organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Oxo-5-[(tri­fluoro­meth­yl)sulfon­yl]-1,2,4a,5,6,11b-hexa­hydro-1,3-dioxolo[4,5-j]phenanthridin-2-yl benzoate

aSchool of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, and bSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: wcllaoshi@yahoo.com.cn

(Received 15 December 2010; accepted 8 January 2011; online 15 January 2011)

In the title compound, C22H16F3NO7S, the two benzene rings are almost perpendicular, the dihedral angle between their mean planes being 87.1 (1)°. The terminal O atom of the benzoate moiety is disordered over two positions with site occupancies of 0.244 (15) and 0.756 (15). The crystal structure is stablized by two types of weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

The title compound is an unexpected product in our recent synthesis route of phenanthridones alkaloids. It shows potent inhibitory activity against the MCF-7 cells, SK—N—SH cells and SPC-A-1 cells. For details of the synthesis, see: Banwell et al. (1995[Banwell, M. G., Bissett, B. D., Busato, S., Cowden, C. J., Hockless, D. C. R., Holman, J. W., Read, R. W. & Wu, A. W. (1995). J. Chem. Soc. Chem. Commun. pp. 2551-2553.]); Szántó et al. (2009a[Szántó, G., Hegedűs, L., Mattyasovszky, L., Simon, A., Simon, Á., Bitter, I., Tóth, G., Tőke, L. & Kádas, I. (2009a). Tetrahedron, 65, 8412-8417.],b[Szántó, G., Hegedűs, L., Mattyasovszky, L., Simon, A., Simon, Á. & Kádas, I. (2009b). Tetrahedron Lett. 50, 2857-2859.]); Pampin et al. (2003[Pampin, M. C., Estevez, J. C., Estevez, R. J., Maestro, M. & Castedo, L. (2003). Tetrahedron, 59, 7231-7243.]). For a recent study on the anti­tumor activity of phenanthridones alkaloids, see: Matveenko et al. (2009[Matveenko, M., Banwell, M. G., Joffe, M., Wan, S. & Fantino, E. (2009). Chem. Biodivers. 6, 685-691.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16F3NO7S

  • Mr = 495.42

  • Triclinic, [P \overline 1]

  • a = 5.3521 (5) Å

  • b = 15.5146 (16) Å

  • c = 15.5615 (14) Å

  • α = 114.351 (2)°

  • β = 95.145 (1)°

  • γ = 97.072 (1)°

  • V = 1154.07 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.45 × 0.33 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.962

  • 5980 measured reflections

  • 4008 independent reflections

  • 2079 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.163

  • S = 1.00

  • 4008 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.93 2.51 3.341 (5) 149
C15—H15A⋯O2ii 0.97 2.48 3.202 (5) 131
Symmetry codes: (i) -x+3, -y+1, -z+2; (ii) -x+2, -y+1, -z+2.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

This paper shows an unexpected product of our study about synthesis and structural characterization of phenanthridones alkaloids. The title compound was obtained under Banwell modification of the Bischler-Napieralski reaction (Banwell et al., 1995) of 1-benzoyloxy-4-(methoxycarbonylamino)-5-(3,4-methylenedioxyphenyl)cyclohex-2-ene. The formation of this product is probably due to the overuse of Tf2O (Pampin et al., 2003), which is confirmed when a smaller amount of Tf2O is used. What makes us excited is that the unexpected product shows potent inhibitory activity (Matveenko et al., 2009) against the MCF-7 cells (IC50 = 4.46µg/ml), SK—N—SH cells (IC50 = 1.89µg/ml) and SPC-A-1 cells (IC50 = 1.35µg/ml).

In the crystal structure of the title compound, the two benzene rings are almost perpendicular, the dihedral angle between the mean planes of the rings is 87.1 (1)°. The terminal O atom of the benzoate moiety is disordered over two positions with site-occupancies of 0.244 (15) and 0.756 (15). The environment of the N atom is essentially planar, and the bond angles C1—N1—C9, C9—N1—S1 and C1—N1—S1 around the N atom are 114.8 (3), 125.4 (2) and 119.7 (2)°, respectively. The molecules are linked into a framework by means of two types of weak C—H···O hydrogen bonds linking the CH2 group of the 1,3-dioxolane and one O atom of the sulfonyl group [H···O = 2.48 Å, C···O = 3.201 (6) Å and C—H···O = 131°] and one CH group of the C2-C7 cyclohexene ring and one O atom of the benzodioxole moiety [H···O = 2.51 Å, C···O = 3.342 (5) Å and C—H···O = 149°].

Related literature top

The title compound is an unexpected product in our recent synthesis route of phenanthridones alkaloids. It shows potent inhibitory activity against the MCF-7 cells, SK—N—SH cells and SPC-A-1 cells. For details of the synthesis, see: Banwell et al. (1995); Szántó et al. (2009a,b); Pampin et al. (2003). For a recent study on the antitumor activity of phenanthridones alkaloids, see: Matveenko et al. (2009).

Experimental top

1-Benzoyloxy-4-(methoxycarbonylamino)-5-(3,4-methylenedioxyphenyl)cyclohex-2-ene (0.46 mmol) and 4-DMAP (1.38 mmol) were dissolved in dry CH2Cl2 (12 ml) and cooled to 0°C. To this mixture was added a solution of triflic anhydride (3.68 mmol) in dry CH2Cl2 (2 ml) over a period of 15 min. The mixture was stirred overnight at ambient temperature. The reaction mixture was then washed with saturated NaHCO3 solution, 1M hydrochloric acid and saturated NaHCO3 solution, subsequently. The organic layer was evaporated, and the product was isolated by column chromatography on silica (eluent: petroleum ether/acetone = 5:1). Crystals suitable for X-ray analysis were grown by slow evaporation from acetone-ethanol solution at room temperature for two weeks.

1H NMR (400 MHz, CDCl3, ppm): 8.11–8.04 (m, 2H), 7.65–7.56 (m, 2H), 7.47 (t, J = 7.7 Hz, 2H), 6.87 (s, 1H), 6.20 (dt, J = 10.6, 2.2 Hz, 1H), 6.09 (s, 2H), 6.01 (dd, J = 10.9, 0.9 Hz, 1H), 5.91 (ddd, J = 9.5, 5.5, 2.8 Hz, 1H), 4.67 (ddd, J = 10.6, 5.5, 2.7 Hz, 1H), 3.57–3.47 (m, 1H), 3.05 (dd, J = 13.5, 4.7 Hz, 1H), 1.73 (td, J = 12.9, 10.2 Hz,1H).

13C NMR (101 MHz, CDCl3, ppm): 165.96, 163.58, 153.84, 147.76, 138.98, 133.38, 129.72, 129.46, 128.49, 125.65, 121.61, 109.76, 104.44, 102.54, 69.06, 63.96, 39.83, 30.84.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl)and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram.
6-Oxo-5-[(trifluoromethyl)sulfonyl]-1,2,4a,5,6,11b-hexahydro-1,3- dioxolo[4,5-j]phenanthridin-2-yl benzoate top
Crystal data top
C22H16F3NO7SZ = 2
Mr = 495.42F(000) = 508
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Melting point = 394–397 K
a = 5.3521 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.5146 (16) ÅCell parameters from 1287 reflections
c = 15.5615 (14) Åθ = 2.5–25.0°
α = 114.351 (2)°µ = 0.21 mm1
β = 95.145 (1)°T = 298 K
γ = 97.072 (1)°Needle, colorless
V = 1154.07 (19) Å30.45 × 0.33 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4008 independent reflections
Radiation source: fine-focus sealed tube2079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.913, Tmax = 0.962k = 1218
5980 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0699P)2]
where P = (Fo2 + 2Fc2)/3
4008 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H16F3NO7Sγ = 97.072 (1)°
Mr = 495.42V = 1154.07 (19) Å3
Triclinic, P1Z = 2
a = 5.3521 (5) ÅMo Kα radiation
b = 15.5146 (16) ŵ = 0.21 mm1
c = 15.5615 (14) ÅT = 298 K
α = 114.351 (2)°0.45 × 0.33 × 0.19 mm
β = 95.145 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2079 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.962Rint = 0.041
5980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
4008 reflectionsΔρmin = 0.30 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9593 (7)0.7149 (3)1.0563 (3)0.0459 (9)
C21.0231 (6)0.6470 (3)0.9656 (3)0.0419 (9)
C31.1954 (7)0.5870 (3)0.9721 (3)0.0493 (10)
H31.26880.59231.03090.059*
C41.2502 (7)0.5211 (3)0.8890 (3)0.0494 (10)
C51.1403 (8)0.5127 (3)0.8020 (3)0.0535 (10)
C60.9739 (8)0.5702 (3)0.7929 (3)0.0562 (11)
H60.90310.56330.73310.067*
C70.9146 (7)0.6395 (3)0.8768 (3)0.0428 (9)
C80.7389 (7)0.7092 (3)0.8759 (2)0.0443 (9)
H80.57120.68500.88590.053*
C90.8435 (7)0.8052 (3)0.9615 (2)0.0447 (9)
H91.02610.81910.95980.054*
C100.7331 (8)0.8881 (3)0.9576 (3)0.0548 (10)
H100.76300.94631.01180.066*
C110.5952 (8)0.8810 (3)0.8797 (3)0.0629 (12)
H110.54120.93600.88060.075*
C120.5204 (8)0.7912 (3)0.7908 (3)0.0546 (11)
H120.34710.76070.78890.066*
C130.7022 (7)0.7217 (3)0.7835 (2)0.0516 (10)
H13A0.86530.74600.77190.062*
H13B0.63420.66000.73040.062*
C140.8693 (10)0.9435 (3)1.2227 (3)0.0640 (12)
C151.3895 (9)0.4010 (3)0.7757 (3)0.0738 (13)
H15A1.31180.33530.75930.089*
H15B1.55510.40070.75490.089*
C160.3455 (10)0.7706 (4)0.6349 (3)0.0699 (13)
C170.3822 (9)0.7953 (3)0.5552 (3)0.0614 (12)
C180.5931 (11)0.8560 (4)0.5573 (3)0.0960 (17)
H180.71910.88230.61080.115*
C190.6226 (14)0.8790 (5)0.4820 (4)0.126 (2)
H190.76700.92070.48480.152*
C200.4389 (15)0.8404 (5)0.4029 (4)0.1021 (19)
H200.45560.85710.35240.122*
C210.2354 (15)0.7787 (6)0.3985 (4)0.129 (3)
H210.11230.75100.34410.155*
C220.2078 (11)0.7562 (5)0.4739 (4)0.120 (2)
H220.06530.71280.46950.144*
F11.0623 (6)0.9185 (2)1.2596 (2)0.1122 (11)
F20.9669 (6)1.0015 (2)1.1873 (2)0.1166 (11)
F30.7503 (7)0.9915 (2)1.2909 (2)0.1170 (11)
N10.8220 (6)0.7880 (2)1.04998 (19)0.0438 (8)
O11.0137 (5)0.7125 (2)1.13247 (18)0.0606 (8)
O20.5759 (5)0.77960 (19)1.17672 (18)0.0603 (7)
O30.4658 (5)0.87827 (19)1.09346 (18)0.0568 (7)
O41.4169 (6)0.4573 (2)0.8761 (2)0.0683 (8)
O51.2311 (6)0.4429 (2)0.7298 (2)0.0800 (10)
O60.5276 (5)0.8156 (2)0.71026 (18)0.0612 (8)
O70.145 (5)0.763 (2)0.6537 (16)0.108 (3)0.244 (15)
O7'0.1783 (13)0.7010 (8)0.6301 (5)0.108 (3)0.756 (15)
S10.65022 (19)0.83949 (7)1.13126 (7)0.0482 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.048 (2)0.050 (2)0.0061 (18)0.0014 (18)0.025 (2)
C20.038 (2)0.039 (2)0.056 (2)0.0019 (18)0.0043 (18)0.030 (2)
C30.048 (2)0.052 (2)0.053 (2)0.000 (2)0.0002 (19)0.032 (2)
C40.045 (2)0.044 (2)0.067 (3)0.002 (2)0.005 (2)0.034 (2)
C50.066 (3)0.035 (2)0.061 (3)0.007 (2)0.014 (2)0.020 (2)
C60.066 (3)0.051 (3)0.056 (3)0.007 (2)0.001 (2)0.029 (2)
C70.042 (2)0.038 (2)0.050 (2)0.0035 (17)0.0004 (18)0.0239 (19)
C80.042 (2)0.045 (2)0.051 (2)0.0021 (18)0.0014 (17)0.0287 (19)
C90.042 (2)0.045 (2)0.052 (2)0.0022 (18)0.0057 (17)0.028 (2)
C100.073 (3)0.041 (2)0.058 (2)0.010 (2)0.015 (2)0.028 (2)
C110.078 (3)0.057 (3)0.075 (3)0.020 (2)0.020 (2)0.045 (3)
C120.049 (2)0.066 (3)0.066 (3)0.006 (2)0.007 (2)0.047 (2)
C130.054 (2)0.056 (3)0.051 (2)0.005 (2)0.0006 (18)0.032 (2)
C140.077 (3)0.056 (3)0.051 (3)0.004 (3)0.001 (2)0.022 (2)
C150.085 (3)0.053 (3)0.087 (3)0.019 (3)0.018 (3)0.030 (3)
C160.059 (3)0.090 (4)0.064 (3)0.003 (3)0.001 (2)0.043 (3)
C170.074 (3)0.064 (3)0.047 (2)0.008 (3)0.008 (2)0.025 (2)
C180.111 (4)0.105 (4)0.069 (3)0.026 (4)0.008 (3)0.051 (3)
C190.154 (6)0.143 (6)0.100 (4)0.025 (5)0.007 (4)0.087 (5)
C200.149 (6)0.111 (5)0.069 (4)0.035 (5)0.033 (4)0.054 (4)
C210.135 (6)0.183 (7)0.068 (4)0.015 (6)0.020 (4)0.071 (5)
C220.110 (5)0.165 (6)0.082 (4)0.038 (4)0.019 (3)0.075 (4)
F10.107 (2)0.084 (2)0.106 (2)0.0041 (18)0.0486 (18)0.0218 (18)
F20.139 (3)0.087 (2)0.103 (2)0.0575 (19)0.0091 (19)0.0465 (19)
F30.143 (3)0.082 (2)0.088 (2)0.006 (2)0.039 (2)0.0010 (18)
N10.0518 (19)0.0442 (18)0.0435 (17)0.0074 (16)0.0085 (14)0.0269 (15)
O10.0642 (18)0.0707 (19)0.0566 (17)0.0096 (15)0.0040 (14)0.0384 (16)
O20.0625 (18)0.0626 (18)0.0740 (18)0.0030 (14)0.0240 (14)0.0465 (16)
O30.0490 (16)0.0614 (18)0.0709 (17)0.0112 (14)0.0095 (13)0.0386 (15)
O40.076 (2)0.0545 (18)0.078 (2)0.0220 (17)0.0068 (16)0.0306 (17)
O50.114 (3)0.063 (2)0.0711 (19)0.037 (2)0.0161 (19)0.0302 (18)
O60.0621 (18)0.0702 (19)0.0643 (17)0.0017 (15)0.0047 (14)0.0483 (16)
O70.111 (3)0.111 (7)0.080 (4)0.066 (5)0.018 (3)0.049 (5)
O7'0.111 (3)0.111 (7)0.080 (4)0.066 (5)0.018 (3)0.049 (5)
S10.0451 (6)0.0471 (6)0.0553 (6)0.0005 (5)0.0072 (5)0.0271 (5)
Geometric parameters (Å, º) top
C1—O11.211 (4)C13—H13B0.9700
C1—N11.456 (4)C14—F31.294 (5)
C1—C21.472 (5)C14—F11.313 (5)
C2—C71.403 (5)C14—F21.315 (5)
C2—C31.414 (5)C14—S11.829 (4)
C3—C41.361 (5)C15—O41.425 (5)
C3—H30.9300C15—O51.435 (5)
C4—C51.375 (5)C15—H15A0.9700
C4—O41.379 (4)C15—H15B0.9700
C5—C61.373 (5)C16—O71.14 (3)
C5—O51.377 (4)C16—O7'1.287 (9)
C6—C71.402 (5)C16—O61.328 (5)
C6—H60.9300C16—C171.464 (6)
C7—C81.521 (5)C17—C221.362 (6)
C8—C91.526 (5)C17—C181.367 (6)
C8—C131.527 (4)C18—C191.375 (6)
C8—H80.9800C18—H180.9300
C9—C101.501 (5)C19—C201.367 (8)
C9—N11.518 (4)C19—H190.9300
C9—H90.9800C20—C211.335 (8)
C10—C111.318 (5)C20—H200.9300
C10—H100.9300C21—C221.370 (7)
C11—C121.479 (6)C21—H210.9300
C11—H110.9300C22—H220.9300
C12—O61.453 (4)N1—S11.625 (3)
C12—C131.517 (5)O2—S11.422 (2)
C12—H120.9800O3—S11.420 (2)
C13—H13A0.9700
O1—C1—N1120.4 (3)H13A—C13—H13B108.2
O1—C1—C2124.1 (3)F3—C14—F1108.3 (4)
N1—C1—C2115.5 (3)F3—C14—F2108.1 (4)
C7—C2—C3121.1 (3)F1—C14—F2106.6 (4)
C7—C2—C1122.3 (3)F3—C14—S1110.0 (3)
C3—C2—C1116.5 (3)F1—C14—S1112.2 (3)
C4—C3—C2117.7 (3)F2—C14—S1111.4 (3)
C4—C3—H3121.2O4—C15—O5107.9 (3)
C2—C3—H3121.2O4—C15—H15A110.1
C3—C4—C5121.2 (4)O5—C15—H15A110.1
C3—C4—O4128.8 (3)O4—C15—H15B110.1
C5—C4—O4110.0 (4)O5—C15—H15B110.1
C6—C5—C4122.9 (4)H15A—C15—H15B108.4
C6—C5—O5127.3 (4)O7—C16—O7'44.0 (14)
C4—C5—O5109.8 (3)O7—C16—O6114.1 (11)
C5—C6—C7117.6 (3)O7'—C16—O6120.4 (4)
C5—C6—H6121.2O7—C16—C17118.6 (12)
C7—C6—H6121.2O7'—C16—C17124.5 (5)
C6—C7—C2119.5 (3)O6—C16—C17114.2 (4)
C6—C7—C8122.4 (3)C22—C17—C18117.0 (4)
C2—C7—C8118.0 (3)C22—C17—C16120.8 (5)
C7—C8—C9107.3 (3)C18—C17—C16122.2 (4)
C7—C8—C13115.1 (3)C17—C18—C19121.3 (5)
C9—C8—C13111.2 (3)C17—C18—H18119.4
C7—C8—H8107.7C19—C18—H18119.4
C9—C8—H8107.7C20—C19—C18119.8 (6)
C13—C8—H8107.7C20—C19—H19120.1
C10—C9—N1116.7 (3)C18—C19—H19120.1
C10—C9—C8113.9 (3)C21—C20—C19119.6 (5)
N1—C9—C8106.5 (3)C21—C20—H20120.2
C10—C9—H9106.3C19—C20—H20120.2
N1—C9—H9106.3C20—C21—C22120.1 (6)
C8—C9—H9106.3C20—C21—H21119.9
C11—C10—C9122.0 (4)C22—C21—H21119.9
C11—C10—H10119.0C17—C22—C21122.1 (6)
C9—C10—H10119.0C17—C22—H22118.9
C10—C11—C12124.4 (4)C21—C22—H22118.9
C10—C11—H11117.8C1—N1—C9114.8 (3)
C12—C11—H11117.8C1—N1—S1119.7 (2)
O6—C12—C11108.2 (3)C9—N1—S1125.4 (2)
O6—C12—C13108.5 (3)C4—O4—C15105.8 (3)
C11—C12—C13111.4 (3)C5—O5—C15105.8 (3)
O6—C12—H12109.6C16—O6—C12118.9 (3)
C11—C12—H12109.6O3—S1—O2120.49 (17)
C13—C12—H12109.6O3—S1—N1109.04 (14)
C12—C13—C8110.1 (3)O2—S1—N1110.45 (15)
C12—C13—H13A109.6O3—S1—C14105.4 (2)
C8—C13—H13A109.6O2—S1—C14105.50 (19)
C12—C13—H13B109.6N1—S1—C14104.7 (2)
C8—C13—H13B109.6
O1—C1—C2—C7166.9 (4)C22—C17—C18—C192.2 (9)
N1—C1—C2—C713.0 (5)C16—C17—C18—C19179.4 (5)
O1—C1—C2—C311.4 (5)C17—C18—C19—C200.3 (10)
N1—C1—C2—C3168.7 (3)C18—C19—C20—C211.7 (10)
C7—C2—C3—C40.7 (5)C19—C20—C21—C221.7 (11)
C1—C2—C3—C4177.6 (3)C18—C17—C22—C212.3 (9)
C2—C3—C4—C50.5 (6)C16—C17—C22—C21179.3 (6)
C2—C3—C4—O4177.5 (3)C20—C21—C22—C170.3 (11)
C3—C4—C5—C61.1 (6)O1—C1—N1—C9160.2 (3)
O4—C4—C5—C6177.2 (3)C2—C1—N1—C919.9 (4)
C3—C4—C5—O5178.6 (3)O1—C1—N1—S123.1 (5)
O4—C4—C5—O50.3 (4)C2—C1—N1—S1156.9 (3)
C4—C5—C6—C70.5 (6)C10—C9—N1—C1172.6 (3)
O5—C5—C6—C7177.5 (4)C8—C9—N1—C159.0 (4)
C5—C6—C7—C20.7 (5)C10—C9—N1—S110.9 (5)
C5—C6—C7—C8178.2 (3)C8—C9—N1—S1117.6 (3)
C3—C2—C7—C61.3 (5)C3—C4—O4—C15176.5 (4)
C1—C2—C7—C6176.9 (3)C5—C4—O4—C155.4 (4)
C3—C2—C7—C8177.7 (3)O5—C15—O4—C48.3 (4)
C1—C2—C7—C84.1 (5)C6—C5—O5—C15177.7 (4)
C6—C7—C8—C9143.5 (3)C4—C5—O5—C154.9 (4)
C2—C7—C8—C935.4 (4)O4—C15—O5—C58.2 (4)
C6—C7—C8—C1319.3 (5)O7—C16—O6—C1243.6 (19)
C2—C7—C8—C13159.7 (3)O7'—C16—O6—C125.8 (8)
C7—C8—C9—C10165.4 (3)C17—C16—O6—C12175.5 (3)
C13—C8—C9—C1038.8 (4)C11—C12—O6—C16140.0 (4)
C7—C8—C9—N164.5 (3)C13—C12—O6—C1699.0 (4)
C13—C8—C9—N1168.9 (3)C1—N1—S1—O3158.2 (3)
N1—C9—C10—C11136.4 (4)C9—N1—S1—O318.2 (3)
C8—C9—C10—C1111.5 (5)C1—N1—S1—O223.6 (3)
C9—C10—C11—C123.9 (7)C9—N1—S1—O2152.7 (3)
C10—C11—C12—O6143.0 (4)C1—N1—S1—C1489.5 (3)
C10—C11—C12—C1323.8 (6)C9—N1—S1—C1494.2 (3)
O6—C12—C13—C8169.2 (3)F3—C14—S1—O363.8 (4)
C11—C12—C13—C850.1 (4)F1—C14—S1—O3175.5 (3)
C7—C8—C13—C12179.0 (3)F2—C14—S1—O356.1 (4)
C9—C8—C13—C1258.8 (4)F3—C14—S1—O264.7 (4)
O7—C16—C17—C2239.5 (19)F1—C14—S1—O256.0 (4)
O7'—C16—C17—C2212.2 (10)F2—C14—S1—O2175.4 (3)
O6—C16—C17—C22178.6 (5)F3—C14—S1—N1178.7 (3)
O7—C16—C17—C18142.1 (18)F1—C14—S1—N160.6 (4)
O7'—C16—C17—C18166.1 (8)F2—C14—S1—N158.8 (4)
O6—C16—C17—C183.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.513.341 (5)149
C15—H15A···O2ii0.972.483.202 (5)131
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC22H16F3NO7S
Mr495.42
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.3521 (5), 15.5146 (16), 15.5615 (14)
α, β, γ (°)114.351 (2), 95.145 (1), 97.072 (1)
V3)1154.07 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.45 × 0.33 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
5980, 4008, 2079
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.163, 1.00
No. of reflections4008
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.513.341 (5)149
C15—H15A···O2ii0.972.483.202 (5)131
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors thank Hongmin Liu (Zhengzhou University) for the single-crystal data analysis.

References

First citationBanwell, M. G., Bissett, B. D., Busato, S., Cowden, C. J., Hockless, D. C. R., Holman, J. W., Read, R. W. & Wu, A. W. (1995). J. Chem. Soc. Chem. Commun. pp. 2551–2553.  CrossRef Web of Science Google Scholar
First citationMatveenko, M., Banwell, M. G., Joffe, M., Wan, S. & Fantino, E. (2009). Chem. Biodivers. 6, 685–691.  CrossRef PubMed CAS Google Scholar
First citationPampin, M. C., Estevez, J. C., Estevez, R. J., Maestro, M. & Castedo, L. (2003). Tetrahedron, 59, 7231–7243.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSzántó, G., Hegedűs, L., Mattyasovszky, L., Simon, A., Simon, Á., Bitter, I., Tóth, G., Tőke, L. & Kádas, I. (2009a). Tetrahedron, 65, 8412–8417.  Google Scholar
First citationSzántó, G., Hegedűs, L., Mattyasovszky, L., Simon, A., Simon, Á. & Kádas, I. (2009b). Tetrahedron Lett. 50, 2857–2859.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds