organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 2-(4-nitro­phen­­oxy)acetate

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 7527, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 January 2011; accepted 25 January 2011; online 29 January 2011)

In the title mol­ecule, C12H15NO5, the nitro­phen­oxy portion is approximately planar (r.m.s. deviation = 0.034 Å) and makes an angle of 84.8 (1)° with respect to the –CH2–C(=O)–O–C fragment. In the crystal, ππ stacking is observed between nearly parallel benzene rings of adjacent mol­ecules, the centroid–centroid distance being 3.6806 (10) Å. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For a study of the biopotency of the title compound, see: Arfan et al. (2010[Arfan, M., Ali, M., Anis, I., Ahmad, H., Choudhary, M. I., Khan, A. & Shan, M. R. (2010). J. Enzym. Inhib. Med. Chem. 25, 296-299.]). For related structures, see: Ali et al. (2010[Ali, Q., Yousuf, S., Raza Shah, M. & Ng, S. W. (2010). Acta Cryst. E66, o1739.]); Mustafa et al. (2009[Mustafa, A., Shah, M. R., Khatoon, M. & Ng, S. W. (2009). Acta Cryst. E65, o912.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO5

  • Mr = 253.25

  • Monoclinic, C 2/c

  • a = 19.2761 (7) Å

  • b = 12.1131 (4) Å

  • c = 11.7267 (5) Å

  • β = 111.682 (4)°

  • V = 2544.38 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.664, Tmax = 1.000

  • 5580 measured reflections

  • 2824 independent reflections

  • 2075 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.120

  • S = 1.06

  • 2824 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.95 2.50 3.201 (2) 130
C12—H12C⋯O2ii 0.98 2.55 3.489 (3) 161
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The C12H15NO5 compound (Scheme I) was synthesized for evaluation of its potency against urease enzymes (Arfan et al., 2010); we have also synthesized other t-butyl esters of phenols (Ali et al., 2010; Mustafa et al., 2010). The nitrophenoxy portion is approximately planar (r.m.s. deviation 0.034 Å) this makes an angle of 84.8 (1)° with respect to the –CH2–C(O)–O–C fragment (Fig. 1). π-π stacking is observed between nearly parallel C1-benzene and C1i-benzene rings of adjacent molecules (symmetry code: (i) 1-x, y, 1/2-z), centroids distance being 3.6806 (10) Å. Intermolecular weak C—H···O hydrogen bonding is present in the crystal structure (Table 1).

Related literature top

For a study of the biopotency of the title compound, see: Arfan et al. (2010). For related structures, see: Ali et al. (2010); Mustafa et al. (2009).

Experimental top

4-Nitrophenol (1 g, 7 mmol) was dissolved in acetone (25 ml). To the solution was added potassium carbonate (2 g, 14 mmol). t-Butyl bromoacetate (2 ml, 14 mmol) was added amd the mixture heated for 3 hurs. The solvent was evaporated and the residue was dissolved in a mixture of water (50 ml) and ethyl acetate (50 ml). The aqueous layer was extracted three times with ethyl acetate. The combined organic phases were evaporated under reduced pressure and the solid material was recrystallized from n-hexane to give the produce in 80% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of at C12H15NO5 the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
tert-Butyl 2-(4-nitrophenoxy)acetate top
Crystal data top
C12H15NO5F(000) = 1072
Mr = 253.25Dx = 1.322 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1942 reflections
a = 19.2761 (7) Åθ = 2.3–28.5°
b = 12.1131 (4) ŵ = 0.10 mm1
c = 11.7267 (5) ÅT = 100 K
β = 111.682 (4)°Plate, colorless
V = 2544.38 (17) Å30.30 × 0.20 × 0.05 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2824 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2075 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1724
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1315
Tmin = 0.664, Tmax = 1.000l = 1414
5580 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.6948P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2824 reflectionsΔρmax = 0.27 e Å3
164 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (4)
Crystal data top
C12H15NO5V = 2544.38 (17) Å3
Mr = 253.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.2761 (7) ŵ = 0.10 mm1
b = 12.1131 (4) ÅT = 100 K
c = 11.7267 (5) Å0.30 × 0.20 × 0.05 mm
β = 111.682 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2824 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2075 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 1.000Rint = 0.029
5580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2824 reflectionsΔρmin = 0.21 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37259 (7)0.48179 (13)0.04938 (14)0.0505 (4)
O20.41306 (9)0.58588 (13)0.21067 (16)0.0581 (5)
O30.44798 (6)0.11669 (9)0.44903 (11)0.0251 (3)
O40.59965 (6)0.13203 (9)0.53127 (11)0.0279 (3)
O50.60685 (5)0.11686 (9)0.72849 (10)0.0233 (3)
N10.39810 (8)0.49483 (14)0.16138 (17)0.0387 (4)
C10.41151 (9)0.39685 (14)0.23939 (17)0.0275 (4)
C20.43579 (9)0.41028 (15)0.36502 (17)0.0287 (4)
H20.44280.48210.40010.034*
C30.44980 (8)0.31747 (14)0.43918 (16)0.0258 (4)
H30.46660.32490.52580.031*
C40.43901 (8)0.21342 (13)0.38562 (15)0.0221 (4)
C50.41454 (8)0.20196 (14)0.25872 (15)0.0240 (4)
H50.40760.13040.22310.029*
C60.40040 (8)0.29378 (15)0.18461 (16)0.0275 (4)
H60.38340.28660.09790.033*
C70.48824 (8)0.11660 (14)0.57817 (15)0.0250 (4)
H7A0.47680.04820.61410.030*
H7B0.47230.18030.61550.030*
C80.57178 (8)0.12344 (13)0.60739 (16)0.0223 (4)
C90.69011 (8)0.12075 (13)0.78688 (16)0.0241 (4)
C100.72379 (9)0.02283 (15)0.74544 (17)0.0312 (4)
H10A0.71420.02970.65760.047*
H10B0.70120.04550.76020.047*
H10C0.77780.02100.79170.047*
C110.70230 (9)0.11251 (16)0.92190 (16)0.0352 (5)
H11A0.68330.04150.93790.053*
H11B0.67570.17270.94400.053*
H11C0.75580.11800.97110.053*
C120.71824 (9)0.23046 (15)0.75805 (18)0.0341 (5)
H12A0.70880.23440.67010.051*
H12B0.77200.23670.80490.051*
H12C0.69210.29100.78060.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0487 (8)0.0646 (11)0.0413 (10)0.0150 (7)0.0201 (7)0.0271 (8)
O20.0813 (11)0.0317 (9)0.0778 (13)0.0110 (7)0.0485 (10)0.0148 (9)
O30.0243 (6)0.0262 (7)0.0213 (6)0.0002 (4)0.0044 (5)0.0025 (5)
O40.0270 (6)0.0348 (7)0.0239 (7)0.0001 (5)0.0118 (5)0.0043 (6)
O50.0185 (6)0.0303 (7)0.0201 (6)0.0014 (4)0.0059 (5)0.0008 (5)
N10.0367 (9)0.0391 (10)0.0513 (12)0.0145 (7)0.0290 (8)0.0197 (9)
C10.0242 (8)0.0314 (10)0.0315 (10)0.0087 (7)0.0159 (7)0.0098 (8)
C20.0289 (9)0.0263 (9)0.0348 (11)0.0030 (7)0.0162 (8)0.0010 (8)
C30.0269 (8)0.0295 (10)0.0220 (9)0.0017 (7)0.0100 (7)0.0013 (8)
C40.0165 (7)0.0269 (9)0.0233 (9)0.0020 (6)0.0078 (6)0.0037 (7)
C50.0196 (8)0.0305 (9)0.0221 (9)0.0020 (6)0.0079 (6)0.0023 (7)
C60.0189 (8)0.0424 (11)0.0226 (9)0.0052 (7)0.0093 (7)0.0036 (8)
C70.0224 (8)0.0321 (10)0.0188 (9)0.0002 (6)0.0057 (7)0.0043 (8)
C80.0237 (8)0.0203 (8)0.0223 (9)0.0002 (6)0.0078 (7)0.0019 (7)
C90.0171 (8)0.0275 (9)0.0247 (9)0.0023 (6)0.0043 (7)0.0019 (7)
C100.0232 (8)0.0327 (10)0.0357 (11)0.0011 (7)0.0086 (7)0.0032 (9)
C110.0242 (9)0.0523 (13)0.0250 (10)0.0014 (8)0.0044 (7)0.0021 (9)
C120.0261 (9)0.0323 (10)0.0422 (12)0.0054 (7)0.0105 (8)0.0013 (9)
Geometric parameters (Å, º) top
O1—N11.231 (2)C6—H60.9500
O2—N11.229 (2)C7—C81.520 (2)
O3—C41.3641 (19)C7—H7A0.9900
O3—C71.424 (2)C7—H7B0.9900
O4—C81.2044 (19)C9—C101.516 (2)
O5—C81.3307 (19)C9—C111.516 (2)
O5—C91.4949 (18)C9—C121.520 (2)
N1—C11.462 (2)C10—H10A0.9800
C1—C21.381 (3)C10—H10B0.9800
C1—C61.384 (2)C10—H10C0.9800
C2—C31.386 (2)C11—H11A0.9800
C2—H20.9500C11—H11B0.9800
C3—C41.389 (2)C11—H11C0.9800
C3—H30.9500C12—H12A0.9800
C4—C51.392 (2)C12—H12B0.9800
C5—C61.375 (2)C12—H12C0.9800
C5—H50.9500
C4—O3—C7119.34 (12)H7A—C7—H7B108.1
C8—O5—C9121.54 (12)O4—C8—O5127.32 (14)
O2—N1—O1123.29 (17)O4—C8—C7124.28 (15)
O2—N1—C1118.53 (18)O5—C8—C7108.39 (14)
O1—N1—C1118.17 (18)O5—C9—C10110.06 (12)
C2—C1—C6122.33 (16)O5—C9—C11101.67 (12)
C2—C1—N1118.94 (17)C10—C9—C11111.34 (15)
C6—C1—N1118.72 (17)O5—C9—C12109.67 (13)
C1—C2—C3119.00 (17)C10—C9—C12112.49 (14)
C1—C2—H2120.5C11—C9—C12111.08 (15)
C3—C2—H2120.5C9—C10—H10A109.5
C2—C3—C4119.37 (16)C9—C10—H10B109.5
C2—C3—H3120.3H10A—C10—H10B109.5
C4—C3—H3120.3C9—C10—H10C109.5
O3—C4—C3124.42 (15)H10A—C10—H10C109.5
O3—C4—C5114.94 (14)H10B—C10—H10C109.5
C3—C4—C5120.59 (15)C9—C11—H11A109.5
C6—C5—C4120.30 (16)C9—C11—H11B109.5
C6—C5—H5119.8H11A—C11—H11B109.5
C4—C5—H5119.8C9—C11—H11C109.5
C5—C6—C1118.40 (16)H11A—C11—H11C109.5
C5—C6—H6120.8H11B—C11—H11C109.5
C1—C6—H6120.8C9—C12—H12A109.5
O3—C7—C8110.82 (14)C9—C12—H12B109.5
O3—C7—H7A109.5H12A—C12—H12B109.5
C8—C7—H7A109.5C9—C12—H12C109.5
O3—C7—H7B109.5H12A—C12—H12C109.5
C8—C7—H7B109.5H12B—C12—H12C109.5
O2—N1—C1—C24.2 (2)C3—C4—C5—C60.3 (2)
O1—N1—C1—C2176.09 (15)C4—C5—C6—C10.4 (2)
O2—N1—C1—C6174.92 (15)C2—C1—C6—C50.3 (2)
O1—N1—C1—C64.8 (2)N1—C1—C6—C5178.73 (13)
C6—C1—C2—C30.2 (2)C4—O3—C7—C876.68 (17)
N1—C1—C2—C3178.85 (13)C9—O5—C8—O40.6 (2)
C1—C2—C3—C40.1 (2)C9—O5—C8—C7179.79 (12)
C7—O3—C4—C316.7 (2)O3—C7—C8—O42.6 (2)
C7—O3—C4—C5165.91 (13)O3—C7—C8—O5176.57 (12)
C2—C3—C4—O3177.12 (14)C8—O5—C9—C1062.81 (18)
C2—C3—C4—C50.1 (2)C8—O5—C9—C11179.09 (14)
O3—C4—C5—C6177.24 (12)C8—O5—C9—C1261.45 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.952.503.201 (2)130
C12—H12C···O2ii0.982.553.489 (3)161
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H15NO5
Mr253.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)19.2761 (7), 12.1131 (4), 11.7267 (5)
β (°) 111.682 (4)
V3)2544.38 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.664, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5580, 2824, 2075
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.120, 1.06
No. of reflections2824
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.952.503.201 (2)130
C12—H12C···O2ii0.982.553.489 (3)161
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAli, Q., Yousuf, S., Raza Shah, M. & Ng, S. W. (2010). Acta Cryst. E66, o1739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArfan, M., Ali, M., Anis, I., Ahmad, H., Choudhary, M. I., Khan, A. & Shan, M. R. (2010). J. Enzym. Inhib. Med. Chem. 25, 296–299.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationMustafa, A., Shah, M. R., Khatoon, M. & Ng, S. W. (2009). Acta Cryst. E65, o912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds