organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Dimeth­­oxy­benzaldehyde azine

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 7527, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 January 2011; accepted 25 January 2011; online 29 January 2011)

There are one-and-a-half independent mol­ecules in the asymmetric unit of the title compound, C18H20N2O4. One mol­ecule is centrosymmetric with the mid-point of the N—N bond located on a center of inversion. In the other, which lies on a general position, the benzene rings are aligned at 21.6 (1)°. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal strcture.

Related literature

For the structure of 2,4-dibenzaldehyde azine, see: Islam et al. (2009[Islam, M. A. A. A. A., Tarafder, M. T. H., Alam, M. A., Guidolin, N. & Zangrando, E. (2009). Acta Cryst. E65, o2560.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O4

  • Mr = 328.36

  • Monoclinic, P 21 /n

  • a = 8.0294 (2) Å

  • b = 17.9415 (5) Å

  • c = 17.5258 (4) Å

  • β = 96.660 (2)°

  • V = 2507.72 (11) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.770, Tmax = 1.000

  • 12722 measured reflections

  • 5600 independent reflections

  • 4465 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.03

  • 5600 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O3i 0.98 2.45 3.288 (2) 143
C14—H14A⋯O5ii 0.95 2.37 3.2890 (19) 161
C18—H18C⋯O6ii 0.98 2.54 3.5229 (19) 178
C27—H27C⋯O2iii 0.98 2.52 3.2656 (19) 133
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-2, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Several methoxy-substituted benzaldehyde azines have been reported, e.g., 2,4-dimethyoxybenzaldehyde azine (Islam et al., 2009). The compounds feature a CN–NC linkage that allows the two aromatic sytems to interaction. Such interaction results in a deep yellow coloration. In the reported compound, the rings are nearly co-planar. In the 2,3-dimethoxy analog (Scheme I), the rings are co-planar in the indpendent molecule lying on a center-of-inversion; in the other molecule, the rings are severely twisted (Fig. 1). Intermolecular weak C—H···O hydrogen bonding is present in the crystal strcture (Table 1).

Related literature top

For the structure of 2,4-dibenzaldehyde azine, see: Islam et al. (2009).

Experimental top

2,3-Dimethyoxybenzaldehyde (1 g, 6 mmol) was dissolved in ethanol (15 ml) and to the solution was added hydrazine hydrate (0.3 ml, 6 mmol) followed by 5 drops of acetic acid. The mixture was heated for 3 h; slow evaporation of the solvent gave yellow crystals in 80% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two molecules of C18H20N2O4 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2,3-Dimethoxybenzaldehyde azine top
Crystal data top
C18H20N2O4F(000) = 1044
Mr = 328.36Dx = 1.305 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5647 reflections
a = 8.0294 (2) Åθ = 2.3–29.3°
b = 17.9415 (5) ŵ = 0.09 mm1
c = 17.5258 (4) ÅT = 100 K
β = 96.660 (2)°Prism, yellow
V = 2507.72 (11) Å30.30 × 0.25 × 0.20 mm
Z = 6
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5600 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4465 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1822
Tmin = 0.770, Tmax = 1.000l = 1522
12722 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0541P)2 + 1.0146P]
where P = (Fo2 + 2Fc2)/3
5600 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H20N2O4V = 2507.72 (11) Å3
Mr = 328.36Z = 6
Monoclinic, P21/nMo Kα radiation
a = 8.0294 (2) ŵ = 0.09 mm1
b = 17.9415 (5) ÅT = 100 K
c = 17.5258 (4) Å0.30 × 0.25 × 0.20 mm
β = 96.660 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5600 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4465 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.029
12722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
5600 reflectionsΔρmin = 0.22 e Å3
325 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.44670 (14)0.12618 (6)0.46827 (6)0.0233 (3)
O21.51150 (15)0.22434 (7)0.36049 (6)0.0274 (3)
O30.80577 (13)0.08624 (6)0.73656 (6)0.0206 (2)
O40.88407 (14)0.04039 (6)0.81165 (6)0.0229 (3)
O50.14383 (13)0.28732 (6)0.56994 (6)0.0207 (3)
O60.24191 (14)0.39718 (7)0.47148 (6)0.0270 (3)
N10.99742 (18)0.02682 (8)0.47015 (7)0.0244 (3)
N20.33013 (17)0.14903 (8)0.66135 (7)0.0230 (3)
N30.32823 (17)0.21485 (8)0.61681 (7)0.0219 (3)
C11.1291 (2)0.06789 (9)0.47776 (9)0.0227 (3)
H11.21130.06070.52070.027*
C21.1546 (2)0.12573 (9)0.42122 (9)0.0216 (3)
C31.3166 (2)0.15129 (9)0.41631 (8)0.0210 (3)
C41.3473 (2)0.20464 (9)0.36085 (9)0.0225 (3)
C51.2143 (2)0.23323 (10)0.31222 (9)0.0270 (4)
H51.23380.26960.27490.032*
C61.0521 (2)0.20851 (10)0.31822 (10)0.0284 (4)
H60.96130.22890.28520.034*
C71.0209 (2)0.15493 (10)0.37118 (9)0.0263 (4)
H70.90970.13790.37380.032*
C81.5554 (2)0.07435 (10)0.43631 (10)0.0290 (4)
H8A1.64450.05890.47610.044*
H8B1.60520.09820.39400.044*
H8C1.49070.03060.41690.044*
C91.5503 (2)0.27571 (11)0.30281 (11)0.0336 (4)
H9A1.67130.28520.30870.050*
H9B1.49020.32260.30830.050*
H9C1.51610.25450.25190.050*
C100.4791 (2)0.12549 (9)0.68026 (8)0.0200 (3)
H10A0.57070.15370.66590.024*
C110.51268 (19)0.05616 (9)0.72347 (8)0.0195 (3)
C120.67881 (19)0.03737 (9)0.74863 (8)0.0186 (3)
C130.71782 (19)0.02919 (9)0.78884 (8)0.0194 (3)
C140.5896 (2)0.07717 (9)0.80322 (9)0.0218 (3)
H14A0.61450.12240.83030.026*
C150.4237 (2)0.05849 (10)0.77768 (9)0.0235 (4)
H15A0.33630.09160.78740.028*
C160.3841 (2)0.00711 (9)0.73868 (9)0.0222 (3)
H16A0.27040.01910.72220.027*
C170.9006 (2)0.06256 (10)0.67612 (9)0.0262 (4)
H17A0.98870.09910.67000.039*
H17B0.82590.05850.62790.039*
H17C0.95170.01390.68920.039*
C180.9285 (2)0.10591 (10)0.85626 (9)0.0253 (4)
H18A1.05050.10780.86910.038*
H18B0.89070.15030.82650.038*
H18C0.87460.10440.90360.038*
C190.1780 (2)0.23233 (9)0.59042 (8)0.0210 (3)
H19A0.08860.20300.60530.025*
C200.1376 (2)0.29503 (9)0.53866 (8)0.0193 (3)
C210.2569 (2)0.32947 (9)0.49745 (8)0.0216 (3)
H21A0.37060.31390.50480.026*
C220.2081 (2)0.38584 (10)0.44645 (9)0.0246 (4)
H22A0.28870.40840.41820.030*
C230.0420 (2)0.41041 (9)0.43554 (9)0.0234 (4)
H23A0.01030.44960.40040.028*
C240.0767 (2)0.37737 (9)0.47628 (9)0.0209 (3)
C250.02836 (19)0.31907 (9)0.52731 (8)0.0191 (3)
C260.2977 (2)0.45460 (11)0.41808 (11)0.0309 (4)
H26A0.41750.46370.41990.046*
H26B0.27930.43900.36610.046*
H26C0.23470.50040.43150.046*
C270.2600 (2)0.23775 (10)0.52664 (9)0.0273 (4)
H27A0.33800.21730.56030.041*
H27B0.19810.19690.50570.041*
H27C0.32310.26520.48440.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (6)0.0233 (6)0.0214 (5)0.0023 (5)0.0017 (4)0.0007 (4)
O20.0256 (6)0.0275 (7)0.0292 (6)0.0034 (5)0.0027 (5)0.0083 (5)
O30.0180 (6)0.0206 (6)0.0235 (5)0.0015 (5)0.0043 (4)0.0011 (4)
O40.0182 (6)0.0238 (6)0.0262 (6)0.0018 (5)0.0002 (4)0.0054 (5)
O50.0182 (6)0.0237 (6)0.0205 (5)0.0017 (5)0.0041 (4)0.0006 (4)
O60.0200 (6)0.0308 (7)0.0307 (6)0.0066 (5)0.0051 (5)0.0103 (5)
N10.0263 (8)0.0247 (8)0.0235 (7)0.0004 (6)0.0086 (6)0.0015 (6)
N20.0227 (7)0.0229 (7)0.0232 (7)0.0017 (6)0.0017 (5)0.0029 (5)
N30.0223 (7)0.0206 (7)0.0225 (7)0.0019 (6)0.0012 (5)0.0020 (5)
C10.0254 (9)0.0215 (9)0.0222 (8)0.0028 (7)0.0065 (6)0.0016 (6)
C20.0251 (9)0.0188 (8)0.0217 (8)0.0015 (7)0.0068 (6)0.0012 (6)
C30.0267 (9)0.0175 (8)0.0189 (7)0.0014 (7)0.0033 (6)0.0028 (6)
C40.0237 (9)0.0213 (9)0.0227 (8)0.0008 (7)0.0041 (6)0.0019 (6)
C50.0312 (9)0.0266 (9)0.0234 (8)0.0024 (8)0.0045 (7)0.0048 (7)
C60.0265 (9)0.0305 (10)0.0281 (8)0.0053 (8)0.0020 (7)0.0035 (7)
C70.0249 (9)0.0259 (9)0.0289 (8)0.0013 (7)0.0059 (7)0.0002 (7)
C80.0284 (9)0.0244 (9)0.0348 (9)0.0052 (8)0.0062 (7)0.0016 (7)
C90.0312 (10)0.0310 (10)0.0397 (10)0.0009 (8)0.0086 (8)0.0133 (8)
C100.0196 (8)0.0220 (8)0.0182 (7)0.0002 (7)0.0016 (6)0.0004 (6)
C110.0203 (8)0.0216 (8)0.0166 (7)0.0014 (7)0.0027 (6)0.0019 (6)
C120.0192 (8)0.0196 (8)0.0174 (7)0.0019 (6)0.0035 (6)0.0031 (6)
C130.0182 (8)0.0225 (8)0.0173 (7)0.0012 (7)0.0013 (6)0.0026 (6)
C140.0249 (8)0.0205 (8)0.0203 (7)0.0008 (7)0.0038 (6)0.0018 (6)
C150.0212 (8)0.0258 (9)0.0241 (8)0.0043 (7)0.0048 (6)0.0002 (6)
C160.0169 (8)0.0266 (9)0.0230 (8)0.0007 (7)0.0025 (6)0.0002 (6)
C170.0226 (9)0.0284 (9)0.0291 (9)0.0017 (7)0.0089 (7)0.0018 (7)
C180.0227 (9)0.0249 (9)0.0276 (8)0.0043 (7)0.0002 (6)0.0064 (7)
C190.0206 (8)0.0221 (9)0.0203 (7)0.0004 (7)0.0030 (6)0.0021 (6)
C200.0212 (8)0.0185 (8)0.0176 (7)0.0008 (7)0.0001 (6)0.0027 (6)
C210.0184 (8)0.0244 (9)0.0217 (8)0.0003 (7)0.0011 (6)0.0026 (6)
C220.0235 (9)0.0268 (9)0.0241 (8)0.0041 (7)0.0058 (6)0.0004 (7)
C230.0247 (9)0.0231 (9)0.0221 (8)0.0011 (7)0.0019 (6)0.0046 (6)
C240.0189 (8)0.0228 (9)0.0211 (7)0.0021 (7)0.0021 (6)0.0016 (6)
C250.0194 (8)0.0208 (8)0.0175 (7)0.0024 (7)0.0036 (6)0.0020 (6)
C260.0245 (9)0.0291 (10)0.0385 (10)0.0055 (8)0.0012 (7)0.0116 (8)
C270.0224 (9)0.0302 (10)0.0288 (9)0.0065 (8)0.0013 (7)0.0000 (7)
Geometric parameters (Å, º) top
O1—C31.3792 (19)C10—C111.465 (2)
O1—C81.433 (2)C10—H10A0.9500
O2—C41.366 (2)C11—C121.397 (2)
O2—C91.429 (2)C11—C161.405 (2)
O3—C121.3794 (18)C12—C131.403 (2)
O3—C171.4383 (19)C13—C141.387 (2)
O4—C131.3632 (19)C14—C151.396 (2)
O4—C181.4339 (19)C14—H14A0.9500
O5—C251.3796 (18)C15—C161.380 (2)
O5—C271.440 (2)C15—H15A0.9500
O6—C241.3664 (19)C16—H16A0.9500
O6—C261.429 (2)C17—H17A0.9800
N1—C11.283 (2)C17—H17B0.9800
N1—N1i1.419 (3)C17—H17C0.9800
N2—C101.276 (2)C18—H18A0.9800
N2—N31.4146 (19)C18—H18B0.9800
N3—C191.280 (2)C18—H18C0.9800
C1—C21.465 (2)C19—C201.458 (2)
C1—H10.9500C19—H19A0.9500
C2—C31.392 (2)C20—C251.393 (2)
C2—C71.406 (2)C20—C211.407 (2)
C3—C41.406 (2)C21—C221.376 (2)
C4—C51.385 (2)C21—H21A0.9500
C5—C61.391 (2)C22—C231.396 (2)
C5—H50.9500C22—H22A0.9500
C6—C71.379 (2)C23—C241.388 (2)
C6—H60.9500C23—H23A0.9500
C7—H70.9500C24—C251.401 (2)
C8—H8A0.9800C26—H26A0.9800
C8—H8B0.9800C26—H26B0.9800
C8—H8C0.9800C26—H26C0.9800
C9—H9A0.9800C27—H27A0.9800
C9—H9B0.9800C27—H27B0.9800
C9—H9C0.9800C27—H27C0.9800
C3—O1—C8113.74 (12)C13—C14—C15119.57 (15)
C4—O2—C9117.40 (13)C13—C14—H14A120.2
C12—O3—C17112.88 (12)C15—C14—H14A120.2
C13—O4—C18117.00 (12)C16—C15—C14121.34 (15)
C25—O5—C27113.87 (11)C16—C15—H15A119.3
C24—O6—C26117.17 (13)C14—C15—H15A119.3
C1—N1—N1i111.08 (16)C15—C16—C11119.75 (15)
C10—N2—N3111.68 (13)C15—C16—H16A120.1
C19—N3—N2110.69 (13)C11—C16—H16A120.1
N1—C1—C2120.95 (15)O3—C17—H17A109.5
N1—C1—H1119.5O3—C17—H17B109.5
C2—C1—H1119.5H17A—C17—H17B109.5
C3—C2—C7119.36 (15)O3—C17—H17C109.5
C3—C2—C1118.68 (15)H17A—C17—H17C109.5
C7—C2—C1121.96 (15)H17B—C17—H17C109.5
O1—C3—C2119.57 (14)O4—C18—H18A109.5
O1—C3—C4119.93 (15)O4—C18—H18B109.5
C2—C3—C4120.45 (15)H18A—C18—H18B109.5
O2—C4—C5125.23 (15)O4—C18—H18C109.5
O2—C4—C3115.20 (14)H18A—C18—H18C109.5
C5—C4—C3119.57 (16)H18B—C18—H18C109.5
C4—C5—C6119.79 (16)N3—C19—C20123.12 (15)
C4—C5—H5120.1N3—C19—H19A118.4
C6—C5—H5120.1C20—C19—H19A118.4
C7—C6—C5121.20 (16)C25—C20—C21119.17 (14)
C7—C6—H6119.4C25—C20—C19117.91 (14)
C5—C6—H6119.4C21—C20—C19122.85 (14)
C6—C7—C2119.61 (16)C22—C21—C20119.77 (15)
C6—C7—H7120.2C22—C21—H21A120.1
C2—C7—H7120.2C20—C21—H21A120.1
O1—C8—H8A109.5C21—C22—C23121.09 (15)
O1—C8—H8B109.5C21—C22—H22A119.5
H8A—C8—H8B109.5C23—C22—H22A119.5
O1—C8—H8C109.5C24—C23—C22119.76 (15)
H8A—C8—H8C109.5C24—C23—H23A120.1
H8B—C8—H8C109.5C22—C23—H23A120.1
O2—C9—H9A109.5O6—C24—C23125.21 (14)
O2—C9—H9B109.5O6—C24—C25115.38 (14)
H9A—C9—H9B109.5C23—C24—C25119.41 (15)
O2—C9—H9C109.5O5—C25—C20119.13 (14)
H9A—C9—H9C109.5O5—C25—C24120.00 (14)
H9B—C9—H9C109.5C20—C25—C24120.79 (14)
N2—C10—C11121.74 (15)O6—C26—H26A109.5
N2—C10—H10A119.1O6—C26—H26B109.5
C11—C10—H10A119.1H26A—C26—H26B109.5
C12—C11—C16118.99 (15)O6—C26—H26C109.5
C12—C11—C10118.67 (14)H26A—C26—H26C109.5
C16—C11—C10122.32 (14)H26B—C26—H26C109.5
O3—C12—C11119.60 (14)O5—C27—H27A109.5
O3—C12—C13119.47 (14)O5—C27—H27B109.5
C11—C12—C13120.88 (14)H27A—C27—H27B109.5
O4—C13—C14125.27 (14)O5—C27—H27C109.5
O4—C13—C12115.25 (14)H27A—C27—H27C109.5
C14—C13—C12119.47 (14)H27B—C27—H27C109.5
C10—N2—N3—C19171.89 (14)C18—O4—C13—C12176.95 (13)
N1i—N1—C1—C2177.86 (15)O3—C12—C13—O41.4 (2)
N1—C1—C2—C3158.74 (15)C11—C12—C13—O4178.69 (13)
N1—C1—C2—C720.1 (2)O3—C12—C13—C14177.86 (13)
C8—O1—C3—C2106.62 (16)C11—C12—C13—C140.5 (2)
C8—O1—C3—C475.95 (18)O4—C13—C14—C15178.95 (14)
C7—C2—C3—O1176.09 (14)C12—C13—C14—C150.2 (2)
C1—C2—C3—O15.0 (2)C13—C14—C15—C160.4 (2)
C7—C2—C3—C41.3 (2)C14—C15—C16—C110.6 (2)
C1—C2—C3—C4177.54 (14)C12—C11—C16—C150.2 (2)
C9—O2—C4—C53.4 (2)C10—C11—C16—C15178.05 (14)
C9—O2—C4—C3177.07 (15)N2—N3—C19—C20176.19 (13)
O1—C3—C4—O23.9 (2)N3—C19—C20—C25165.89 (15)
C2—C3—C4—O2178.72 (14)N3—C19—C20—C2117.2 (2)
O1—C3—C4—C5175.72 (14)C25—C20—C21—C220.4 (2)
C2—C3—C4—C51.7 (2)C19—C20—C21—C22176.53 (15)
O2—C4—C5—C6179.92 (15)C20—C21—C22—C230.9 (2)
C3—C4—C5—C60.5 (2)C21—C22—C23—C240.4 (2)
C4—C5—C6—C71.0 (3)C26—O6—C24—C232.5 (2)
C5—C6—C7—C21.3 (3)C26—O6—C24—C25177.83 (14)
C3—C2—C7—C60.2 (2)C22—C23—C24—O6178.95 (15)
C1—C2—C7—C6179.01 (15)C22—C23—C24—C250.7 (2)
N3—N2—C10—C11177.09 (13)C27—O5—C25—C20107.31 (16)
N2—C10—C11—C12173.93 (14)C27—O5—C25—C2475.94 (18)
N2—C10—C11—C167.8 (2)C21—C20—C25—O5177.46 (13)
C17—O3—C12—C11105.52 (16)C19—C20—C25—O55.5 (2)
C17—O3—C12—C1377.10 (17)C21—C20—C25—C240.7 (2)
C16—C11—C12—O3177.65 (13)C19—C20—C25—C24177.79 (14)
C10—C11—C12—O34.0 (2)O6—C24—C25—O51.7 (2)
C16—C11—C12—C130.3 (2)C23—C24—C25—O5177.97 (14)
C10—C11—C12—C13178.66 (13)O6—C24—C25—C20178.42 (13)
C18—O4—C13—C142.2 (2)C23—C24—C25—C201.3 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O3ii0.982.453.288 (2)143
C14—H14A···O5iii0.952.373.2890 (19)161
C18—H18C···O6iii0.982.543.5229 (19)178
C27—H27C···O2iv0.982.523.2656 (19)133
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+3/2; (iv) x2, y, z.

Experimental details

Crystal data
Chemical formulaC18H20N2O4
Mr328.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.0294 (2), 17.9415 (5), 17.5258 (4)
β (°) 96.660 (2)
V3)2507.72 (11)
Z6
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12722, 5600, 4465
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.03
No. of reflections5600
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O3i0.982.453.288 (2)143
C14—H14A···O5ii0.952.373.2890 (19)161
C18—H18C···O6ii0.982.543.5229 (19)178
C27—H27C···O2iii0.982.523.2656 (19)133
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x2, y, z.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationIslam, M. A. A. A. A., Tarafder, M. T. H., Alam, M. A., Guidolin, N. & Zangrando, E. (2009). Acta Cryst. E65, o2560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds