organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[5-chloro-2-(prop-2-yn-1-yl­­oxy)phen­yl]methane

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 7527, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 January 2011; accepted 25 January 2011; online 29 January 2011)

The mol­ecule of the title compound, C19H14Cl2O2, has two benzene rings connected to a methyl­ene C atom, and the rings are aligned at 66.3 (1)°. Inter­molecular C—H⋯π and ππ stacking inter­actions are observed in the crystal structure, the centroid–centroid distances between parallel benzene rings being 3.7529 (12) and 3.6201 (12) Å, respectively.

Related literature

For a related structure, see: Hussain et al. (2009[Hussain, Z., Shah, M. R., Anis, I. & Ng, S. W. (2009). Acta Cryst. E65, o907.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14Cl2O2

  • Mr = 345.20

  • Triclinic, [P \overline 1]

  • a = 8.4844 (5) Å

  • b = 9.7845 (6) Å

  • c = 11.2568 (6) Å

  • α = 86.258 (5)°

  • β = 71.412 (5)°

  • γ = 64.707 (6)°

  • V = 798.08 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.815, Tmax = 1.000

  • 6118 measured reflections

  • 3523 independent reflections

  • 2975 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.00

  • 3523 reflections

  • 216 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cgi 0.95 2.60 3.471 (2) 153
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported several compounds that adopt a V-shape; this shape is induced by a methylene linkage to two aromatic systems. An example is bis[2-(3-bromopropoxy)-5-methylphenyl]methane, which methyl carbon has a widened angle of 115.0 (2)° (Hussain et al., 2009). The methylene angle in the present compound (Scheme I, Fig. 1) is similar [114.4 (1) °]. Two two aromatic rings that are connected the methylene carbon are aligned at 66.3 (1)°. Intermolecular C—H···π interaction occurs between inversion center related molecules (Table 1). π-π stacking is also present between parallel benzene rings in the crystal structure, centroid-to-centroid distances being 3.7529 (12) Å between C1-ring and C1i-ring (symmetry code: (i) 1-x, 1-y, 1-z), and 3.6201 (12) Å between C11-ring and C11ii-ring (symmetry code: (ii) 2-x, 1-y, -z).

Related literature top

For a related structure, see: Hussain et al. (2009).

Experimental top

2, 2'-Methylenebis(4-chlorophenol) (1 g, 3.7 mmol) was dissolved in ethanol (30 ml). Potassium carbonate (1.5 g, 11 mmol) was added and the mixture was heated for an hour. Propargyl bromide (2 ml, 22 mmol) was added and the heating continues for another 3 h. Water (50 ml) was added. The organic compound was extracted by ethyl acetate (50 ml). Slow evaporation of ethyl acetate solution afforded crystals in 80% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The acetylenic H-atoms were located in a difference Fourier map, and were refined with a distance of C–H 0.95±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C19H14Cl2O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis[5-chloro-2-(prop-2-yn-1-yloxy)phenyl]methane top
Crystal data top
C19H14Cl2O2Z = 2
Mr = 345.20F(000) = 356
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4844 (5) ÅCell parameters from 3298 reflections
b = 9.7845 (6) Åθ = 2.3–29.2°
c = 11.2568 (6) ŵ = 0.41 mm1
α = 86.258 (5)°T = 100 K
β = 71.412 (5)°Prism, colorless
γ = 64.707 (6)°0.30 × 0.25 × 0.20 mm
V = 798.08 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3523 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2975 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1012
Tmin = 0.815, Tmax = 1.000l = 1114
6118 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2682P]
where P = (Fo2 + 2Fc2)/3
3523 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H14Cl2O2γ = 64.707 (6)°
Mr = 345.20V = 798.08 (8) Å3
Triclinic, P1Z = 2
a = 8.4844 (5) ÅMo Kα radiation
b = 9.7845 (6) ŵ = 0.41 mm1
c = 11.2568 (6) ÅT = 100 K
α = 86.258 (5)°0.30 × 0.25 × 0.20 mm
β = 71.412 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3523 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2975 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 1.000Rint = 0.029
6118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
3523 reflectionsΔρmin = 0.35 e Å3
216 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85099 (6)0.23350 (5)0.67998 (4)0.02285 (13)
Cl20.50877 (6)0.78470 (5)0.01311 (4)0.02450 (13)
O10.55177 (16)0.77464 (14)0.41682 (11)0.0196 (3)
O21.00711 (16)0.26968 (13)0.18471 (11)0.0182 (3)
C10.3290 (3)1.1163 (2)0.32429 (18)0.0228 (4)
C20.3478 (2)1.0165 (2)0.39167 (16)0.0182 (4)
C30.3745 (2)0.89566 (19)0.47714 (16)0.0175 (4)
H3A0.37010.93270.55840.021*
H3B0.27690.86030.49320.021*
C40.6114 (2)0.65014 (19)0.48288 (15)0.0158 (4)
C50.5100 (2)0.6355 (2)0.60376 (16)0.0176 (4)
H50.39090.71320.64440.021*
C60.5838 (2)0.5070 (2)0.66444 (16)0.0176 (4)
H60.51610.49600.74690.021*
C70.7568 (2)0.3954 (2)0.60351 (16)0.0176 (4)
C80.8582 (2)0.4087 (2)0.48282 (16)0.0172 (4)
H80.97660.33000.44250.021*
C90.7868 (2)0.5366 (2)0.42099 (15)0.0154 (3)
C100.8966 (2)0.5563 (2)0.29023 (15)0.0161 (4)
H10A0.88900.66020.28910.019*
H10B1.02760.48430.27300.019*
C110.8327 (2)0.5312 (2)0.18567 (15)0.0151 (3)
C120.7154 (2)0.6527 (2)0.13844 (16)0.0170 (4)
H120.67280.75300.17290.020*
C130.6599 (2)0.6288 (2)0.04161 (16)0.0172 (4)
C140.7199 (2)0.4852 (2)0.01130 (16)0.0178 (4)
H140.68190.47050.07830.021*
C150.8372 (2)0.3614 (2)0.03478 (16)0.0167 (4)
H150.87940.26150.00050.020*
C160.8922 (2)0.38484 (19)0.13286 (15)0.0155 (3)
C171.0784 (2)0.1178 (2)0.13135 (17)0.0199 (4)
H17A1.17920.05040.16340.024*
H17B1.13090.11490.03890.024*
C180.9368 (2)0.0606 (2)0.16123 (16)0.0196 (4)
C190.8221 (3)0.0152 (2)0.18736 (17)0.0232 (4)
H10.317 (3)1.1950 (19)0.2701 (17)0.033 (6)*
H190.729 (2)0.020 (3)0.209 (2)0.039 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0291 (3)0.0206 (2)0.0249 (2)0.0126 (2)0.01521 (19)0.00937 (18)
Cl20.0240 (2)0.0226 (3)0.0224 (2)0.0051 (2)0.00986 (18)0.00816 (18)
O10.0207 (6)0.0165 (6)0.0147 (6)0.0038 (5)0.0032 (5)0.0024 (5)
O20.0191 (6)0.0138 (6)0.0207 (6)0.0033 (5)0.0100 (5)0.0003 (5)
C10.0210 (9)0.0223 (10)0.0237 (10)0.0072 (8)0.0089 (7)0.0042 (8)
C20.0143 (8)0.0201 (9)0.0187 (9)0.0053 (7)0.0055 (7)0.0031 (7)
C30.0150 (8)0.0176 (9)0.0174 (9)0.0046 (7)0.0049 (7)0.0006 (7)
C40.0191 (9)0.0154 (8)0.0145 (8)0.0074 (7)0.0074 (7)0.0012 (7)
C50.0173 (8)0.0191 (9)0.0161 (9)0.0080 (7)0.0046 (7)0.0002 (7)
C60.0200 (9)0.0209 (9)0.0151 (8)0.0120 (8)0.0056 (7)0.0026 (7)
C70.0229 (9)0.0185 (9)0.0182 (9)0.0120 (8)0.0115 (7)0.0052 (7)
C80.0166 (8)0.0175 (9)0.0194 (9)0.0075 (7)0.0077 (7)0.0002 (7)
C90.0171 (8)0.0182 (9)0.0146 (8)0.0103 (7)0.0057 (6)0.0004 (7)
C100.0156 (8)0.0169 (9)0.0161 (8)0.0074 (7)0.0049 (6)0.0011 (7)
C110.0137 (8)0.0191 (9)0.0138 (8)0.0097 (7)0.0023 (6)0.0019 (7)
C120.0177 (8)0.0164 (9)0.0153 (8)0.0091 (7)0.0011 (6)0.0021 (7)
C130.0143 (8)0.0197 (9)0.0140 (8)0.0059 (7)0.0029 (6)0.0061 (7)
C140.0155 (8)0.0246 (10)0.0141 (8)0.0093 (8)0.0050 (6)0.0022 (7)
C150.0172 (8)0.0177 (9)0.0138 (8)0.0072 (7)0.0037 (6)0.0003 (7)
C160.0132 (8)0.0180 (9)0.0141 (8)0.0065 (7)0.0035 (6)0.0035 (7)
C170.0188 (9)0.0151 (9)0.0213 (9)0.0023 (7)0.0068 (7)0.0026 (7)
C180.0232 (9)0.0155 (9)0.0151 (9)0.0029 (8)0.0070 (7)0.0012 (7)
C190.0279 (10)0.0231 (10)0.0172 (9)0.0107 (9)0.0056 (7)0.0002 (7)
Geometric parameters (Å, º) top
Cl1—C71.7518 (18)C8—H80.9500
Cl2—C131.7492 (18)C9—C101.521 (2)
O1—C41.374 (2)C10—C111.516 (2)
O1—C31.435 (2)C10—H10A0.9900
O2—C161.378 (2)C10—H10B0.9900
O2—C171.432 (2)C11—C121.389 (2)
C1—C21.183 (3)C11—C161.400 (2)
C1—H10.94 (2)C12—C131.385 (2)
C2—C31.462 (2)C12—H120.9500
C3—H3A0.9900C13—C141.376 (3)
C3—H3B0.9900C14—C151.394 (2)
C4—C91.401 (2)C14—H140.9500
C4—C51.395 (2)C15—C161.394 (2)
C5—C61.389 (2)C15—H150.9500
C5—H50.9500C17—C181.470 (3)
C6—C71.379 (3)C17—H17A0.9900
C6—H60.9500C17—H17B0.9900
C7—C81.389 (2)C18—C191.184 (3)
C8—C91.387 (2)C19—H190.95 (2)
C4—O1—C3117.28 (13)C9—C10—H10A108.7
C16—O2—C17117.67 (13)C11—C10—H10B108.7
C2—C1—H1178.8 (13)C9—C10—H10B108.7
C1—C2—C3177.80 (19)H10A—C10—H10B107.6
O1—C3—C2106.72 (13)C12—C11—C16118.08 (15)
O1—C3—H3A110.4C12—C11—C10121.02 (15)
C2—C3—H3A110.4C16—C11—C10120.89 (15)
O1—C3—H3B110.4C13—C12—C11120.63 (16)
C2—C3—H3B110.4C13—C12—H12119.7
H3A—C3—H3B108.6C11—C12—H12119.7
O1—C4—C9115.07 (14)C14—C13—C12121.33 (16)
O1—C4—C5123.85 (15)C14—C13—Cl2119.55 (14)
C9—C4—C5121.06 (16)C12—C13—Cl2119.12 (14)
C6—C5—C4119.73 (16)C13—C14—C15119.11 (16)
C6—C5—H5120.1C13—C14—H14120.4
C4—C5—H5120.1C15—C14—H14120.4
C7—C6—C5119.16 (16)C14—C15—C16119.73 (16)
C7—C6—H6120.4C14—C15—H15120.1
C5—C6—H6120.4C16—C15—H15120.1
C6—C7—C8121.46 (16)O2—C16—C15123.84 (16)
C6—C7—Cl1119.33 (13)O2—C16—C11115.05 (15)
C8—C7—Cl1119.21 (14)C15—C16—C11121.11 (16)
C9—C8—C7120.16 (16)O2—C17—C18112.48 (14)
C9—C8—H8119.9O2—C17—H17A109.1
C7—C8—H8119.9C18—C17—H17A109.1
C8—C9—C4118.44 (15)O2—C17—H17B109.1
C8—C9—C10121.38 (15)C18—C17—H17B109.1
C4—C9—C10120.17 (15)H17A—C17—H17B107.8
C11—C10—C9114.36 (13)C19—C18—C17178.90 (19)
C11—C10—H10A108.7C18—C19—H19179.4 (15)
C4—O1—C3—C2176.88 (13)C9—C10—C11—C1297.47 (18)
C3—O1—C4—C9178.72 (14)C9—C10—C11—C1683.30 (19)
C3—O1—C4—C50.0 (2)C16—C11—C12—C130.2 (2)
O1—C4—C5—C6178.32 (15)C10—C11—C12—C13179.03 (15)
C9—C4—C5—C60.3 (3)C11—C12—C13—C140.5 (2)
C4—C5—C6—C70.2 (3)C11—C12—C13—Cl2178.86 (12)
C5—C6—C7—C80.2 (3)C12—C13—C14—C150.8 (2)
C5—C6—C7—Cl1179.66 (13)Cl2—C13—C14—C15178.63 (13)
C6—C7—C8—C90.5 (3)C13—C14—C15—C160.2 (2)
Cl1—C7—C8—C9179.40 (12)C17—O2—C16—C152.2 (2)
C7—C8—C9—C40.3 (2)C17—O2—C16—C11177.57 (14)
C7—C8—C9—C10178.34 (15)C14—C15—C16—O2179.79 (15)
O1—C4—C9—C8178.68 (14)C14—C15—C16—C110.5 (2)
C5—C4—C9—C80.1 (2)C12—C11—C16—O2179.54 (14)
O1—C4—C9—C100.0 (2)C10—C11—C16—O21.2 (2)
C5—C4—C9—C10178.76 (15)C12—C11—C16—C150.7 (2)
C8—C9—C10—C11105.02 (18)C10—C11—C16—C15178.53 (15)
C4—C9—C10—C1176.4 (2)C16—O2—C17—C1871.59 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.952.603.471 (2)153
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H14Cl2O2
Mr345.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.4844 (5), 9.7845 (6), 11.2568 (6)
α, β, γ (°)86.258 (5), 71.412 (5), 64.707 (6)
V3)798.08 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.815, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6118, 3523, 2975
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.00
No. of reflections3523
No. of parameters216
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.35

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.952.603.471 (2)153
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHussain, Z., Shah, M. R., Anis, I. & Ng, S. W. (2009). Acta Cryst. E65, o907.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds