metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-benzyl-3-(quinolin-8-ylmeth­yl)-2,3-di­hydro-1H-imidazol-2-yl]di­bromido­palladium(II) aceto­nitrile disolvate

aDepartment of Materials and Chemical Engineering, Taishan University, Taian 271021, People's Republic of China
*Correspondence e-mail: sunjiafeng2002@sina.com

(Received 19 December 2010; accepted 7 January 2011; online 15 January 2011)

In the title compound, [PdBr2(C20H17N3)2]·2CH3CN, the Pd atom, which lies on an inversion center, is four-coordinated in a square-planar geometry. The two imidazole rings are coplanar and nearly perpendicular to the plane formed by Pd, the coordinated imidazole C atom and one of the Br atoms, making a dihedral angle of 75.1 (2)°.

Related literature

For N-heterocyclic carbenes, see: Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. Engl. 41, 1290-1309.]); Boeda & Nolan (2008[Boeda, F. & Nolan, S. P. (2008). Annu. Rep. Prog. Chem. Sect. B, 104, 184-210.]). For related stuctures, see: Hahn et al. (2004[Hahn, F. E., Heidrich, B., Lügger, T. & Pape, T. (2004). Z. Naturforsch. Teil B, 59, 1519-1523.]); Huynh & Wu (2009[Huynh, H. V. & Wu, J. (2009). J. Organomet. Chem. 694, 323-331.]). For the synthesis of the carbene ligand, see: Sun et al. (2009[Sun, J.-F., Chen, F., Dougan, B. A., Xu, H.-J., Cheng, Y., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). J. Organomet. Chem. 694, 2096-2105.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C20H17N3)2]·2C2H3N

  • Mr = 947.06

  • Triclinic, [P \overline 1]

  • a = 8.179 (3) Å

  • b = 10.769 (4) Å

  • c = 11.928 (4) Å

  • α = 101.506 (5)°

  • β = 90.842 (5)°

  • γ = 107.944 (4)°

  • V = 976.1 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 173 K

  • 0.30 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.48, Tmax = 0.74

  • 5311 measured reflections

  • 3728 independent reflections

  • 2548 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.172

  • S = 1.01

  • 3728 reflections

  • 251 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.90 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, N-heterocyclic carbenes (NHCs) metal complexes have attracted much attention in coordination chemistry and homogeneous catalysis because NHCs are variable, can be easily modified and coordinated to various metals (Herrmann, 2002; Boeda et al., 2008). Here we report the crystal structure of the title compound, C40H34Br2N6Pd.2CH3CN, which exhibits two N-heterocyclic carbenes and two bromo ligands coordinated to a PdII center.

The structure of the title compound is shown in Fig. 1. The Pd center is four-coordinated and displays a square planar coordination geometry. The Pd atom lies on an inversion center. The two imidazole rings are coplanar and nearly perpendicular to the plane formed by Pd, C1 and Br1, showing a dihedral angle of 75.1 (2)°. The Pd—C distance of 2.026 (7) Å agrees with distances found for similar biscarbene Pd complexes (Hahn et al., 2004; Huynh & Wu, 2009). The asymmetric unit contains one solvent molecule of acetonitrile for one-half molecule of the metal-organic species.

Related literature top

For N-heterocyclic carbenes, see: Herrmann (2002); Boeda et al. (2008). For related stuctures, see: Hahn et al. (2004); Huynh & Wu (2009). For the synthesis of the carbene ligand, see: Sun et al. (2009).

Experimental top

1-Benzyl-3-(8-quinolylmethyl)imidazolium bromide was synthesized according to a literature method (Sun et al., 2009). The resulting white solid (0.168 g, 0.44 mmol) was dissolved in acetonitrile (10 ml) and then palladium acetate (0.049 g, 0.22 mmol) was added. The mixture was stirred at refluxing temperature for 12 h and the solvent was removed under reduced pressure. The residue was then dissolved in distilled water and extracted with CH2Cl2. X-ray quality crystals of the title complex were obtained by slow diffusion of Et2O into its CH3CN solution.

Refinement top

The H atoms were included in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for the aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms (inversion symmetry-related atoms are not labeled and the solvent molecules are not included).
Bis[1-benzyl-3-(quinolin-8-ylmethyl)-2,3-dihydro-1H-imidazol-2- yl]dibromidopalladium(II) acetonitrile disolvate top
Crystal data top
[PdBr2(C20H17N3)2]·2C2H3NZ = 1
Mr = 947.06F(000) = 476
Triclinic, P1Dx = 1.611 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.179 (3) ÅCell parameters from 1719 reflections
b = 10.769 (4) Åθ = 2.4–25.8°
c = 11.928 (4) ŵ = 2.57 mm1
α = 101.506 (5)°T = 173 K
β = 90.842 (5)°Block, pale yellow
γ = 107.944 (4)°0.30 × 0.24 × 0.12 mm
V = 976.1 (6) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3728 independent reflections
Radiation source: fine-focus sealed tube2548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 910
Tmin = 0.48, Tmax = 0.74k = 1312
5311 measured reflectionsl = 714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0905P)2]
where P = (Fo2 + 2Fc2)/3
3728 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 1.90 e Å3
Crystal data top
[PdBr2(C20H17N3)2]·2C2H3Nγ = 107.944 (4)°
Mr = 947.06V = 976.1 (6) Å3
Triclinic, P1Z = 1
a = 8.179 (3) ÅMo Kα radiation
b = 10.769 (4) ŵ = 2.57 mm1
c = 11.928 (4) ÅT = 173 K
α = 101.506 (5)°0.30 × 0.24 × 0.12 mm
β = 90.842 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2548 reflections with I > 2σ(I)
Tmin = 0.48, Tmax = 0.74Rint = 0.100
5311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.01Δρmax = 1.65 e Å3
3728 reflectionsΔρmin = 1.90 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.58787 (9)0.80115 (7)0.03850 (6)0.0291 (2)
C10.2797 (9)0.8983 (6)0.0605 (6)0.0220 (14)
C20.0012 (10)0.7929 (7)0.0814 (6)0.0289 (16)
H20.11730.75410.06470.035*
C30.0908 (10)0.7998 (7)0.1769 (6)0.0313 (17)
H30.04660.76770.24070.038*
C40.0708 (9)0.8680 (6)0.1036 (6)0.0237 (15)
H4A0.16840.93020.12950.028*
H4B0.02330.90530.09940.028*
C50.4057 (9)0.8970 (7)0.2533 (6)0.0298 (17)
H5A0.51400.91260.21760.036*
H5B0.39110.82190.28980.036*
C60.1145 (10)0.6504 (7)0.2030 (6)0.0312 (17)
H60.21490.67470.15490.037*
C70.0706 (11)0.5328 (8)0.2815 (7)0.041 (2)
H70.13920.47750.28680.049*
C80.0812 (11)0.4964 (8)0.3550 (7)0.040 (2)
H80.11280.41670.40970.048*
C90.1824 (11)0.5782 (8)0.3461 (6)0.0371 (19)
H90.28300.55380.39390.045*
C100.1315 (10)0.7001 (8)0.2631 (6)0.0307 (17)
H100.19840.75670.25700.037*
C110.0164 (9)0.7350 (7)0.1917 (6)0.0266 (16)
C120.4125 (9)1.0184 (7)0.3422 (6)0.0262 (15)
C130.5138 (10)1.1425 (7)0.3342 (6)0.0320 (17)
H130.58111.15070.27220.038*
C140.5213 (11)1.2583 (8)0.4149 (7)0.0395 (19)
H140.59011.34150.40540.047*
C150.4263 (11)1.2479 (8)0.5081 (6)0.0366 (19)
H150.43221.32440.56270.044*
C160.3202 (9)1.1231 (8)0.5222 (6)0.0294 (16)
C170.2175 (10)1.1057 (8)0.6155 (6)0.0339 (18)
H170.21851.17950.67180.041*
C180.1181 (10)0.9824 (8)0.6233 (6)0.0350 (18)
H180.04940.97020.68420.042*
C190.1202 (11)0.8728 (8)0.5377 (7)0.0374 (19)
H190.05310.78820.54510.045*
C200.3119 (9)1.0069 (7)0.4397 (6)0.0270 (16)
C210.6964 (12)0.4626 (8)0.9114 (7)0.046 (2)
H21A0.70480.52970.97960.069*
H21B0.78840.49490.86500.069*
H21C0.70470.38300.93230.069*
C220.5275 (15)0.4318 (9)0.8452 (8)0.050 (2)
N10.1179 (7)0.8547 (5)0.0109 (4)0.0225 (12)
N20.2631 (8)0.8640 (6)0.1645 (5)0.0262 (13)
N30.2115 (8)0.8818 (6)0.4468 (5)0.0312 (14)
N40.3994 (14)0.4115 (9)0.7958 (7)0.068 (3)
Pd10.50001.00000.00000.0191 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0317 (5)0.0264 (4)0.0355 (5)0.0164 (3)0.0098 (3)0.0090 (3)
C10.027 (4)0.022 (3)0.020 (3)0.013 (3)0.002 (3)0.003 (3)
C20.029 (4)0.029 (4)0.029 (4)0.009 (3)0.003 (3)0.007 (3)
C30.042 (5)0.033 (4)0.026 (4)0.017 (4)0.018 (3)0.013 (3)
C40.027 (4)0.019 (3)0.024 (4)0.005 (3)0.002 (3)0.005 (3)
C50.033 (4)0.042 (5)0.021 (4)0.019 (4)0.001 (3)0.011 (3)
C60.038 (4)0.033 (4)0.024 (4)0.012 (4)0.005 (3)0.008 (3)
C70.050 (5)0.042 (5)0.039 (5)0.028 (4)0.010 (4)0.009 (4)
C80.056 (6)0.033 (4)0.033 (4)0.018 (4)0.012 (4)0.003 (4)
C90.045 (5)0.039 (5)0.026 (4)0.011 (4)0.003 (3)0.009 (4)
C100.038 (4)0.034 (4)0.023 (4)0.016 (4)0.003 (3)0.006 (3)
C110.031 (4)0.033 (4)0.018 (4)0.012 (3)0.005 (3)0.007 (3)
C120.026 (4)0.036 (4)0.020 (4)0.014 (3)0.005 (3)0.007 (3)
C130.032 (4)0.040 (5)0.023 (4)0.009 (3)0.005 (3)0.011 (3)
C140.049 (5)0.035 (5)0.031 (4)0.010 (4)0.004 (4)0.005 (4)
C150.048 (5)0.038 (5)0.026 (4)0.019 (4)0.001 (4)0.003 (3)
C160.031 (4)0.037 (4)0.022 (4)0.013 (3)0.000 (3)0.007 (3)
C170.045 (5)0.045 (5)0.019 (4)0.025 (4)0.001 (3)0.005 (3)
C180.046 (5)0.050 (5)0.016 (4)0.025 (4)0.004 (3)0.006 (3)
C190.051 (5)0.037 (5)0.033 (4)0.021 (4)0.006 (4)0.015 (4)
C200.029 (4)0.035 (4)0.022 (4)0.014 (3)0.001 (3)0.010 (3)
C210.059 (6)0.039 (5)0.039 (5)0.016 (4)0.012 (4)0.007 (4)
C220.084 (8)0.043 (5)0.034 (5)0.035 (6)0.022 (5)0.007 (4)
N10.025 (3)0.022 (3)0.018 (3)0.006 (2)0.002 (2)0.001 (2)
N20.033 (3)0.029 (3)0.022 (3)0.016 (3)0.006 (3)0.008 (3)
N30.037 (4)0.038 (4)0.026 (3)0.019 (3)0.003 (3)0.011 (3)
N40.097 (8)0.060 (6)0.055 (6)0.044 (6)0.001 (5)0.004 (4)
Pd10.0223 (4)0.0213 (4)0.0163 (4)0.0102 (3)0.0038 (3)0.0047 (3)
Geometric parameters (Å, º) top
Br1—Pd12.4245 (10)C10—C111.376 (10)
C1—N11.344 (8)C10—H100.9300
C1—N21.359 (8)C12—C131.362 (10)
C1—Pd12.026 (7)C12—C201.437 (9)
C2—C31.323 (10)C13—C141.400 (11)
C2—N11.384 (8)C13—H130.9300
C2—H20.9300C14—C151.369 (11)
C3—N21.390 (9)C14—H140.9300
C3—H30.9300C15—C161.401 (10)
C4—N11.460 (8)C15—H150.9300
C4—C111.532 (9)C16—C171.412 (10)
C4—H4A0.9700C16—C201.412 (10)
C4—H4B0.9700C17—C181.349 (11)
C5—N21.472 (9)C17—H170.9300
C5—C121.496 (10)C18—C191.402 (11)
C5—H5A0.9700C18—H180.9300
C5—H5B0.9700C19—N31.328 (9)
C6—C71.359 (11)C19—H190.9300
C6—C111.378 (10)C20—N31.364 (9)
C6—H60.9300C21—C221.491 (14)
C7—C81.412 (12)C21—H21A0.9600
C7—H70.9300C21—H21B0.9600
C8—C91.373 (11)C21—H21C0.9600
C8—H80.9300C22—N41.132 (13)
C9—C101.417 (11)Pd1—C1i2.026 (7)
C9—H90.9300Pd1—Br1i2.4245 (10)
N1—C1—N2104.4 (6)C12—C13—H13118.5
N1—C1—Pd1128.7 (5)C14—C13—H13118.5
N2—C1—Pd1126.8 (5)C15—C14—C13119.4 (8)
C3—C2—N1106.7 (6)C15—C14—H14120.3
C3—C2—H2126.6C13—C14—H14120.3
N1—C2—H2126.6C14—C15—C16120.7 (7)
C2—C3—N2107.4 (6)C14—C15—H15119.7
C2—C3—H3126.3C16—C15—H15119.7
N2—C3—H3126.3C15—C16—C17123.5 (7)
N1—C4—C11113.1 (5)C15—C16—C20119.6 (7)
N1—C4—H4A109.0C17—C16—C20116.9 (7)
C11—C4—H4A109.0C18—C17—C16120.2 (7)
N1—C4—H4B109.0C18—C17—H17119.9
C11—C4—H4B109.0C16—C17—H17119.9
H4A—C4—H4B107.8C17—C18—C19118.7 (7)
N2—C5—C12111.5 (6)C17—C18—H18120.6
N2—C5—H5A109.3C19—C18—H18120.6
C12—C5—H5A109.3N3—C19—C18124.4 (7)
N2—C5—H5B109.3N3—C19—H19117.8
C12—C5—H5B109.3C18—C19—H19117.8
H5A—C5—H5B108.0N3—C20—C16123.3 (6)
C7—C6—C11122.7 (8)N3—C20—C12117.2 (6)
C7—C6—H6118.7C16—C20—C12119.5 (7)
C11—C6—H6118.7C22—C21—H21A109.5
C6—C7—C8118.6 (8)C22—C21—H21B109.5
C6—C7—H7120.7H21A—C21—H21B109.5
C8—C7—H7120.7C22—C21—H21C109.5
C9—C8—C7120.3 (8)H21A—C21—H21C109.5
C9—C8—H8119.8H21B—C21—H21C109.5
C7—C8—H8119.8N4—C22—C21178.4 (10)
C8—C9—C10119.2 (8)C1—N1—C2111.3 (5)
C8—C9—H9120.4C1—N1—C4124.5 (6)
C10—C9—H9120.4C2—N1—C4124.1 (6)
C11—C10—C9120.2 (7)C1—N2—C3110.1 (6)
C11—C10—H10119.9C1—N2—C5124.8 (6)
C9—C10—H10119.9C3—N2—C5125.0 (6)
C10—C11—C6119.0 (7)C19—N3—C20116.5 (7)
C10—C11—C4119.6 (6)C1—Pd1—C1i180.000 (1)
C6—C11—C4121.4 (7)C1—Pd1—Br190.45 (18)
C13—C12—C20117.9 (7)C1i—Pd1—Br189.55 (18)
C13—C12—C5121.5 (7)C1—Pd1—Br1i89.55 (18)
C20—C12—C5120.6 (6)C1i—Pd1—Br1i90.45 (18)
C12—C13—C14123.0 (7)Br1—Pd1—Br1i180.0
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[PdBr2(C20H17N3)2]·2C2H3N
Mr947.06
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.179 (3), 10.769 (4), 11.928 (4)
α, β, γ (°)101.506 (5), 90.842 (5), 107.944 (4)
V3)976.1 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.30 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.48, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
5311, 3728, 2548
Rint0.100
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.172, 1.01
No. of reflections3728
No. of parameters251
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.90

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a start-up grant from Taishan University

References

First citationBoeda, F. & Nolan, S. P. (2008). Annu. Rep. Prog. Chem. Sect. B, 104, 184–210.  CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHahn, F. E., Heidrich, B., Lügger, T. & Pape, T. (2004). Z. Naturforsch. Teil B, 59, 1519–1523.  CAS Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. Engl. 41, 1290–1309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuynh, H. V. & Wu, J. (2009). J. Organomet. Chem. 694, 323–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J.-F., Chen, F., Dougan, B. A., Xu, H.-J., Cheng, Y., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). J. Organomet. Chem. 694, 2096–2105.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds