organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydro­naphthalene-2-carboxyl­ate (AHTN–COOMe)

aBAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: franziska.emmerling@bam.de

(Received 17 January 2011; accepted 19 January 2011; online 26 January 2011)

Crystals of the title compound, C18H26O2, were grown from ethyl acetate. Due to the racemic precursor, the title compound is also obtained as a racemate. Disorder was observed during structure refinement, originating from two possible half-chair conformations of the non-aromatic ring. The disorder was refined by introducing split positions in the cyclo-hexane ring regarding the two possible R and S-enantiomers at the chiral CH group [ratio 0.744 (3):0.256 (3)]. The crystal structure features pairs of inversion-related molecules connected by pairs of non-classical C—H⋯O hydrogen bonds.

Related literature

For the occurrence of the title compound in human breast milk and the fatty tissue of fish, see: Valdersnes et al. (2006[Valdersnes, S., Kallenborn, R. & Sydnes, L. K. (2006). Int. J. Environ. Anal. Chem. 86, 461-471.]). The title compound is the product of an esterification of 3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydro­naphthalene-2-carb­oxy­lic acid (AHTN—COOH) with methanol. For the synthesis of the acid, see: Kuhlich et al. (2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]); Valdersnes et al. (2006[Valdersnes, S., Kallenborn, R. & Sydnes, L. K. (2006). Int. J. Environ. Anal. Chem. 86, 461-471.]). For the crystal structures of AHTN and AHTN–COOH, see: De Ridder et al. (1990[De Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200-2202.]) and Kuhlich et al. (2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]), respectively. For the environmental occurrence and estrogenic activity of AHTN, see: Heberer (2003[Heberer, T. (2003). Acta Hydrochim. Hydrobiol. 30, 227-243.]); Bitsch et al. (2002[Bitsch, N., Dudas, C., Korner, W., Failing, K., Biselli, S., Rimkus, G. & Brunn, H. (2002). Arch. Environ. Contam. Toxicol. 43, 257-264.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26O2

  • Mr = 274.39

  • Monoclinic, P 21 /n

  • a = 11.5049 (11) Å

  • b = 11.9482 (5) Å

  • c = 12.1078 (13) Å

  • β = 102.612 (5)°

  • V = 1624.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 193 K

  • 0.45 × 0.40 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 5083 measured reflections

  • 3062 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections every 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.152

  • S = 1.03

  • 3062 reflections

  • 216 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H26⋯O2i 0.98 2.47 3.397 (2) 157
Symmetry code: (i) -x+1, -y+3, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound is the product of an esterification of 3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalene-2-carboxylic acid (AHTN-COOH) with methanol. AHTN-COOH itself is the product of a haloform reaction from 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalen-2-yl)ethan-1-one (AHTN) and sodium hypochlorite solution. Two slightly different syntheses of AHTN-COOH are described by Kuhlich et al. (2010) and by Valdersnes et al. (2006). The crystal structure of AHTN-COOH was described previously by Kuhlich et al. (2010). The crystal structure of AHTN was determined by De Ridder et al. (1990).

The title compound can either be obtained in a two-step synthesis, described by Valdersnes et al. (2006) or, as described here, in a one-step procedure (see Experimental).

AHTN itself is a widely used fragrance in cosmetics and cleaning products. It is introduced into the environment mainly via sewage treatment plants and can be found in surface water at low µg/L concentration (Heberer, 2003). It is in focus of interest due to its low estrogenic potential (Bitsch et al., 2002). Due to their structural similarities to AHTN, the title compound and AHTN-COOH might also have estrogenic or even toxic properties themselves.

The title compound was found in human breast milk and piscine fatty tissue by Valdersnes et al. (2006) proofing its ubiquitary occurrence.

The molecule crystallizes in the monoclinic space group P21/n. The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1. The structure is disordered in the non aromatic ring. This disorder can be described as pseudo mirror-symmetric with respect to the aromatic ring's plane, resulting in two moieties (ratio 0.744 (3):0.256 (3)).

A general puckering analysis according to Cremer and Pople (Cremer & Pople, 1975) led to a half-chair conformation for both enantiomers. The S-enantiomer (C4-C5-C9-C10B-C11B-C12) has a puckering amplitude (Q) of 0.526 (6) Å and 0.502 (2) Å for the R-enantiomer (C4-C5-C9-C10-C11-C12), respectively. The maximum deviation from planarity for C11/C11B is -0.3587 (39) of the R-enantiomer and 0.3335 (14) of the S-enantiomer, respectively, proofing the nearly mirror-symmetric setup.

Each molecule is surrounded by three next neighbors, whereas the centroids of the molecules are arranged in sheets parallel to the (202) plane.

A detailed description of the disorder treatment can be found in the refinement section. The molecules form pairs via non classical hydrogen bonds (C18—H26···O2) (see dashed green bonds in Fig. 2).

Related literature top

For the occurrence of the title compound in human breast milk and the fatty tissue of fish, see: Valdersnes et al. (2006). The title compound is the product of an esterification of 3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalene-2-carboxylic acid (AHTN—COOH) with methanol. For the synthesis of the acid, see: Kuhlich et al. (2010); Valdersnes et al. (2006). For the crystal structures of AHTN and AHTN–COOH, see: De Ridder et al. (1990) and Kuhlich et al. (2010), respectively. For the environmental occurrence and estrogenic activity of AHTN, see: Heberer (2003); Bitsch et al. (2002). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The methyl ester of 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalen-2-yl)ethan-1-one (AHTN) was synthesized by stirring a solution of 1 mg AHTN dissolved in 100 mL methanol and 50 mL 10% sodium hypochlorite solution at room temperature. After 24 h of stirring precipitated sodium chloride was dissolved with water and the organic compound was extracted three times with 50 mL ethyl acetate each. The organic solvents were combined, washed with water and dried with sodium sulfate. For single-crystal X-ray crystallography white and clear crystals of the title compound were grown by solvent evaporation (ethyl acetate) at ambient temperature over a period of three days [m.p. 348 K]. IR (ν, cm-1): 1720(s), 1687(s), 1609(s), 1550(s), 1495(s), 1435(s), 1390(s), 1360(s), 1298(s), 1255(s), 1245(s), 1191(s), 1141(s), 1103(s), 1021(s), 980(s), 944(s), 916(s); 1H-NMR (500 MHz, CD3OD, TMS): δ = 7.83 (1H, s), 7.23 (1H, s), 3.83 (3H, s), 2.48 (3H, s), 1.85 (1H, ddq, JH,H'=2.7 Hz, JH,H''=13.2 Hz, JH,Me=6.9 Hz), 1.61 (1H, dd, 2J=13.6 Hz, 3J=13.2 Hz), 1.38 (1H, dd, 2J=13.6 Hz, 3J=2.7 Hz), 1.30 (3H, s), 1.26 (3H, s), 1.22 (3H, s), 1.04 (3H, s), 0.98 (3H, d, J=6.9 Hz); 13C-NMR (125 MHz, CD3OD, TMS): δ = 169.7, 151.8, 143.5, 137.8, 131.8, 130.2, 127.8, 52.1, 44.6, 38.9, 35.7, 34.9, 32.6, 32.4, 28.9, 25.1, 21.7, 17.1; (+)-ESI/MS: 275.6 (60) [M+H+], 297.5 (100) [M+Na+].

Refinement top

The structure exhibits disorder originating from two possible half chair conformations in the non aromatic ring. The significant disorder around the atoms of the non aromatic ring was taken into account and the refinement was improved by introducing split positions for the atoms C10, C11, C13, C14, C15, C16 and C17. Equivalent bond distances within the two moieties were restrained to be the same within a standard deviation of 0.02Å, and equivalent disordered atoms were constrained to have identical ADPs. Refinement of the occupancy ratio converged to a value of 74.4 (3)% for the major and 25.6 (3)% for the minor moiety, respectively.

Hydrogen atoms were placed in calculated positions with C—H distances of 0.98 (CH3), 0.99 (CH2), 1.00 (CHsat), and 0.95 (CHarom) with Uiso(H) = 1.2 of the parent atom Ueq or 1.5 Ueq(Cmethyl).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Left: ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids. Right: Atoms belonging to the minor disordered moiety and their bonds are presented in light gray and as thin black lines respectively. Hydrogen atoms are omitted for the sake of clarity.
[Figure 2] Fig. 2. : View of the unit cell of the title compound along [010]. Hydrogen bonds are drawn as dashed green lines. The minor disordered moiety is omitted for clarity.
Methyl 3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalene-2-carboxylate top
Crystal data top
C18H26O2F(000) = 600
Mr = 274.39Dx = 1.122 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.5049 (11) Åθ = 65–69°
b = 11.9482 (5) ŵ = 0.55 mm1
c = 12.1078 (13) ÅT = 193 K
β = 102.612 (5)°Block, colourless
V = 1624.2 (2) Å30.45 × 0.40 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.047
Radiation source: rotating anodeθmax = 69.8°, θmin = 4.8°
Graphite monochromatorh = 014
ω/2θ scansk = 1414
5083 measured reflectionsl = 1414
3062 independent reflections3 standard reflections every 60 min
2856 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.4305P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3062 reflectionsΔρmax = 0.29 e Å3
216 parametersΔρmin = 0.26 e Å3
10 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (8)
Crystal data top
C18H26O2V = 1624.2 (2) Å3
Mr = 274.39Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.5049 (11) ŵ = 0.55 mm1
b = 11.9482 (5) ÅT = 193 K
c = 12.1078 (13) Å0.45 × 0.40 × 0.30 mm
β = 102.612 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.047
5083 measured reflections3 standard reflections every 60 min
3062 independent reflections intensity decay: 3%
2856 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05410 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3062 reflectionsΔρmin = 0.26 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.34558 (10)1.32637 (9)0.02324 (9)0.0454 (3)
O20.44327 (15)1.40647 (10)0.13483 (11)0.0711 (5)
C10.40482 (12)1.32335 (11)0.08442 (12)0.0353 (3)
C20.41364 (11)1.20805 (11)0.13210 (10)0.0283 (3)
C30.34903 (11)1.12216 (11)0.06975 (10)0.0284 (3)
H230.29991.13960.00200.034*
C40.35277 (10)1.01170 (11)0.10740 (10)0.0267 (3)
C50.42442 (11)0.98674 (11)0.21369 (10)0.0280 (3)
C60.48890 (11)1.07419 (11)0.27540 (10)0.0310 (3)
H40.53731.05710.34760.037*
C70.48699 (11)1.18407 (11)0.23842 (10)0.0297 (3)
C80.56520 (13)1.26927 (13)0.31130 (12)0.0412 (4)
H10.60911.23310.38060.062*
H20.51561.32950.33100.062*
H30.62171.30050.26960.062*
C90.43809 (13)0.86813 (12)0.26390 (11)0.0358 (4)
C100.33564 (19)0.79143 (16)0.19751 (16)0.0364 (5)0.744 (3)
H160.25990.81650.21760.044*0.744 (3)
C110.32069 (18)0.80706 (15)0.07020 (16)0.0352 (4)0.744 (3)
H110.39790.79290.04930.042*0.744 (3)
H120.26270.75150.03020.042*0.744 (3)
C150.3518 (4)0.6672 (3)0.2281 (5)0.0516 (9)0.744 (3)
H130.27850.62650.19490.077*0.744 (3)
H140.36920.65870.31060.077*0.744 (3)
H150.41800.63680.19840.077*0.744 (3)
C10B0.3875 (6)0.7792 (5)0.1773 (5)0.0364 (5)0.256 (3)
H16B0.44080.77760.12220.044*0.256 (3)
C11B0.2689 (5)0.8159 (4)0.1118 (5)0.0352 (4)0.256 (3)
H11B0.21770.83500.16510.042*0.256 (3)
H12B0.23070.75320.06380.042*0.256 (3)
C15B0.3853 (14)0.6606 (11)0.2212 (16)0.0516 (9)0.256 (3)
H13B0.46610.63830.25950.077*0.256 (3)
H14B0.35590.60980.15770.077*0.256 (3)
H15B0.33270.65690.27470.077*0.256 (3)
C120.27785 (11)0.92416 (11)0.03173 (11)0.0318 (3)
C130.1469 (4)0.9422 (4)0.0305 (4)0.0414 (9)0.744 (3)
H50.09900.88660.01900.062*0.744 (3)
H60.12321.01760.00230.062*0.744 (3)
H70.13390.93420.10750.062*0.744 (3)
C140.2948 (2)0.93749 (19)0.09371 (18)0.0374 (5)0.744 (3)
H80.38000.93880.09360.056*0.744 (3)
H90.25801.00760.12580.056*0.744 (3)
H100.25700.87440.13950.056*0.744 (3)
C160.4257 (4)0.8693 (6)0.3874 (3)0.0576 (11)0.744 (3)
H170.49530.90590.43450.086*0.744 (3)
H180.42020.79220.41350.086*0.744 (3)
H190.35350.91040.39300.086*0.744 (3)
C170.5617 (2)0.8238 (2)0.2576 (2)0.0464 (6)0.744 (3)
H200.56760.81890.17820.070*0.744 (3)
H210.57340.74940.29230.070*0.744 (3)
H220.62300.87490.29820.070*0.744 (3)
C13B0.1450 (11)0.9619 (14)0.0068 (14)0.0414 (9)0.256 (3)
H5B0.09390.89910.02540.062*0.256 (3)
H6B0.13341.02420.04730.062*0.256 (3)
H7B0.12410.98620.07730.062*0.256 (3)
C14B0.3189 (7)0.8985 (6)0.0673 (6)0.0374 (5)0.256 (3)
H8B0.32080.96700.11150.056*0.256 (3)
H9B0.26520.84410.11280.056*0.256 (3)
H10B0.39930.86680.04620.056*0.256 (3)
C16B0.3894 (15)0.876 (2)0.3749 (13)0.0576 (11)0.256 (3)
H17B0.43100.93550.42310.086*0.256 (3)
H18B0.40290.80420.41550.086*0.256 (3)
H19B0.30380.89180.35540.086*0.256 (3)
C17B0.5738 (8)0.8426 (8)0.3014 (7)0.0464 (6)0.256 (3)
H20B0.61160.85340.23710.070*0.256 (3)
H21B0.58510.76510.32790.070*0.256 (3)
H22B0.61010.89340.36290.070*0.256 (3)
C180.33250 (17)1.43507 (14)0.07628 (16)0.0561 (5)
H240.29831.48730.02970.084*
H250.27961.42930.15140.084*
H260.41071.46240.08380.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0551 (7)0.0345 (6)0.0423 (6)0.0050 (5)0.0009 (5)0.0096 (4)
O20.1106 (12)0.0323 (6)0.0585 (8)0.0166 (7)0.0076 (7)0.0010 (5)
C10.0362 (7)0.0302 (7)0.0399 (7)0.0030 (5)0.0091 (6)0.0000 (5)
C20.0269 (6)0.0288 (7)0.0313 (6)0.0003 (5)0.0108 (5)0.0009 (5)
C30.0272 (6)0.0312 (7)0.0270 (6)0.0007 (5)0.0066 (5)0.0006 (5)
C40.0252 (6)0.0293 (7)0.0275 (6)0.0000 (5)0.0101 (5)0.0018 (5)
C50.0292 (6)0.0312 (7)0.0268 (6)0.0023 (5)0.0130 (5)0.0012 (5)
C60.0320 (7)0.0372 (7)0.0243 (6)0.0022 (5)0.0072 (5)0.0009 (5)
C70.0277 (6)0.0342 (7)0.0289 (6)0.0004 (5)0.0101 (5)0.0066 (5)
C80.0415 (8)0.0406 (8)0.0388 (7)0.0035 (6)0.0031 (6)0.0098 (6)
C90.0452 (8)0.0337 (7)0.0306 (7)0.0020 (6)0.0132 (5)0.0062 (5)
C100.0429 (12)0.0309 (9)0.0411 (10)0.0002 (9)0.0216 (8)0.0049 (7)
C110.0417 (10)0.0276 (9)0.0390 (10)0.0032 (7)0.0149 (7)0.0046 (7)
C150.066 (3)0.0331 (10)0.0607 (13)0.0013 (14)0.0255 (19)0.0079 (8)
C10B0.0429 (12)0.0309 (9)0.0411 (10)0.0002 (9)0.0216 (8)0.0049 (7)
C11B0.0417 (10)0.0276 (9)0.0390 (10)0.0032 (7)0.0149 (7)0.0046 (7)
C15B0.066 (3)0.0331 (10)0.0607 (13)0.0013 (14)0.0255 (19)0.0079 (8)
C120.0322 (7)0.0292 (7)0.0340 (7)0.0025 (5)0.0073 (5)0.0034 (5)
C130.0314 (8)0.043 (2)0.052 (2)0.0091 (10)0.0133 (11)0.0071 (14)
C140.0466 (13)0.0345 (13)0.0325 (11)0.0042 (9)0.0117 (9)0.0053 (8)
C160.091 (3)0.0511 (14)0.0374 (14)0.006 (3)0.029 (2)0.0144 (12)
C170.0529 (12)0.0383 (13)0.0484 (16)0.0109 (9)0.0119 (13)0.0057 (12)
C13B0.0314 (8)0.043 (2)0.052 (2)0.0091 (10)0.0133 (11)0.0071 (14)
C14B0.0466 (13)0.0345 (13)0.0325 (11)0.0042 (9)0.0117 (9)0.0053 (8)
C16B0.091 (3)0.0511 (14)0.0374 (14)0.006 (3)0.029 (2)0.0144 (12)
C17B0.0529 (12)0.0383 (13)0.0484 (16)0.0109 (9)0.0119 (13)0.0057 (12)
C180.0646 (11)0.0412 (9)0.0583 (10)0.0050 (8)0.0038 (8)0.0200 (7)
Geometric parameters (Å, º) top
O1—C11.3330 (17)C11B—H11B0.9900
O1—C181.4422 (18)C11B—H12B0.9900
O2—C11.1986 (18)C15B—H13B0.9800
C1—C21.4886 (18)C15B—H14B0.9800
C2—C31.3895 (18)C15B—H15B0.9800
C2—C71.4060 (18)C12—C14B1.415 (7)
C3—C41.3939 (18)C12—C131.519 (4)
C3—H230.9500C12—C13B1.559 (12)
C4—C51.4005 (18)C12—C141.581 (2)
C4—C121.5270 (17)C13—H50.9800
C5—C61.3994 (18)C13—H60.9800
C5—C91.5365 (18)C13—H70.9800
C6—C71.3858 (19)C14—H80.9800
C6—H40.9500C14—H90.9800
C7—C81.5092 (18)C14—H100.9800
C8—H10.9800C16—H170.9800
C8—H20.9800C16—H180.9800
C8—H30.9800C16—H190.9800
C9—C10B1.517 (6)C17—H200.9800
C9—C161.532 (4)C17—H210.9800
C9—C171.535 (3)C17—H220.9800
C9—C17B1.558 (9)C13B—H5B0.9800
C9—C16B1.567 (12)C13B—H6B0.9800
C9—C101.569 (2)C13B—H7B0.9800
C10—C111.525 (3)C14B—H8B0.9800
C10—C151.531 (4)C14B—H9B0.9800
C10—H161.0000C14B—H10B0.9800
C11—C121.522 (2)C16B—H17B0.9800
C11—H110.9900C16B—H18B0.9800
C11—H120.9900C16B—H19B0.9800
C15—H130.9800C17B—H20B0.9800
C15—H140.9800C17B—H21B0.9800
C15—H150.9800C17B—H22B0.9800
C10B—C11B1.487 (8)C18—H240.9800
C10B—C15B1.515 (13)C18—H250.9800
C10B—H16B1.0000C18—H260.9800
C11B—C121.633 (5)
C1—O1—C18116.18 (12)C12—C11B—H12B109.1
O2—C1—O1121.91 (13)H11B—C11B—H12B107.9
O2—C1—C2125.66 (13)C10B—C15B—H13B109.5
O1—C1—C2112.42 (11)C10B—C15B—H14B109.5
C3—C2—C7119.33 (12)H13B—C15B—H14B109.5
C3—C2—C1119.32 (11)C10B—C15B—H15B109.5
C7—C2—C1121.35 (12)H13B—C15B—H15B109.5
C2—C3—C4123.16 (11)H14B—C15B—H15B109.5
C2—C3—H23118.4C14B—C12—C13122.5 (4)
C4—C3—H23118.4C14B—C12—C1185.1 (3)
C3—C4—C5118.17 (11)C13—C12—C11112.82 (19)
C3—C4—C12118.64 (11)C14B—C12—C4114.0 (3)
C5—C4—C12123.19 (12)C13—C12—C4109.7 (2)
C6—C5—C4117.95 (12)C11—C12—C4110.08 (12)
C6—C5—C9118.74 (11)C14B—C12—C13B113.2 (7)
C4—C5—C9123.29 (12)C4—C12—C13B108.6 (7)
C7—C6—C5124.45 (11)C13—C12—C14107.86 (18)
C7—C6—H4117.8C11—C12—C14106.67 (13)
C5—C6—H4117.8C4—C12—C14109.60 (12)
C6—C7—C2116.93 (11)C13B—C12—C1496.1 (6)
C6—C7—C8119.00 (12)C14B—C12—C11B114.1 (4)
C2—C7—C8124.04 (12)C13—C12—C11B85.8 (2)
C7—C8—H1109.5C4—C12—C11B106.7 (2)
C7—C8—H2109.5C13B—C12—C11B99.1 (6)
H1—C8—H2109.5C14—C12—C11B133.4 (2)
C7—C8—H3109.5C12—C13—H5109.5
H1—C8—H3109.5C12—C13—H6109.5
H2—C8—H3109.5C12—C13—H7109.5
C10B—C9—C16125.2 (4)C12—C14—H8109.5
C10B—C9—C1786.8 (3)C12—C14—H9109.5
C16—C9—C17109.67 (19)C12—C14—H10109.5
C10B—C9—C5112.5 (2)C9—C16—H17109.5
C16—C9—C5110.8 (3)C9—C16—H18109.5
C17—C9—C5108.32 (14)C9—C16—H19109.5
C10B—C9—C17B105.9 (4)C9—C17—H20109.5
C16—C9—C17B91.1 (4)C9—C17—H21109.5
C5—C9—C17B107.8 (4)C9—C17—H22109.5
C10B—C9—C16B118.5 (10)C12—C13B—H5B109.5
C17—C9—C16B124.8 (6)C12—C13B—H6B109.5
C5—C9—C16B105.2 (9)H5B—C13B—H6B109.5
C17B—C9—C16B106.5 (7)C12—C13B—H7B109.5
C17—C9—C10111.94 (15)H5B—C13B—H7B109.5
C5—C9—C10109.60 (12)H6B—C13B—H7B109.5
C17B—C9—C10128.9 (4)C12—C14B—H8B109.5
C16B—C9—C1095.9 (9)C12—C14B—H9B109.5
C11—C10—C15110.1 (2)H8B—C14B—H9B109.5
C11—C10—C9110.65 (14)C12—C14B—H10B109.5
C15—C10—C9113.8 (2)H8B—C14B—H10B109.5
C11—C10—H16107.3H9B—C14B—H10B109.5
C15—C10—H16107.3C9—C16B—H17B109.5
C9—C10—H16107.3C9—C16B—H18B109.5
C12—C11—C10112.30 (14)H17B—C16B—H18B109.5
C12—C11—H11109.1C9—C16B—H19B109.5
C10—C11—H11109.1H17B—C16B—H19B109.5
C12—C11—H12109.1H18B—C16B—H19B109.5
C10—C11—H12109.1C9—C17B—H20B109.5
H11—C11—H12107.9C9—C17B—H21B109.5
C11B—C10B—C15B112.3 (8)H20B—C17B—H21B109.5
C11B—C10B—C9109.3 (4)C9—C17B—H22B109.5
C15B—C10B—C9116.5 (9)H20B—C17B—H22B109.5
C11B—C10B—H16B106.0H21B—C17B—H22B109.5
C15B—C10B—H16B106.0O1—C18—H24109.5
C9—C10B—H16B106.0O1—C18—H25109.5
C10B—C11B—C12112.4 (4)H24—C18—H25109.5
C10B—C11B—H11B109.1O1—C18—H26109.5
C12—C11B—H11B109.1H24—C18—H26109.5
C10B—C11B—H12B109.1H25—C18—H26109.5
C18—O1—C1—O21.2 (2)C17B—C9—C10—C1536.1 (5)
C18—O1—C1—C2179.86 (13)C16B—C9—C10—C1580.7 (8)
O2—C1—C2—C3169.86 (15)C15—C10—C11—C12167.6 (2)
O1—C1—C2—C38.72 (18)C9—C10—C11—C1265.6 (2)
O2—C1—C2—C710.8 (2)C16—C9—C10B—C11B94.2 (5)
O1—C1—C2—C7170.60 (11)C17—C9—C10B—C11B153.9 (4)
C7—C2—C3—C40.10 (18)C5—C9—C10B—C11B45.4 (5)
C1—C2—C3—C4179.43 (11)C17B—C9—C10B—C11B162.8 (5)
C2—C3—C4—C50.59 (18)C16B—C9—C10B—C11B77.8 (9)
C2—C3—C4—C12179.94 (11)C10—C9—C10B—C11B43.7 (4)
C3—C4—C5—C60.56 (17)C16—C9—C10B—C15B34.4 (8)
C12—C4—C5—C6179.88 (11)C17—C9—C10B—C15B77.5 (7)
C3—C4—C5—C9178.83 (11)C5—C9—C10B—C15B174.0 (6)
C12—C4—C5—C91.85 (18)C17B—C9—C10B—C15B68.5 (8)
C4—C5—C6—C70.15 (19)C16B—C9—C10B—C15B50.9 (10)
C9—C5—C6—C7178.20 (11)C10—C9—C10B—C15B85.0 (8)
C5—C6—C7—C20.83 (19)C15B—C10B—C11B—C12161.7 (8)
C5—C6—C7—C8177.28 (12)C9—C10B—C11B—C1267.4 (5)
C3—C2—C7—C60.78 (17)C10—C11—C12—C14B162.2 (4)
C1—C2—C7—C6179.90 (11)C10—C11—C12—C1374.5 (3)
C3—C2—C7—C8177.23 (12)C10—C11—C12—C448.37 (18)
C1—C2—C7—C82.10 (19)C10—C11—C12—C13B83.0 (8)
C6—C5—C9—C10B166.3 (3)C10—C11—C12—C14167.20 (16)
C4—C5—C9—C10B12.0 (3)C10—C11—C12—C11B41.0 (4)
C6—C5—C9—C1648.2 (2)C3—C4—C12—C14B69.9 (3)
C4—C5—C9—C16133.5 (2)C5—C4—C12—C14B110.8 (3)
C6—C5—C9—C1772.09 (16)C3—C4—C12—C1371.72 (18)
C4—C5—C9—C17106.17 (16)C5—C4—C12—C13107.60 (17)
C6—C5—C9—C17B50.0 (3)C3—C4—C12—C11163.56 (12)
C4—C5—C9—C17B128.3 (3)C5—C4—C12—C1117.12 (17)
C6—C5—C9—C16B63.4 (8)C3—C4—C12—C13B57.3 (6)
C4—C5—C9—C16B118.4 (8)C5—C4—C12—C13B122.0 (6)
C6—C5—C9—C10165.52 (12)C3—C4—C12—C1446.53 (17)
C4—C5—C9—C1016.23 (17)C5—C4—C12—C14134.15 (14)
C16—C9—C10—C11166.1 (2)C3—C4—C12—C11B163.2 (2)
C17—C9—C10—C1174.04 (19)C5—C4—C12—C11B16.1 (3)
C5—C9—C10—C1146.17 (18)C10B—C11B—C12—C14B75.9 (6)
C17B—C9—C10—C1188.6 (5)C10B—C11B—C12—C13160.2 (5)
C16B—C9—C10—C11154.6 (7)C10B—C11B—C12—C1150.5 (4)
C16—C9—C10—C1569.3 (3)C10B—C11B—C12—C450.9 (5)
C17—C9—C10—C1550.6 (2)C10B—C11B—C12—C13B163.5 (8)
C5—C9—C10—C15170.84 (18)C10B—C11B—C12—C1489.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H23···O10.952.322.6839 (17)103
C18—H26···O2i0.982.473.397 (2)157
Symmetry code: (i) x+1, y+3, z.

Experimental details

Crystal data
Chemical formulaC18H26O2
Mr274.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)11.5049 (11), 11.9482 (5), 12.1078 (13)
β (°) 102.612 (5)
V3)1624.2 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5083, 3062, 2856
Rint0.047
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.152, 1.03
No. of reflections3062
No. of parameters216
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H23···O10.952.322.6839 (17)103
C18—H26···O2i0.982.473.397 (2)157
Symmetry code: (i) x+1, y+3, z.
 

Acknowledgements

The authors want to thank Dr Dietmar Pfeifer (BAM, Berlin) for a helpful discussion regarding the inter­pretation of the NMR data.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBitsch, N., Dudas, C., Korner, W., Failing, K., Biselli, S., Rimkus, G. & Brunn, H. (2002). Arch. Environ. Contam. Toxicol. 43, 257–264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDe Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200–2202.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHeberer, T. (2003). Acta Hydrochim. Hydrobiol. 30, 227–243.  CrossRef CAS Google Scholar
First citationKuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValdersnes, S., Kallenborn, R. & Sydnes, L. K. (2006). Int. J. Environ. Anal. Chem. 86, 461–471.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds