organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-Butyl 2,2′-[2,2′-methyl­enebis(naphthalene-2,1-diyldi­­oxy)]di­acetate

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 7527, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 January 2011; accepted 25 January 2011; online 29 January 2011)

In the title compound, C33H36O6, two naphthalene ring systems are connected through a methyl­ene linkage [C—C—C = 114.9 (2)°]; the ring systems are aligned at an angle of 76.5 (1)°. Of the two –O–CH2–C(=O)–C(CH3)3 substituents, one adopts an extended conformation whereas the other is U-shaped. In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonding, forming supra­molecular chains running along the c axis.

Related literature

For two related structures, see: Ali et al. (2008[Ali, Q., Ibad, F., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1408.]); Mustafa et al. (2009[Mustafa, A., Shah, M. R., Khatoon, M. & Ng, S. W. (2009). Acta Cryst. E65, o912.]).

[Scheme 1]

Experimental

Crystal data
  • C33H36O6

  • Mr = 528.62

  • Triclinic, [P \overline 1]

  • a = 8.9849 (5) Å

  • b = 11.8327 (6) Å

  • c = 13.7768 (6) Å

  • α = 79.804 (4)°

  • β = 74.115 (4)°

  • γ = 88.094 (4)°

  • V = 1386.33 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.744, Tmax = 1.000

  • 11166 measured reflections

  • 6119 independent reflections

  • 3422 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.171

  • S = 1.03

  • 6119 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O5i 0.98 2.46 3.419 (3) 166
Symmetry code: (i) x, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure (Scheme I) continues from the studies on di-tert-butyl 2,2'-(biphenyl-2,2,'-diyldioxy)diacetate (Ali et al., 2008) and di-tert-butyl (1,1'-binaphthyl-2,2'-dioxy)diacetate (Mustafa et al., 2009). The title compound has two naphthyl ring systems connected through a methylene linkage [C–C–C 114.9 (2)°] (Fig. 1); the rings are aligned at a dihedral angle of 76.5 (1)°. In the crystal structure the molecules are linked via weak C—H···O hydrogen bonding to form one dimensional supra-molecular chains running along the c axis (Table 1).

Related literature top

For two related structures, see: Ali et al. (2008); Mustafa et al. (2009).

Experimental top

1,1'-Methylenedi-2-naphthol (1 g, 3.3 mmol) was dissolved in acetone (25 ml). To the solution was added potassium cabonate (13.2 mmol) and t-butyl bromoacetate (3 ml, 19.8 mmol). The mixture was stirred at room temperature for 3 h. The solvent was evaporated under reduced pressure and the residue was dissolved in a mixture of water (50 ml) and dichloromethane (50 ml). The aqueous layer was extracted three times with dichloromethane. The combined organic phases were evaporated under reduced pressure and the solid material was recrystallized from n-hexane.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C33H36O6 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Di-tert-Butyl 2,2'-[2,2'-methylenebis(naphthalene-2,1-diyldioxy)]diacetate top
Crystal data top
C33H36O6Z = 2
Mr = 528.62F(000) = 564
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9849 (5) ÅCell parameters from 2261 reflections
b = 11.8327 (6) Åθ = 2.4–29.2°
c = 13.7768 (6) ŵ = 0.09 mm1
α = 79.804 (4)°T = 100 K
β = 74.115 (4)°Plate, colorless
γ = 88.094 (4)°0.35 × 0.15 × 0.05 mm
V = 1386.33 (12) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6119 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3422 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1415
Tmin = 0.744, Tmax = 1.000l = 1714
11166 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.6065P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6119 reflectionsΔρmax = 0.32 e Å3
353 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (11)
Crystal data top
C33H36O6γ = 88.094 (4)°
Mr = 528.62V = 1386.33 (12) Å3
Triclinic, P1Z = 2
a = 8.9849 (5) ÅMo Kα radiation
b = 11.8327 (6) ŵ = 0.09 mm1
c = 13.7768 (6) ÅT = 100 K
α = 79.804 (4)°0.35 × 0.15 × 0.05 mm
β = 74.115 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6119 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3422 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 1.000Rint = 0.055
11166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
6119 reflectionsΔρmin = 0.24 e Å3
353 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5505 (2)0.79128 (16)0.41136 (14)0.0244 (5)
O20.5257 (2)0.7736 (2)0.22232 (16)0.0394 (6)
O30.7544 (2)0.68264 (18)0.19433 (14)0.0296 (5)
O40.8474 (2)0.85959 (17)0.63254 (14)0.0250 (5)
O50.9767 (2)0.63445 (17)0.79950 (15)0.0295 (5)
O60.8375 (2)0.63524 (17)0.68527 (15)0.0264 (5)
C10.7803 (3)0.6858 (3)0.0825 (2)0.0284 (7)
C20.6580 (4)0.6145 (3)0.0654 (3)0.0440 (9)
H2A0.65730.53660.10420.066*
H2B0.68010.61120.00780.066*
H2C0.55660.64900.08850.066*
C30.7836 (5)0.8078 (3)0.0265 (2)0.0435 (9)
H3A0.86210.85240.04150.065*
H3B0.68190.84200.04920.065*
H3C0.80910.80830.04740.065*
C40.9376 (4)0.6325 (4)0.0537 (2)0.0496 (11)
H4A1.01390.67930.06840.074*
H4B0.96710.62870.01960.074*
H4C0.93400.55480.09350.074*
C50.6305 (3)0.7267 (3)0.2513 (2)0.0245 (7)
C60.6388 (3)0.7062 (3)0.3610 (2)0.0242 (7)
H6A0.59690.62880.39590.029*
H6B0.74770.71080.36290.029*
C70.5097 (3)0.7688 (2)0.5177 (2)0.0209 (7)
C80.4043 (3)0.6790 (3)0.5699 (2)0.0241 (7)
H80.37200.62840.53300.029*
C90.3482 (3)0.6644 (3)0.6741 (2)0.0252 (7)
H90.27910.60220.70960.030*
C100.3925 (3)0.7412 (3)0.7296 (2)0.0238 (7)
C110.3290 (3)0.7285 (3)0.8372 (2)0.0311 (8)
H110.25810.66730.87230.037*
C120.3692 (4)0.8038 (3)0.8907 (2)0.0339 (8)
H120.32780.79380.96290.041*
C130.4720 (4)0.8961 (3)0.8388 (2)0.0332 (8)
H130.49780.94920.87620.040*
C140.5347 (3)0.9099 (3)0.7350 (2)0.0276 (7)
H140.60380.97270.70140.033*
C150.4991 (3)0.8324 (2)0.6763 (2)0.0228 (7)
C160.5625 (3)0.8441 (2)0.5673 (2)0.0204 (6)
C170.6769 (3)0.9388 (2)0.5040 (2)0.0226 (7)
H17A0.67930.99730.54680.027*
H17B0.63890.97640.44540.027*
C180.8413 (3)0.8990 (2)0.4628 (2)0.0207 (6)
C190.9179 (3)0.9095 (2)0.3562 (2)0.0207 (6)
C200.8482 (3)0.9589 (2)0.2776 (2)0.0245 (7)
H200.74380.98290.29580.029*
C210.9287 (3)0.9723 (2)0.1767 (2)0.0277 (7)
H210.88001.00680.12590.033*
C221.0830 (3)0.9357 (3)0.1464 (2)0.0299 (7)
H221.13730.94470.07580.036*
C231.1533 (3)0.8874 (2)0.2191 (2)0.0271 (7)
H231.25690.86220.19860.032*
C241.0756 (3)0.8740 (2)0.3245 (2)0.0234 (7)
C251.1505 (3)0.8281 (2)0.3997 (2)0.0245 (7)
H251.25400.80260.37910.029*
C261.0776 (3)0.8193 (2)0.5016 (2)0.0232 (7)
H261.12990.78830.55140.028*
C270.9245 (3)0.8564 (2)0.5322 (2)0.0215 (6)
C280.9160 (4)0.8127 (2)0.7114 (2)0.0270 (7)
H28A0.86180.84290.77410.032*
H28B1.02480.84020.69110.032*
C290.9141 (3)0.6837 (3)0.7369 (2)0.0232 (7)
C300.8243 (3)0.5085 (3)0.6977 (2)0.0292 (7)
C310.9837 (4)0.4598 (3)0.6615 (3)0.0387 (9)
H31A1.03090.49450.58990.058*
H31B0.97520.37650.66710.058*
H31C1.04840.47710.70410.058*
C320.7430 (4)0.4586 (3)0.8080 (3)0.0447 (9)
H32A0.63990.49170.82710.067*
H32B0.80340.47680.85280.067*
H32C0.73310.37510.81530.067*
C330.7241 (4)0.4949 (3)0.6290 (3)0.0429 (9)
H33A0.77770.52820.55810.064*
H33B0.62620.53440.65070.064*
H33C0.70330.41310.63340.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0270 (11)0.0235 (12)0.0217 (11)0.0055 (9)0.0060 (9)0.0037 (9)
O20.0350 (13)0.0560 (16)0.0316 (13)0.0176 (12)0.0144 (10)0.0135 (11)
O30.0316 (12)0.0349 (13)0.0189 (11)0.0073 (10)0.0032 (9)0.0028 (9)
O40.0276 (11)0.0252 (12)0.0235 (11)0.0058 (9)0.0099 (9)0.0043 (9)
O50.0336 (12)0.0297 (13)0.0261 (12)0.0006 (10)0.0136 (10)0.0014 (9)
O60.0282 (11)0.0195 (11)0.0346 (12)0.0009 (9)0.0134 (9)0.0056 (9)
C10.0309 (17)0.0292 (18)0.0223 (16)0.0011 (14)0.0033 (13)0.0032 (13)
C20.054 (2)0.042 (2)0.036 (2)0.0067 (18)0.0096 (17)0.0107 (17)
C30.071 (3)0.036 (2)0.0234 (18)0.0055 (19)0.0145 (17)0.0016 (15)
C40.045 (2)0.074 (3)0.0259 (19)0.012 (2)0.0014 (16)0.0120 (18)
C50.0233 (16)0.0220 (16)0.0274 (16)0.0005 (13)0.0061 (13)0.0034 (13)
C60.0243 (16)0.0236 (17)0.0237 (16)0.0042 (13)0.0051 (12)0.0047 (13)
C70.0204 (15)0.0214 (16)0.0201 (15)0.0079 (13)0.0053 (12)0.0030 (12)
C80.0192 (15)0.0264 (17)0.0272 (17)0.0013 (13)0.0067 (13)0.0060 (13)
C90.0194 (15)0.0238 (17)0.0292 (17)0.0009 (13)0.0044 (13)0.0002 (13)
C100.0193 (15)0.0252 (17)0.0259 (16)0.0057 (13)0.0058 (12)0.0032 (13)
C110.0260 (16)0.0321 (19)0.0282 (17)0.0019 (14)0.0010 (13)0.0006 (14)
C120.0363 (19)0.039 (2)0.0234 (17)0.0042 (16)0.0022 (14)0.0075 (15)
C130.0342 (18)0.036 (2)0.0311 (18)0.0057 (16)0.0075 (15)0.0140 (15)
C140.0243 (16)0.0266 (18)0.0314 (17)0.0037 (13)0.0063 (13)0.0067 (14)
C150.0218 (15)0.0233 (17)0.0245 (16)0.0063 (13)0.0085 (12)0.0050 (13)
C160.0174 (14)0.0195 (16)0.0248 (16)0.0052 (12)0.0076 (12)0.0033 (12)
C170.0222 (15)0.0194 (16)0.0262 (16)0.0017 (12)0.0073 (13)0.0027 (12)
C180.0203 (15)0.0131 (15)0.0287 (16)0.0001 (12)0.0082 (12)0.0015 (12)
C190.0225 (15)0.0135 (15)0.0256 (16)0.0043 (12)0.0070 (12)0.0002 (12)
C200.0243 (15)0.0196 (16)0.0298 (17)0.0003 (13)0.0091 (13)0.0024 (13)
C210.0350 (18)0.0221 (17)0.0261 (17)0.0008 (14)0.0112 (14)0.0001 (13)
C220.0329 (18)0.0251 (18)0.0268 (17)0.0037 (14)0.0005 (14)0.0049 (13)
C230.0264 (16)0.0178 (16)0.0339 (18)0.0011 (13)0.0039 (14)0.0033 (13)
C240.0234 (16)0.0157 (15)0.0296 (17)0.0014 (12)0.0048 (13)0.0036 (12)
C250.0185 (15)0.0174 (16)0.0369 (18)0.0018 (12)0.0059 (13)0.0061 (13)
C260.0226 (15)0.0159 (15)0.0336 (17)0.0006 (12)0.0133 (13)0.0020 (13)
C270.0236 (15)0.0160 (15)0.0244 (16)0.0013 (12)0.0067 (12)0.0015 (12)
C280.0356 (17)0.0216 (17)0.0274 (17)0.0017 (14)0.0144 (14)0.0053 (13)
C290.0202 (15)0.0253 (17)0.0233 (16)0.0016 (13)0.0037 (13)0.0052 (13)
C300.0271 (17)0.0214 (17)0.0418 (19)0.0024 (13)0.0131 (15)0.0072 (14)
C310.0353 (19)0.033 (2)0.055 (2)0.0065 (16)0.0183 (17)0.0177 (17)
C320.039 (2)0.039 (2)0.054 (2)0.0120 (17)0.0097 (17)0.0037 (18)
C330.039 (2)0.032 (2)0.069 (3)0.0048 (16)0.0276 (19)0.0207 (19)
Geometric parameters (Å, º) top
O1—C71.388 (3)C14—C151.422 (4)
O1—C61.420 (3)C14—H140.9500
O2—C51.203 (3)C15—C161.436 (4)
O3—C51.324 (3)C16—C171.521 (4)
O3—C11.488 (3)C17—C181.521 (4)
O4—C271.373 (3)C17—H17A0.9900
O4—C281.413 (3)C17—H17B0.9900
O5—C291.210 (3)C18—C271.386 (4)
O6—C291.322 (3)C18—C191.426 (4)
O6—C301.484 (4)C19—C201.425 (4)
C1—C21.500 (5)C19—C241.435 (4)
C1—C41.508 (4)C20—C211.364 (4)
C1—C31.509 (4)C20—H200.9500
C2—H2A0.9800C21—C221.411 (4)
C2—H2B0.9800C21—H210.9500
C2—H2C0.9800C22—C231.360 (4)
C3—H3A0.9800C22—H220.9500
C3—H3B0.9800C23—C241.410 (4)
C3—H3C0.9800C23—H230.9500
C4—H4A0.9800C24—C251.407 (4)
C4—H4B0.9800C25—C261.364 (4)
C4—H4C0.9800C25—H250.9500
C5—C61.510 (4)C26—C271.404 (4)
C6—H6A0.9900C26—H260.9500
C6—H6B0.9900C28—C291.504 (4)
C7—C161.380 (4)C28—H28A0.9900
C7—C81.403 (4)C28—H28B0.9900
C8—C91.365 (4)C30—C331.504 (4)
C8—H80.9500C30—C311.513 (4)
C9—C101.416 (4)C30—C321.514 (5)
C9—H90.9500C31—H31A0.9800
C10—C111.418 (4)C31—H31B0.9800
C10—C151.423 (4)C31—H31C0.9800
C11—C121.366 (4)C32—H32A0.9800
C11—H110.9500C32—H32B0.9800
C12—C131.410 (5)C32—H32C0.9800
C12—H120.9500C33—H33A0.9800
C13—C141.368 (4)C33—H33B0.9800
C13—H130.9500C33—H33C0.9800
C7—O1—C6116.39 (19)C16—C17—H17A108.5
C5—O3—C1122.7 (2)C18—C17—H17A108.5
C27—O4—C28119.9 (2)C16—C17—H17B108.5
C29—O6—C30121.3 (2)C18—C17—H17B108.5
O3—C1—C2109.5 (3)H17A—C17—H17B107.5
O3—C1—C4101.9 (2)C27—C18—C19118.0 (2)
C2—C1—C4111.5 (3)C27—C18—C17118.4 (2)
O3—C1—C3110.8 (2)C19—C18—C17123.5 (2)
C2—C1—C3111.8 (3)C20—C19—C18123.2 (2)
C4—C1—C3110.9 (3)C20—C19—C24117.1 (3)
C1—C2—H2A109.5C18—C19—C24119.6 (2)
C1—C2—H2B109.5C21—C20—C19121.2 (3)
H2A—C2—H2B109.5C21—C20—H20119.4
C1—C2—H2C109.5C19—C20—H20119.4
H2A—C2—H2C109.5C20—C21—C22121.1 (3)
H2B—C2—H2C109.5C20—C21—H21119.4
C1—C3—H3A109.5C22—C21—H21119.4
C1—C3—H3B109.5C23—C22—C21119.4 (3)
H3A—C3—H3B109.5C23—C22—H22120.3
C1—C3—H3C109.5C21—C22—H22120.3
H3A—C3—H3C109.5C22—C23—C24121.4 (3)
H3B—C3—H3C109.5C22—C23—H23119.3
C1—C4—H4A109.5C24—C23—H23119.3
C1—C4—H4B109.5C25—C24—C23121.3 (3)
H4A—C4—H4B109.5C25—C24—C19119.0 (3)
C1—C4—H4C109.5C23—C24—C19119.7 (2)
H4A—C4—H4C109.5C26—C25—C24121.3 (2)
H4B—C4—H4C109.5C26—C25—H25119.3
O2—C5—O3126.5 (3)C24—C25—H25119.3
O2—C5—C6124.6 (3)C25—C26—C27119.4 (2)
O3—C5—C6108.9 (2)C25—C26—H26120.3
O1—C6—C5108.5 (2)C27—C26—H26120.3
O1—C6—H6A110.0O4—C27—C18114.3 (2)
C5—C6—H6A110.0O4—C27—C26123.0 (2)
O1—C6—H6B110.0C18—C27—C26122.6 (3)
C5—C6—H6B110.0O4—C28—C29115.5 (2)
H6A—C6—H6B108.4O4—C28—H28A108.4
C16—C7—O1117.9 (3)C29—C28—H28A108.4
C16—C7—C8122.8 (3)O4—C28—H28B108.4
O1—C7—C8119.0 (3)C29—C28—H28B108.4
C9—C8—C7119.8 (3)H28A—C28—H28B107.5
C9—C8—H8120.1O5—C29—O6126.4 (3)
C7—C8—H8120.1O5—C29—C28120.9 (3)
C8—C9—C10120.4 (3)O6—C29—C28112.6 (2)
C8—C9—H9119.8O6—C30—C33102.1 (2)
C10—C9—H9119.8O6—C30—C31109.2 (3)
C9—C10—C11120.2 (3)C33—C30—C31112.0 (3)
C9—C10—C15119.5 (3)O6—C30—C32110.0 (2)
C11—C10—C15120.2 (3)C33—C30—C32110.4 (3)
C12—C11—C10120.4 (3)C31—C30—C32112.7 (3)
C12—C11—H11119.8C30—C31—H31A109.5
C10—C11—H11119.8C30—C31—H31B109.5
C11—C12—C13120.1 (3)H31A—C31—H31B109.5
C11—C12—H12119.9C30—C31—H31C109.5
C13—C12—H12119.9H31A—C31—H31C109.5
C14—C13—C12120.5 (3)H31B—C31—H31C109.5
C14—C13—H13119.8C30—C32—H32A109.5
C12—C13—H13119.8C30—C32—H32B109.5
C13—C14—C15121.5 (3)H32A—C32—H32B109.5
C13—C14—H14119.2C30—C32—H32C109.5
C15—C14—H14119.2H32A—C32—H32C109.5
C14—C15—C10117.3 (3)H32B—C32—H32C109.5
C14—C15—C16123.1 (3)C30—C33—H33A109.5
C10—C15—C16119.6 (3)C30—C33—H33B109.5
C7—C16—C15117.7 (3)H33A—C33—H33B109.5
C7—C16—C17118.9 (2)C30—C33—H33C109.5
C15—C16—C17123.3 (3)H33A—C33—H33C109.5
C16—C17—C18114.9 (2)H33B—C33—H33C109.5
C5—O3—C1—C265.1 (3)C16—C17—C18—C2766.1 (3)
C5—O3—C1—C4176.7 (3)C16—C17—C18—C19117.8 (3)
C5—O3—C1—C358.7 (4)C27—C18—C19—C20175.8 (3)
C1—O3—C5—O20.0 (5)C17—C18—C19—C200.3 (4)
C1—O3—C5—C6178.6 (3)C27—C18—C19—C241.3 (4)
C7—O1—C6—C5163.0 (2)C17—C18—C19—C24177.3 (3)
O2—C5—C6—O126.4 (4)C18—C19—C20—C21176.7 (3)
O3—C5—C6—O1155.0 (2)C24—C19—C20—C210.3 (4)
C6—O1—C7—C16119.0 (3)C19—C20—C21—C221.2 (5)
C6—O1—C7—C867.8 (3)C20—C21—C22—C230.8 (5)
C16—C7—C8—C90.9 (4)C21—C22—C23—C240.6 (5)
O1—C7—C8—C9172.0 (2)C22—C23—C24—C25177.6 (3)
C7—C8—C9—C101.7 (4)C22—C23—C24—C191.4 (4)
C8—C9—C10—C11177.4 (2)C20—C19—C24—C25178.1 (3)
C8—C9—C10—C151.5 (4)C18—C19—C24—C250.9 (4)
C9—C10—C11—C12178.7 (3)C20—C19—C24—C230.9 (4)
C15—C10—C11—C120.1 (4)C18—C19—C24—C23178.1 (3)
C10—C11—C12—C131.3 (4)C23—C24—C25—C26177.4 (3)
C11—C12—C13—C141.3 (4)C19—C24—C25—C261.6 (4)
C12—C13—C14—C150.0 (4)C24—C25—C26—C270.2 (4)
C13—C14—C15—C101.4 (4)C28—O4—C27—C18176.4 (3)
C13—C14—C15—C16179.9 (2)C28—O4—C27—C266.9 (4)
C9—C10—C15—C14177.5 (2)C19—C18—C27—O4173.9 (2)
C11—C10—C15—C141.4 (4)C17—C18—C27—O42.3 (4)
C9—C10—C15—C161.1 (4)C19—C18—C27—C262.8 (4)
C11—C10—C15—C16180.0 (2)C17—C18—C27—C26179.0 (3)
O1—C7—C16—C15169.5 (2)C25—C26—C27—O4174.3 (3)
C8—C7—C16—C153.5 (4)C25—C26—C27—C182.1 (4)
O1—C7—C16—C177.1 (3)C27—O4—C28—C2975.3 (3)
C8—C7—C16—C17179.9 (2)C30—O6—C29—O52.0 (4)
C14—C15—C16—C7175.0 (2)C30—O6—C29—C28178.8 (2)
C10—C15—C16—C73.5 (3)O4—C28—C29—O5176.2 (2)
C14—C15—C16—C171.5 (4)O4—C28—C29—O64.5 (4)
C10—C15—C16—C17180.0 (2)C29—O6—C30—C33177.8 (2)
C7—C16—C17—C1874.6 (3)C29—O6—C30—C3163.6 (3)
C15—C16—C17—C18109.0 (3)C29—O6—C30—C3260.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O5i0.982.463.419 (3)166
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC33H36O6
Mr528.62
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.9849 (5), 11.8327 (6), 13.7768 (6)
α, β, γ (°)79.804 (4), 74.115 (4), 88.094 (4)
V3)1386.33 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.744, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11166, 6119, 3422
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.171, 1.03
No. of reflections6119
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O5i0.982.463.419 (3)166
Symmetry code: (i) x, y, z1.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAli, Q., Ibad, F., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationMustafa, A., Shah, M. R., Khatoon, M. & Ng, S. W. (2009). Acta Cryst. E65, o912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds