metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m278-m279

Bis(μ-pyridine-2,5-di­carboxyl­ato)-κ3N,O2:O5;κ3O5:N,O2-bis­­[aqua­(2,2′-bi­pyridine-κ2N,N′)cobalt(II)] dihydrate

aDepartment of Genernal Eduction Center, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 16 January 2011; accepted 24 January 2011; online 29 January 2011)

In the centrosymmetric title compound, [Co2(C7H3NO4)2(C10H8N2)2(H2O)2]·2H2O, the two CoII cations are bridged by pairs of pyridine-2,5-dicarboxyl­ate anions across an inversion center. Besides two pyridine-2,5-dicarboxyl­ate anions, one bidentate 2,2′-bipyridine and one water mol­ecule coordinate to the Co cation, completing a distorted octa­hedral coordination geometry. Within the dinuclear mol­ecule, ππ stacking occurs between parallel pyridine rings with centroid–centroid distances of 3.802 (2) Å. The crystal structure contains extensive O—H⋯O and weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For multi-dentate coordination modes of the pyridine-3,5-dicarboxyl­ate anion, see: Gao et al. (2005[Gao, H.-L., Cheng, C., Ding, B., Shi, W., Song, H.-B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2005). J. Mol. Struct. 738, 105-111.]). For related structures, see: Aghabozorg et al. (2007[Aghabozorg, H., Derikvand, Z., Nemati, A. & Ghadermazi, M. (2007). Acta Cryst. E63, m2919-m2920.]); Lu et al. (2006[Lu, J.-L., Zhang, D.-S., Li, L. & Liu, B.-P. (2006). Acta Cryst. E62, m3321-m3322.]); Xu et al. (2004[Xu, Y., Han, L., Lou, B.-Y. & Hong, M.-C. (2004). Acta Cryst. E60, m585-m586.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C7H3NO4)2(C10H8N2)2(H2O)2]·2H2O

  • Mr = 832.50

  • Triclinic, [P \overline 1]

  • a = 7.2731 (11) Å

  • b = 9.7123 (15) Å

  • c = 12.2887 (19) Å

  • α = 98.447 (3)°

  • β = 103.283 (3)°

  • γ = 91.564 (3)°

  • V = 834.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.971

  • 4799 measured reflections

  • 2903 independent reflections

  • 2557 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.145

  • S = 1.14

  • 2903 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.059 (3)
Co1—O2 2.056 (3)
Co1—O5i 2.089 (3)
Co1—N1 2.126 (3)
Co1—N2 2.155 (3)
Co1—N3 2.204 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N-pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3ii 0.84 1.82 2.629 (4) 159
O1—H1B⋯O6 0.88 1.94 2.755 (5) 154
O6—H6A⋯O4iii 0.85 2.40 3.232 (5) 166
O6—H6B⋯O4iv 0.83 2.01 2.829 (5) 170
C4—H4A⋯O2v 0.93 2.52 3.202 (5) 131
C7—H7A⋯O6vi 0.93 2.57 3.332 (6) 140
C8—H8A⋯O4vii 0.93 2.55 3.461 (6) 169
C9—H9A⋯O3viii 0.93 2.59 3.330 (6) 137
C12—H12A⋯O4ix 0.93 2.44 3.317 (5) 158
C15—H15A⋯O3ii 0.93 2.36 3.249 (5) 160
C2—H2ACgiv 0.93 2.72 3.547 (5) 150
Symmetry codes: (ii) x-1, y, z; (iii) -x, -y+1, -z+1; (iv) x, y+1, z; (v) -x+2, -y+2, -z+2; (vi) -x+1, -y+2, -z+2; (vii) -x+1, -y+1, -z+2; (viii) -x+2, -y+1, -z+2; (ix) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,5-PydH2 can be easily deprotonated to get a O-donors to N-donor multidentate anion (pyd2-), enabling the ligand coordinates to two or more metal ions in a briding mode and chelating mode (Gao et al., 2005). The complexation of metal ions using the deprotonated conjugate base of 2,5-pydH2 as a ligand has been reported in the literature (Aghabozorg et al., 2007; Lu et al., 2006; Xu et al., 2004).

The symmetric unit of the title compound contain two CoII cations, two pyd anions, two bpy molecules and two coordinated water molecules. Each CoII ion is surrounded by one bpy ligand, two pyd anions and one coordinated water molecule, to give a distorted octahedral geometry. Two pyd anions bridges two CoII ions to form a centrosymmetric dimeric complex (Table 1 and Fig. 1).

The crystal structure contains an extensive network of classical O—H···O and weak C—H···O hydrogen bonds (full details and symmetry codes are given in Table 2 and Fig. 2). C—H ···π(full detail and symmetry code is given in Table 2) and π-π stacking are present in the crystal structure, the shortest centroids distance between parallel pyridine rings is 3.8023 (17) Å [Cg5i···Cg5 (N3/C11—C15)] [symmetry code: 1 - x, 1 - y, 1 - z].

Related literature top

For multi-dentate coordination modes of the pyridine-3,5-dicarboxylate anion, see: Gao et al. (2005). For related structures, see: Aghabozorg et al. (2007); Lu et al. (2006); Xu et al. (2004).

Experimental top

An aqueous solution (5 ml) of bpy (0.0312 g, 0.20 mmol) was mixed with aqueous solution (5 ml) containing Co(NO3)2.6H2O (0.0450 g, 0.20 mmol) and 2,5-pydH2 (0.0346 g, 0.2 mmol). The mxiture was put in a 23-ml Teflon liner reactor and heated at 418 K in oven for 48 h. The resulting solution was slowly cooled to room temperature. The orange transparent single crystals of the title complex were obtained in 35.5% yield (based on Co).

Refinement top

Water H atoms were placed in chemical sensible positions and refined in a riding model. Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model. Uiso(H) = 1.2Ueq(O,C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. All H atoms have been omitted for clarity [symmetry code: (i) 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.
Bis(µ-pyridine-2,5-dicarboxylato)-κ3N,O2:O5;κ3O5:N,O2- bis[aqua(2,2'-bipyridine-κ2N,N')cobalt(II)] dihydrate top
Crystal data top
[Co2(C7H3NO4)2(C10H8N2)2(H2O)2]·2H2OZ = 1
Mr = 832.50F(000) = 426
Triclinic, P1Dx = 1.658 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2731 (11) ÅCell parameters from 2565 reflections
b = 9.7123 (15) Åθ = 2.5–25.0°
c = 12.2887 (19) ŵ = 1.07 mm1
α = 98.447 (3)°T = 294 K
β = 103.283 (3)°Columnar, orange
γ = 91.564 (3)°0.30 × 0.20 × 0.20 mm
V = 834.0 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2903 independent reflections
Radiation source: fine-focus sealed tube2557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.7°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1111
Tmin = 0.928, Tmax = 0.971l = 1414
4799 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0875P)2 + 0.435P]
where P = (Fo2 + 2Fc2)/3
2903 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.58 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Co2(C7H3NO4)2(C10H8N2)2(H2O)2]·2H2Oγ = 91.564 (3)°
Mr = 832.50V = 834.0 (2) Å3
Triclinic, P1Z = 1
a = 7.2731 (11) ÅMo Kα radiation
b = 9.7123 (15) ŵ = 1.07 mm1
c = 12.2887 (19) ÅT = 294 K
α = 98.447 (3)°0.30 × 0.20 × 0.20 mm
β = 103.283 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2903 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2557 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.971Rint = 0.031
4799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.14Δρmax = 1.58 e Å3
2903 reflectionsΔρmin = 0.37 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.66185 (7)0.76879 (5)0.74280 (4)0.0247 (2)
O10.3772 (4)0.7870 (3)0.7328 (2)0.0354 (7)
H1A0.29560.71890.71250.042*
H1B0.32790.85610.69920.042*
O20.9431 (4)0.7317 (3)0.7591 (2)0.0364 (7)
O31.1448 (4)0.5714 (3)0.7242 (3)0.0435 (8)
O40.2217 (4)0.2111 (3)0.5635 (3)0.0432 (8)
O50.3331 (4)0.1622 (3)0.4098 (2)0.0381 (7)
O60.1195 (5)0.9586 (4)0.6300 (3)0.0535 (9)
H6A0.01830.91650.58830.064*
H6B0.13671.03150.60480.064*
N10.7131 (5)0.9779 (3)0.8284 (3)0.0295 (7)
N20.6948 (5)0.7464 (3)0.9180 (3)0.0305 (8)
N30.6456 (4)0.5456 (3)0.6717 (3)0.0254 (7)
C10.7223 (7)1.0907 (5)0.7791 (4)0.0396 (10)
H1C0.70191.07890.70070.047*
C20.7609 (7)1.2242 (5)0.8393 (4)0.0466 (12)
H2A0.76561.30070.80240.056*
C30.7921 (7)1.2406 (5)0.9552 (4)0.0464 (12)
H3A0.82131.32880.99820.056*
C40.7800 (6)1.1259 (5)1.0069 (4)0.0378 (10)
H4A0.79851.13621.08520.045*
C50.7403 (5)0.9954 (4)0.9422 (3)0.0282 (9)
C60.7270 (5)0.8659 (4)0.9919 (3)0.0289 (9)
C70.7501 (7)0.8667 (5)1.1072 (4)0.0415 (11)
H7A0.77160.95071.15690.050*
C80.7409 (7)0.7430 (6)1.1474 (4)0.0481 (12)
H8A0.75650.74221.22450.058*
C90.7083 (7)0.6200 (5)1.0724 (4)0.0465 (12)
H9A0.70110.53461.09740.056*
C100.6866 (7)0.6277 (5)0.9595 (4)0.0391 (10)
H10A0.66480.54460.90870.047*
C110.8176 (5)0.5074 (4)0.6603 (3)0.0262 (8)
C120.8460 (6)0.3818 (4)0.5996 (4)0.0325 (9)
H12A0.96690.35910.59350.039*
C130.6905 (6)0.2898 (4)0.5480 (3)0.0310 (9)
H13A0.70520.20580.50470.037*
C140.5124 (5)0.3253 (4)0.5620 (3)0.0247 (8)
C150.4972 (5)0.4536 (4)0.6248 (3)0.0248 (8)
H15A0.37850.47710.63490.030*
C160.9822 (5)0.6112 (4)0.7197 (3)0.0286 (9)
C170.3412 (6)0.2256 (4)0.5075 (3)0.0275 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0275 (3)0.0238 (3)0.0205 (3)0.0027 (2)0.0054 (2)0.0029 (2)
O10.0326 (15)0.0318 (16)0.0404 (18)0.0027 (12)0.0074 (13)0.0042 (13)
O20.0257 (14)0.0385 (17)0.0376 (17)0.0053 (12)0.0046 (13)0.0119 (14)
O30.0263 (15)0.0384 (17)0.062 (2)0.0004 (13)0.0085 (15)0.0009 (15)
O40.0427 (18)0.0408 (18)0.047 (2)0.0095 (14)0.0219 (16)0.0048 (15)
O50.0526 (19)0.0330 (16)0.0231 (15)0.0100 (14)0.0044 (13)0.0042 (12)
O60.053 (2)0.0413 (19)0.059 (2)0.0054 (15)0.0058 (17)0.0152 (17)
N10.0346 (18)0.0271 (18)0.0251 (18)0.0008 (14)0.0071 (15)0.0010 (14)
N20.0353 (18)0.0274 (18)0.0269 (18)0.0000 (14)0.0065 (15)0.0002 (14)
N30.0274 (16)0.0267 (17)0.0220 (17)0.0018 (13)0.0066 (13)0.0023 (13)
C10.055 (3)0.034 (2)0.029 (2)0.000 (2)0.009 (2)0.0027 (18)
C20.066 (3)0.026 (2)0.048 (3)0.003 (2)0.014 (2)0.004 (2)
C30.057 (3)0.030 (2)0.043 (3)0.001 (2)0.005 (2)0.010 (2)
C40.045 (3)0.037 (2)0.028 (2)0.0016 (19)0.006 (2)0.0040 (18)
C50.0266 (19)0.029 (2)0.025 (2)0.0013 (16)0.0038 (17)0.0039 (16)
C60.030 (2)0.032 (2)0.022 (2)0.0037 (16)0.0038 (17)0.0002 (16)
C70.055 (3)0.044 (3)0.022 (2)0.005 (2)0.008 (2)0.0024 (19)
C80.058 (3)0.062 (3)0.027 (2)0.008 (2)0.010 (2)0.013 (2)
C90.060 (3)0.044 (3)0.040 (3)0.007 (2)0.014 (2)0.017 (2)
C100.051 (3)0.035 (2)0.031 (2)0.001 (2)0.010 (2)0.0042 (19)
C110.0253 (19)0.029 (2)0.025 (2)0.0011 (16)0.0063 (16)0.0057 (16)
C120.029 (2)0.033 (2)0.035 (2)0.0046 (17)0.0110 (18)0.0000 (18)
C130.034 (2)0.031 (2)0.027 (2)0.0032 (17)0.0090 (18)0.0020 (17)
C140.032 (2)0.0254 (19)0.0160 (18)0.0002 (16)0.0051 (16)0.0036 (15)
C150.0251 (19)0.028 (2)0.0206 (19)0.0007 (15)0.0057 (16)0.0023 (15)
C160.027 (2)0.035 (2)0.022 (2)0.0029 (17)0.0051 (16)0.0033 (17)
C170.032 (2)0.0219 (19)0.027 (2)0.0009 (16)0.0059 (17)0.0020 (16)
Geometric parameters (Å, º) top
Co1—O12.059 (3)C2—H2A0.9300
Co1—O22.056 (3)C3—C41.371 (7)
Co1—O5i2.089 (3)C3—H3A0.9300
Co1—N12.126 (3)C4—C51.379 (6)
Co1—N22.155 (3)C4—H4A0.9300
Co1—N32.204 (3)C5—C61.487 (6)
O1—H1A0.8446C6—C71.387 (6)
O1—H1B0.8808C7—C81.370 (7)
O2—C161.265 (5)C7—H7A0.9300
O3—C161.246 (5)C8—C91.375 (7)
O4—C171.243 (5)C8—H8A0.9300
O5—C171.255 (5)C9—C101.374 (6)
O5—Co1i2.089 (3)C9—H9A0.9300
O6—H6A0.8484C10—H10A0.9300
O6—H6B0.8317C11—C121.380 (6)
N1—C11.334 (5)C11—C161.516 (5)
N1—C51.351 (5)C12—C131.388 (6)
N2—C101.333 (6)C12—H12A0.9300
N2—C61.343 (5)C13—C141.391 (5)
N3—C151.344 (5)C13—H13A0.9300
N3—C111.347 (5)C14—C151.388 (5)
C1—C21.382 (6)C14—C171.515 (5)
C1—H1C0.9300C15—H15A0.9300
C2—C31.374 (7)
O2—Co1—O1174.08 (12)C5—C4—H4A120.2
O2—Co1—O5i87.58 (13)N1—C5—C4121.3 (4)
O1—Co1—O5i96.94 (12)N1—C5—C6115.8 (3)
O2—Co1—N195.03 (12)C4—C5—C6122.9 (4)
O1—Co1—N188.82 (12)N2—C6—C7121.6 (4)
O5i—Co1—N189.97 (12)N2—C6—C5115.7 (3)
O2—Co1—N288.54 (13)C7—C6—C5122.7 (4)
O1—Co1—N287.96 (12)C8—C7—C6119.5 (4)
O5i—Co1—N2165.79 (12)C8—C7—H7A120.2
N1—Co1—N276.76 (13)C6—C7—H7A120.2
O2—Co1—N378.33 (11)C7—C8—C9119.3 (4)
O1—Co1—N397.44 (12)C7—C8—H8A120.3
O5i—Co1—N394.61 (12)C9—C8—H8A120.3
N1—Co1—N3171.73 (12)C10—C9—C8117.8 (4)
N2—Co1—N397.98 (12)C10—C9—H9A121.1
Co1—O1—H1A123.8C8—C9—H9A121.1
Co1—O1—H1B115.0N2—C10—C9124.2 (4)
H1A—O1—H1B106.9N2—C10—H10A117.9
C16—O2—Co1117.4 (2)C9—C10—H10A117.9
C17—O5—Co1i132.6 (3)N3—C11—C12123.1 (4)
H6A—O6—H6B107.3N3—C11—C16115.7 (3)
C1—N1—C5118.4 (4)C12—C11—C16121.2 (3)
C1—N1—Co1125.5 (3)C11—C12—C13118.8 (4)
C5—N1—Co1116.1 (3)C11—C12—H12A120.6
C10—N2—C6117.5 (4)C13—C12—H12A120.6
C10—N2—Co1126.9 (3)C12—C13—C14119.1 (4)
C6—N2—Co1115.6 (3)C12—C13—H13A120.5
C15—N3—C11117.5 (3)C14—C13—H13A120.5
C15—N3—Co1131.7 (3)C15—C14—C13118.3 (4)
C11—N3—Co1109.8 (2)C15—C14—C17121.9 (3)
N1—C1—C2123.0 (4)C13—C14—C17119.9 (3)
N1—C1—H1C118.5N3—C15—C14123.2 (3)
C2—C1—H1C118.5N3—C15—H15A118.4
C3—C2—C1118.1 (4)C14—C15—H15A118.4
C3—C2—H2A120.9O3—C16—O2125.4 (4)
C1—C2—H2A120.9O3—C16—C11117.3 (4)
C4—C3—C2119.5 (4)O2—C16—C11117.3 (3)
C4—C3—H3A120.2O4—C17—O5125.1 (4)
C2—C3—H3A120.2O4—C17—C14117.8 (3)
C3—C4—C5119.6 (4)O5—C17—C14117.1 (3)
C3—C4—H4A120.2
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N-pyridine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.841.822.629 (4)159
O1—H1B···O60.881.942.755 (5)154
O6—H6A···O4iii0.852.403.232 (5)166
O6—H6B···O4iv0.832.012.829 (5)170
C4—H4A···O2v0.932.523.202 (5)131
C7—H7A···O6vi0.932.573.332 (6)140
C8—H8A···O4vii0.932.553.461 (6)169
C9—H9A···O3viii0.932.593.330 (6)137
C12—H12A···O4ix0.932.443.317 (5)158
C15—H15A···O3ii0.932.363.249 (5)160
C2—H2A···Cgiv0.932.723.547 (5)150
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+2, y+2, z+2; (vi) x+1, y+2, z+2; (vii) x+1, y+1, z+2; (viii) x+2, y+1, z+2; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co2(C7H3NO4)2(C10H8N2)2(H2O)2]·2H2O
Mr832.50
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.2731 (11), 9.7123 (15), 12.2887 (19)
α, β, γ (°)98.447 (3), 103.283 (3), 91.564 (3)
V3)834.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.928, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
4799, 2903, 2557
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.145, 1.14
No. of reflections2903
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.58, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—O12.059 (3)Co1—N12.126 (3)
Co1—O22.056 (3)Co1—N22.155 (3)
Co1—O5i2.089 (3)Co1—N32.204 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N-pyridine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.841.822.629 (4)159
O1—H1B···O60.881.942.755 (5)154
O6—H6A···O4iii0.852.403.232 (5)166
O6—H6B···O4iv0.832.012.829 (5)170
C4—H4A···O2v0.932.523.202 (5)131
C7—H7A···O6vi0.932.573.332 (6)140
C8—H8A···O4vii0.932.553.461 (6)169
C9—H9A···O3viii0.932.593.330 (6)137
C12—H12A···O4ix0.932.443.317 (5)158
C15—H15A···O3ii0.932.363.249 (5)160
C2—H2A···Cgiv0.932.723.547 (5)150
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+2, y+2, z+2; (vi) x+1, y+2, z+2; (vii) x+1, y+1, z+2; (viii) x+2, y+1, z+2; (ix) x+1, y, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationAghabozorg, H., Derikvand, Z., Nemati, A. & Ghadermazi, M. (2007). Acta Cryst. E63, m2919–m2920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGao, H.-L., Cheng, C., Ding, B., Shi, W., Song, H.-B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2005). J. Mol. Struct. 738, 105–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, J.-L., Zhang, D.-S., Li, L. & Liu, B.-P. (2006). Acta Cryst. E62, m3321–m3322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Han, L., Lou, B.-Y. & Hong, M.-C. (2004). Acta Cryst. E60, m585–m586.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m278-m279
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds