organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Dibenzo[b,d]thio­phen-4-yl)tellan­yl]methane­thiol

aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: lam051227@mail.sdu.edu.cn

(Received 15 January 2011; accepted 20 January 2011; online 29 January 2011)

In the title compound, C13H10S2Te, the dibenzothio­phene moiety is almost planar, the maximum atomic deviation being 0.055 (5) Å. The two Te—C bonds are nearly perpen­dicular to each other with a C—Te—C bond angle of 93.0 (2)°. An inter­molecular C—H⋯π inter­action is present between the methyl­ene group and thio­phene ring.

Related literature

For general background to the field-effect transistors of organotellurium derivatives, see: Inokuchi et al. (1987[Inokuchi, H., Imaeda, K., Enoki, T., Mori, T., Maruyama, Y., Saito, G., Okada, N., Yamochi, H., Seki, K., Higuchi, Y. & Yasuoka, N. (1987). Nature (London), 329, 39-40.]). For related structures, see: Kobayashi et al. (2005[Kobayashi, K., Masu, H., Shuto, A. & Yamaguchi, K. (2005). Chem. Mater. 17, 6666-6673.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10S2Te

  • Mr = 357.93

  • Orthorhombic, P 21 21 21

  • a = 5.49518 (12) Å

  • b = 12.1422 (3) Å

  • c = 19.0529 (5) Å

  • V = 1271.27 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 293 K

  • 0.58 × 0.45 × 0.31 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.310, Tmax = 0.495

  • 5117 measured reflections

  • 2509 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.083

  • S = 0.98

  • 2509 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.55 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 975 Friedel pairs

  • Flack parameter: 0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACgi 0.97 2.90 3.846 (6) 166
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of high-performance organic semiconductor materials have been an active topic in the area of field-effect transistors. Recently, organotellurium compounds have received significant attention due to the high charge carrier mobility (Inokuchi et al., 1987). In this paper, we report the synthesis and the crystal structure of the title compound (I).

The asymmetric unit of the title compound is shown in Fig. 1. The dibenzothiophene group possesses perfect planarity: the dihedral angle between the two phenyls is 4.11°. The two Te—C bonds are nearly perpendicular to each other with a C—Te—C bond angle of 93.0 (2)°. In the packing structure (Fig. 2), the molecules are packed into molecular columns along the a axis through intermolecular Te···π interactions between the tellurium atom and the phenyl ring (C7—C12). The contact distance of Te···C9 is 3.68 (5) Å, that of Te···C10 is 3.47 (5) Å, and that of Te···C11 is 3.73 (7) Å. These contact distances are significantly shorter than the sum of the van der Waals radii of tellurium and aromatic carbon atoms (Kobayashi et al., 2005). The molecular columns are connected together by intermolecular C···S and S···S interactions. The contact distances of C13···S1 and S1···S2 are 3.43 (5) Å and 3.51 (2) Å, respectively, which are obviously shorter than the sum of the corresponding van der Waals radii. There are no classic hydrogen bonds in the crystal structure.

Related literature top

For general background to the field-effect transistors of organotellurium derivatives, see: Inokuchi et al. (1987). For related structures, see: Kobayashi et al. (2005).

Experimental top

Addition of a 1.6 M solution of n-BuLi in hexane (8.50 ml, 13.6 mmol) to the THF solution of dibenzothiophene (2.50 g, 13.6 mmol) at room temperature under an Ar atmosphere. The reaction mixture was stirred for 2 h, and then tellurium powder (1.70 g, 13.3 mmol) was added. After 3 h, the reaction mixture was poured into a beaker containing 200 ml cold distilled water and oxidized by passing oxygen at a moderate rate for 1 h. The organic solvent was evaporated, and the suspension was extracted with dichloromethane. The organic extracts were washed by brine, and dried by anhydrous CaCl2. After the solvent was removed, the crude product was chromatographed on silica gel using petroleum as eluent to give the title compound (0.27 g, yield 5.56%). Single crystals suitable for X-ray diffraction were obtained by very slow evaporation of a chloroform/ethanol solution.

Refinement top

H atoms bonded to C atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). H atom bonded to S atom was refined using a rotating model, with S—H = 1.20 Å and with Uiso(H) = 1.2Ueq(S).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Stacking diagram of (I), viewed down the a axis, showing intermolecular Te···π, C···S and S···S interactions (dashed lines). The hydrogen atoms have been omitted for clarity.
{8-thiatricyclo[7.4.0.02,7]trideca-1(9),2(7),3,5,10,12-hexaen-6- yltellanyl}methanethiol top
Crystal data top
C13H10S2TeDx = 1.870 Mg m3
Mr = 357.93Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, P212121Cell parameters from 3403 reflections
a = 5.49518 (12) Åθ = 3.5–28.8°
b = 12.1422 (3) ŵ = 2.64 mm1
c = 19.0529 (5) ÅT = 293 K
V = 1271.27 (6) Å3Block, colorless
Z = 40.58 × 0.45 × 0.31 mm
F(000) = 688
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2509 independent reflections
Radiation source: Enhance (Mo) X-ray Source2248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.0355 pixels mm-1θmax = 26.4°, θmin = 3.5°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
k = 157
Tmin = 0.310, Tmax = 0.495l = 2124
5117 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2509 reflectionsΔρmax = 0.81 e Å3
146 parametersΔρmin = 0.55 e Å3
0 restraintsAbsolute structure: Flack (1983), 975 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C13H10S2TeV = 1271.27 (6) Å3
Mr = 357.93Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.49518 (12) ŵ = 2.64 mm1
b = 12.1422 (3) ÅT = 293 K
c = 19.0529 (5) Å0.58 × 0.45 × 0.31 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2509 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2248 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.495Rint = 0.054
5117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.81 e Å3
S = 0.98Δρmin = 0.55 e Å3
2509 reflectionsAbsolute structure: Flack (1983), 975 Friedel pairs
146 parametersAbsolute structure parameter: 0.01 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.65007 (6)0.83287 (3)0.120133 (19)0.05366 (13)
S10.8260 (2)0.97156 (10)0.03248 (6)0.0466 (3)
S21.0630 (4)0.65872 (16)0.17855 (9)0.0778 (5)
H20.99950.56980.19910.093*
C120.9348 (8)0.9486 (4)0.1106 (2)0.0401 (10)
C81.1849 (8)1.0679 (3)0.0346 (2)0.0373 (9)
C41.3695 (10)1.1778 (4)0.0677 (3)0.0486 (11)
H41.49681.20650.04120.058*
C91.3274 (10)1.0953 (4)0.0922 (3)0.0466 (11)
H91.46111.14150.08680.056*
C21.1594 (11)1.1620 (5)0.1780 (3)0.0551 (12)
H2A1.14831.18090.22520.066*
C130.8876 (11)0.6962 (4)0.1038 (3)0.0570 (15)
H13A0.79100.63320.08950.068*
H13B0.99750.71370.06560.068*
C31.3448 (11)1.2056 (4)0.1376 (3)0.0545 (12)
H31.45481.25430.15790.065*
C61.0149 (8)1.0623 (4)0.0788 (2)0.0394 (10)
C70.9883 (8)0.9950 (4)0.0445 (2)0.0381 (10)
C111.0743 (9)0.9798 (4)0.1662 (3)0.0471 (12)
H111.04040.95190.21050.057*
C10.9912 (9)1.0912 (4)0.1496 (3)0.0486 (12)
H10.86481.06310.17670.058*
C101.2698 (10)1.0539 (5)0.1574 (3)0.0534 (13)
H101.36111.07500.19620.064*
C51.2002 (7)1.1060 (4)0.0370 (2)0.0380 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.04305 (17)0.05162 (19)0.0663 (2)0.00382 (16)0.01498 (15)0.01196 (17)
S10.0380 (5)0.0542 (7)0.0475 (6)0.0110 (6)0.0028 (5)0.0017 (5)
S20.1032 (13)0.0683 (10)0.0621 (9)0.0296 (10)0.0107 (8)0.0080 (8)
C120.041 (2)0.036 (2)0.042 (3)0.0116 (18)0.006 (2)0.004 (2)
C80.035 (2)0.030 (2)0.048 (2)0.0031 (18)0.001 (2)0.0034 (18)
C40.047 (3)0.041 (2)0.058 (3)0.010 (3)0.003 (2)0.003 (2)
C90.044 (2)0.042 (2)0.054 (3)0.003 (2)0.008 (2)0.004 (2)
C20.066 (3)0.055 (3)0.045 (2)0.011 (4)0.010 (3)0.006 (2)
C130.067 (4)0.043 (3)0.061 (3)0.009 (2)0.006 (3)0.005 (2)
C30.058 (3)0.045 (3)0.060 (3)0.006 (3)0.013 (3)0.010 (2)
C60.036 (2)0.036 (2)0.046 (3)0.0048 (19)0.008 (2)0.007 (2)
C70.034 (2)0.029 (2)0.052 (3)0.0093 (17)0.001 (2)0.001 (2)
C110.060 (3)0.040 (3)0.041 (2)0.018 (2)0.000 (2)0.004 (2)
C10.049 (3)0.047 (3)0.050 (3)0.004 (2)0.003 (2)0.001 (2)
C100.057 (3)0.052 (3)0.051 (3)0.004 (3)0.015 (2)0.010 (2)
C50.036 (2)0.033 (2)0.045 (2)0.0048 (17)0.0011 (19)0.0028 (19)
Geometric parameters (Å, º) top
Te1—C122.111 (5)C9—H90.9300
Te1—C132.134 (5)C9—C101.376 (8)
S1—C61.753 (5)C2—H2A0.9300
S1—C71.739 (5)C2—C31.382 (8)
S2—H21.2000C2—C11.374 (8)
S2—C131.778 (6)C13—H13A0.9700
C12—C71.412 (7)C13—H13B0.9700
C12—C111.360 (7)C3—H30.9300
C8—C91.389 (6)C6—C11.399 (7)
C8—C71.409 (6)C6—C51.397 (6)
C8—C51.443 (6)C11—H110.9300
C4—H40.9300C11—C101.411 (8)
C4—C31.381 (8)C1—H10.9300
C4—C51.403 (7)C10—H100.9300
Te1—C13—H13A108.6H13A—C13—H13B107.6
Te1—C13—H13B108.6C3—C4—H4120.4
S2—C13—Te1114.5 (3)C3—C4—C5119.3 (5)
S2—C13—H13A108.6C3—C2—H2A119.4
S2—C13—H13B108.6C6—C1—H1120.9
C12—Te1—C1393.0 (2)C6—C5—C8112.0 (4)
C12—C7—S1125.5 (3)C6—C5—C4118.8 (4)
C12—C11—H11119.5C7—S1—C691.0 (2)
C12—C11—C10121.0 (5)C7—C12—Te1119.8 (3)
C8—C9—H9120.1C7—C8—C5111.9 (4)
C8—C7—S1112.5 (3)C11—C12—Te1122.4 (4)
C8—C7—C12122.0 (4)C11—C12—C7117.8 (4)
C4—C3—C2121.0 (5)C11—C10—H10119.5
C4—C3—H3119.5C1—C2—H2A119.4
C4—C5—C8129.2 (4)C1—C2—C3121.1 (5)
C9—C8—C7118.5 (4)C1—C6—S1126.0 (4)
C9—C8—C5129.6 (4)C10—C9—C8119.7 (5)
C9—C10—C11121.0 (5)C10—C9—H9120.1
C9—C10—H10119.5C10—C11—H11119.5
C2—C3—H3119.5C5—C4—H4120.4
C2—C1—C6118.3 (5)C5—C6—S1112.5 (4)
C2—C1—H1120.9C5—C6—C1121.5 (5)
C13—S2—H2109.5
Te1—C12—C7—S14.0 (5)C6—S1—C7—C12178.1 (4)
Te1—C12—C7—C8176.4 (3)C6—S1—C7—C81.5 (3)
Te1—C12—C11—C10177.3 (4)C7—S1—C6—C1177.9 (4)
S1—C6—C1—C2178.6 (4)C7—S1—C6—C51.9 (3)
S1—C6—C5—C81.9 (5)C7—C12—C11—C101.6 (7)
S1—C6—C5—C4178.4 (4)C7—C8—C9—C101.9 (7)
C12—Te1—C13—S278.3 (3)C7—C8—C5—C4179.5 (5)
C12—C11—C10—C91.0 (8)C7—C8—C5—C60.7 (5)
C8—C9—C10—C112.9 (8)C11—C12—C7—S1177.0 (3)
C9—C8—C7—S1178.9 (3)C11—C12—C7—C82.5 (6)
C9—C8—C7—C120.7 (6)C1—C2—C3—C41.1 (8)
C9—C8—C5—C42.6 (8)C1—C6—C5—C8178.0 (4)
C9—C8—C5—C6177.2 (4)C1—C6—C5—C41.8 (7)
C13—Te1—C12—C791.8 (4)C5—C8—C9—C10175.8 (5)
C13—Te1—C12—C1187.1 (4)C5—C8—C7—S10.7 (5)
C3—C4—C5—C8178.2 (5)C5—C8—C7—C12178.9 (4)
C3—C4—C5—C61.6 (7)C5—C4—C3—C21.3 (8)
C3—C2—C1—C61.2 (8)C5—C6—C1—C21.6 (7)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the thiophene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.972.903.846 (6)166
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC13H10S2Te
Mr357.93
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.49518 (12), 12.1422 (3), 19.0529 (5)
V3)1271.27 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.58 × 0.45 × 0.31
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.310, 0.495
No. of measured, independent and
observed [I > 2σ(I)] reflections
5117, 2509, 2248
Rint0.054
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 0.98
No. of reflections2509
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.55
Absolute structureFlack (1983), 975 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the thiophene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.972.903.846 (6)166
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 50721002 and 50802054).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationInokuchi, H., Imaeda, K., Enoki, T., Mori, T., Maruyama, Y., Saito, G., Okada, N., Yamochi, H., Seki, K., Higuchi, Y. & Yasuoka, N. (1987). Nature (London), 329, 39–40.  CSD CrossRef CAS Web of Science Google Scholar
First citationKobayashi, K., Masu, H., Shuto, A. & Yamaguchi, K. (2005). Chem. Mater. 17, 6666–6673.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds