distannoxane lies about a center-of-inversion; the molecule features a three-rung-staircase Sn4O4 core in which two Sn atoms are bridged by the C3H4N3S triazolide group. The negatively-charged N atom of the group binds to the terminal Sn atom at a shorter distance [Sn–N 2.239 (2) Å] compared with the neutral N atom that binds to the central Sn atom [SnN 2.757 (2) Å]. The oxo O atom is three-coordinate whereas the methanolate O atom is two-coordinate. The terminal Sn atom is five-coordinate in a cis-C3SnNO trigonal bipyramid whereas the central Sn atom is six-coordinate in a C2SnNO3 skew-trazepoidal bipyramidal geometry.

The formation of similar distannoxanes that feature bridging triazolides are limited to the 4-(benzylideneamino)-3-methyl-5-thioxo-1,2,4-triazolide, 4-(2-furylmethylene)amino-3-methyl-5-thioxo-1,2,4-triazolide, 4-(2-thienylmethylene)amino-3-methyl-5-thioxo-1,2,4-triazolide and 5-(2-thienylmethylene)amino-2-thioxo-1,3,4-thiadiazolates only (Ma et al., 2007; Yu et al., 2006).

Related literature top

For related distannoxanes, see: Ma et al. (2007); Yu et al. (2006).

Experimental top

Dimethyltin diisothiocyanate (1 mmol), 4-methyl-4H-1,2,4-triazole-3-thiol (1 mmol) and 1,10-phenanthroline (1 mmol) were loaded into a convection tube; several drops of triethylamine were added. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Sn4O2(CH3)8(CH3O)2(C3H4N3S)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Di-µ2-methanolato-bis(µ-4-methyl-5-sulfanylidene-4,5-dihydro-1H- 1,2,4-triazolido-κ2N1:N2)di-µ3-oxido- tetrakis[dimethyltin(IV)] top
Crystal data top
[Sn4(CH3)8(C3H4N3S)2(CH3O)2O2]Z = 1
Mr = 917.40F(000) = 440
Triclinic, P1Dx = 2.023 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3693 (6) ÅCell parameters from 3945 reflections
b = 9.3457 (8) Åθ = 2.3–29.2°
c = 11.9930 (9) ŵ = 3.45 mm1
α = 71.681 (7)°T = 100 K
β = 76.780 (6)°Block, colorless
γ = 77.118 (7)°0.30 × 0.25 × 0.20 mm
V = 753.07 (11) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3328 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2919 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1211
Tmin = 0.425, Tmax = 0.546l = 1415
5805 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0144P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3328 reflectionsΔρmax = 0.83 e Å3
152 parametersΔρmin = 0.77 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0086 (3)
Crystal data top
[Sn4(CH3)8(C3H4N3S)2(CH3O)2O2]γ = 77.118 (7)°
Mr = 917.40V = 753.07 (11) Å3
Triclinic, P1Z = 1
a = 7.3693 (6) ÅMo Kα radiation
b = 9.3457 (8) ŵ = 3.45 mm1
c = 11.9930 (9) ÅT = 100 K
α = 71.681 (7)°0.30 × 0.25 × 0.20 mm
β = 76.780 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3328 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2919 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.546Rint = 0.029
5805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 0.98Δρmax = 0.83 e Å3
3328 reflectionsΔρmin = 0.77 e Å3
152 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.23531 (3)0.50079 (2)0.258264 (16)0.01270 (7)
Sn20.57195 (3)0.31342 (2)0.021831 (16)0.01318 (7)
S10.14046 (14)0.21699 (10)0.54808 (7)0.0233 (2)
O10.2321 (3)0.7285 (2)0.13758 (16)0.0188 (5)
O20.3998 (3)0.4777 (2)0.10279 (16)0.0154 (5)
N10.3105 (4)0.2459 (3)0.3171 (2)0.0156 (6)
N20.4081 (4)0.1541 (3)0.2438 (2)0.0200 (6)
N30.3234 (4)0.0093 (3)0.4248 (2)0.0170 (6)
C10.0559 (5)0.5013 (4)0.2716 (3)0.0196 (7)
H1A0.12910.59280.29340.029*
H1B0.09260.40990.33290.029*
H1C0.08080.50140.19480.029*
C20.3814 (5)0.5474 (4)0.3718 (3)0.0206 (7)
H2A0.32030.64450.38880.031*
H2B0.51270.55420.33270.031*
H2C0.37910.46510.44650.031*
C30.4119 (5)0.0140 (4)0.3117 (3)0.0203 (7)
H3A0.46960.07380.28520.024*
C40.2588 (5)0.1574 (3)0.4269 (2)0.0158 (7)
C50.2958 (5)0.1263 (3)0.5236 (2)0.0220 (8)
H5A0.28640.10250.59890.033*
H5B0.40330.20790.51550.033*
H5C0.17930.15990.52310.033*
C60.7959 (5)0.2468 (4)0.1196 (3)0.0234 (8)
H6A0.75680.28270.19120.035*
H6B0.90600.29150.07010.035*
H6C0.82880.13510.14270.035*
C70.3661 (5)0.2266 (4)0.0232 (3)0.0218 (7)
H7A0.24440.24630.02800.033*
H7B0.40440.11620.01170.033*
H7C0.35380.27690.10680.033*
C80.1025 (5)0.8628 (3)0.1446 (3)0.0236 (8)
H8A0.09460.88100.22180.035*
H8B0.02230.85100.13640.035*
H8C0.14500.94960.08040.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01333 (13)0.01317 (12)0.01025 (11)0.00160 (9)0.00007 (8)0.00313 (8)
Sn20.01480 (13)0.01053 (11)0.01182 (11)0.00096 (9)0.00021 (8)0.00231 (8)
S10.0276 (5)0.0250 (4)0.0145 (4)0.0043 (4)0.0027 (3)0.0063 (3)
O10.0232 (14)0.0111 (10)0.0144 (10)0.0027 (10)0.0031 (9)0.0012 (8)
O20.0194 (13)0.0125 (10)0.0090 (9)0.0008 (9)0.0043 (9)0.0016 (8)
N10.0175 (16)0.0139 (13)0.0134 (12)0.0016 (11)0.0005 (11)0.0031 (10)
N20.0265 (18)0.0168 (14)0.0144 (12)0.0033 (13)0.0013 (12)0.0047 (11)
N30.0187 (16)0.0154 (13)0.0168 (12)0.0066 (12)0.0015 (11)0.0029 (10)
C10.0143 (19)0.0224 (17)0.0223 (16)0.0030 (14)0.0044 (14)0.0055 (13)
C20.024 (2)0.0227 (17)0.0196 (16)0.0058 (15)0.0079 (14)0.0071 (13)
C30.027 (2)0.0149 (16)0.0173 (15)0.0011 (15)0.0006 (14)0.0065 (13)
C40.0167 (19)0.0150 (15)0.0151 (15)0.0033 (13)0.0060 (13)0.0004 (12)
C50.030 (2)0.0157 (16)0.0172 (15)0.0087 (15)0.0033 (14)0.0029 (13)
C60.023 (2)0.0249 (18)0.0221 (17)0.0021 (15)0.0051 (15)0.0062 (14)
C70.018 (2)0.0245 (17)0.0253 (17)0.0083 (15)0.0032 (14)0.0073 (14)
C80.028 (2)0.0155 (16)0.0206 (16)0.0016 (15)0.0046 (14)0.0057 (13)
Geometric parameters (Å, º) top
Sn1—O22.0235 (19)N3—C51.453 (4)
Sn1—C22.110 (3)C1—H1A0.9800
Sn1—C12.114 (3)C1—H1B0.9800
Sn1—O12.1637 (19)C1—H1C0.9800
Sn1—N12.239 (2)C2—H2A0.9800
Sn2—O2i2.0717 (19)C2—H2B0.9800
Sn2—O22.1014 (19)C2—H2C0.9800
Sn2—C72.110 (3)C3—H3A0.9500
Sn2—C62.110 (3)C5—H5A0.9800
Sn2—O1i2.202 (2)C5—H5B0.9800
Sn2—N22.757 (3)C5—H5C0.9800
S1—C41.702 (3)C6—H6A0.9800
O1—C81.410 (4)C6—H6B0.9800
O1—Sn2i2.202 (2)C6—H6C0.9800
O2—Sn2i2.0717 (19)C7—H7A0.9800
N1—C41.338 (4)C7—H7B0.9800
N1—N21.392 (3)C7—H7C0.9800
N2—C31.304 (4)C8—H8A0.9800
N3—C31.356 (4)C8—H8B0.9800
N3—C41.366 (4)C8—H8C0.9800
O2—Sn1—C2113.32 (11)Sn1—C1—H1B109.5
O2—Sn1—C1115.63 (10)H1A—C1—H1B109.5
C2—Sn1—C1130.58 (13)Sn1—C1—H1C109.5
O2—Sn1—O173.45 (8)H1A—C1—H1C109.5
C2—Sn1—O192.65 (10)H1B—C1—H1C109.5
C1—Sn1—O194.71 (11)Sn1—C2—H2A109.5
O2—Sn1—N183.59 (8)Sn1—C2—H2B109.5
C2—Sn1—N196.97 (11)H2A—C2—H2B109.5
C1—Sn1—N194.75 (11)Sn1—C2—H2C109.5
O1—Sn1—N1157.03 (8)H2A—C2—H2C109.5
O2i—Sn2—O274.62 (8)H2B—C2—H2C109.5
O2i—Sn2—C7106.60 (11)N2—C3—N3111.7 (3)
O2—Sn2—C7100.71 (11)N2—C3—H3A124.2
O2i—Sn2—C6109.11 (11)N3—C3—H3A124.2
O2—Sn2—C699.99 (10)N1—C4—N3107.2 (2)
C7—Sn2—C6142.30 (13)N1—C4—S1126.7 (2)
O2i—Sn2—O1i71.73 (7)N3—C4—S1126.0 (2)
O2—Sn2—O1i146.35 (8)N3—C5—H5A109.5
C7—Sn2—O1i89.12 (11)N3—C5—H5B109.5
C6—Sn2—O1i90.78 (11)H5A—C5—H5B109.5
O2i—Sn2—N2148.29 (8)N3—C5—H5C109.5
O2—Sn2—N273.68 (7)H5A—C5—H5C109.5
C7—Sn2—N278.86 (10)H5B—C5—H5C109.5
C6—Sn2—N277.22 (11)Sn2—C6—H6A109.5
O1i—Sn2—N2139.97 (7)Sn2—C6—H6B109.5
C8—O1—Sn1128.80 (18)H6A—C6—H6B109.5
C8—O1—Sn2i126.87 (17)Sn2—C6—H6C109.5
Sn1—O1—Sn2i102.34 (8)H6A—C6—H6C109.5
Sn1—O2—Sn2i112.30 (9)H6B—C6—H6C109.5
Sn1—O2—Sn2142.18 (10)Sn2—C7—H7A109.5
Sn2i—O2—Sn2105.38 (8)Sn2—C7—H7B109.5
C4—N1—N2109.3 (2)H7A—C7—H7B109.5
C4—N1—Sn1125.19 (19)Sn2—C7—H7C109.5
N2—N1—Sn1125.43 (17)H7A—C7—H7C109.5
C3—N2—N1105.4 (2)H7B—C7—H7C109.5
C3—N2—Sn2139.7 (2)O1—C8—H8A109.5
N1—N2—Sn2114.07 (17)O1—C8—H8B109.5
C3—N3—C4106.5 (2)H8A—C8—H8B109.5
C3—N3—C5127.0 (3)O1—C8—H8C109.5
C4—N3—C5126.5 (3)H8A—C8—H8C109.5
Sn1—C1—H1A109.5H8B—C8—H8C109.5
O2—Sn1—O1—C8161.3 (3)O2—Sn1—N1—N27.7 (2)
C2—Sn1—O1—C885.1 (3)C2—Sn1—N1—N2120.5 (3)
C1—Sn1—O1—C846.0 (3)C1—Sn1—N1—N2107.6 (3)
N1—Sn1—O1—C8160.0 (3)O1—Sn1—N1—N26.4 (4)
O2—Sn1—O1—Sn2i3.20 (8)C4—N1—N2—C30.1 (4)
C2—Sn1—O1—Sn2i110.35 (12)Sn1—N1—N2—C3176.4 (2)
C1—Sn1—O1—Sn2i118.56 (11)C4—N1—N2—Sn2171.7 (2)
N1—Sn1—O1—Sn2i4.5 (3)Sn1—N1—N2—Sn211.9 (3)
C2—Sn1—O2—Sn2i82.07 (13)O2i—Sn2—N2—C3177.7 (3)
C1—Sn1—O2—Sn2i90.87 (13)O2—Sn2—N2—C3176.5 (4)
O1—Sn1—O2—Sn2i3.60 (9)C7—Sn2—N2—C378.7 (4)
N1—Sn1—O2—Sn2i176.92 (12)C6—Sn2—N2—C371.9 (4)
C2—Sn1—O2—Sn292.7 (2)O1i—Sn2—N2—C33.7 (4)
C1—Sn1—O2—Sn294.4 (2)O2i—Sn2—N2—N110.1 (3)
O1—Sn1—O2—Sn2178.3 (2)O2—Sn2—N2—N18.9 (2)
N1—Sn1—O2—Sn22.17 (19)C7—Sn2—N2—N1113.7 (2)
O2i—Sn2—O2—Sn1175.0 (3)C6—Sn2—N2—N195.6 (2)
C7—Sn2—O2—Sn180.6 (2)O1i—Sn2—N2—N1171.27 (18)
C6—Sn2—O2—Sn167.7 (2)N1—N2—C3—N30.2 (4)
O1i—Sn2—O2—Sn1174.57 (14)Sn2—N2—C3—N3168.0 (2)
N2—Sn2—O2—Sn15.68 (17)C4—N3—C3—N20.4 (4)
O2i—Sn2—O2—Sn2i0.0C5—N3—C3—N2178.3 (3)
C7—Sn2—O2—Sn2i104.44 (12)N2—N1—C4—N30.3 (4)
C6—Sn2—O2—Sn2i107.23 (12)Sn1—N1—C4—N3176.7 (2)
O1i—Sn2—O2—Sn2i0.4 (2)N2—N1—C4—S1178.7 (2)
N2—Sn2—O2—Sn2i179.36 (12)Sn1—N1—C4—S15.0 (4)
O2—Sn1—N1—C4176.5 (3)C3—N3—C4—N10.5 (4)
C2—Sn1—N1—C463.7 (3)C5—N3—C4—N1178.4 (3)
C1—Sn1—N1—C468.2 (3)C3—N3—C4—S1178.8 (3)
O1—Sn1—N1—C4177.8 (2)C5—N3—C4—S13.3 (5)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn4(CH3)8(C3H4N3S)2(CH3O)2O2]
Mr917.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3693 (6), 9.3457 (8), 11.9930 (9)
α, β, γ (°)71.681 (7), 76.780 (6), 77.118 (7)
V3)753.07 (11)
Z1
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.425, 0.546
No. of measured, independent and
observed [I > 2σ(I)] reflections
5805, 3328, 2919
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.047, 0.98
No. of reflections3328
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.77

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationMa, C.-L., Sun, J.-S., Zhang, R.-F. & Wang, D.-Q. (2007). J. Organomet. Chem. 692, 4029–4042.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H.-X., Ma, J.-F., Xu, G.-H., Li, S.-L., Yang, J., Liu, Y.-Y. & Chen, Y.-X. (2006). J. Organomet. Chem. 691, 3531–3539.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds