metal-organic compounds
Acetonitrile{3-[bis(2-pyridylmethyl-κN)amino-κN]propanol-κO}(perchlorato-κO)copper(II) perchlorate
aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr
In the title compound, [Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4, the CuII ion is coordinated by three N atoms and a hydroxyl-O atom of the tetradentate ligand, an O atom of a perchlorate ion and an N atom of an acetonitrile ligand giving a tetragonally distorted octahedral environment around the copper(II) atom. There is an offset inter-complex face-to-face π–π interaction [centroid–centroid distance = 3.718 (2) Å] involving one of the pyridine rings of the ligand as well as an intra-complex O—H⋯O hydrogen-bonding interaction between the coordinated hydroxyl group of the ligand and the perchlorate counter-ion.
Related literature
The preparation and characterization of polyamine complexes have allowed the elucidatation of the mechanisms of ). For studies of complexes with bis(2-pyridylmethyl)amine moieties, see: Bebout et al. (1998); Shin et al. (2010). For potential biological applications of the tridentate unit, see: van Staveren et al. (2002). Examples include the use of PdII and PtII complexes with bis(2-pyridylmethyl)amine or its derivatives as anticancer agents, e.g. cis-platin (Rauterkus et al., 2003). For intercomplex π–π stacking interactions, see: Shetty et al. (1996). For the preparation of N,N-bis(2-pyridylmethyl)-3-aminopropanol, see: Young et al. (1995).
reactions, see: Tshuva & Lippard (2004Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810053985/zs2085sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810053985/zs2085Isup2.hkl
A MeOH solution (5 ml) of Cu(ClO4)2 . 6H2O (72 mg, 0.194 mmol) was added to a MeOH solution (5 ml) of N,N-bis(2-pyridylmethyl)-3-aminopropanol (bpapOH) (50 mg, 0.194 mmol) (Young et al., 1995). The mixture was stirred for 10 min at room temperature, resulting in a color change to blue-green. Diffusion of diethylether into the mixture gave blue crystals of the title compound after a few days and these were washed with diethyl ether and dried in air (yield: 43 mg, 40%). FTIR (KBr, cm-1): ν(OH), 3393; ν(ClO4-), 1087, 627; ν(C—H), 3070, 2862; ν(C—N), 1607.
All C-bound H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 Å (ring H atoms) and 0.98–0.99 Å (open chain H atoms), and with Uiso(H) values of 1.2 or 1.5Uiso of the parent C atoms. The hydroxyl H atom was located in a difference Fourier and its position and Uiso value were allowed to refine freely.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4 | F(000) = 2296 |
Mr = 560.83 | Dx = 1.652 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3827 reflections |
a = 18.8394 (16) Å | θ = 2.2–27.2° |
b = 10.6049 (9) Å | µ = 1.26 mm−1 |
c = 23.171 (2) Å | T = 200 K |
β = 102.998 (2)° | Block, blue |
V = 4510.7 (7) Å3 | 0.20 × 0.17 × 0.08 mm |
Z = 8 |
Siemens SMART CCD diffractometer | 5616 independent reflections |
Radiation source: fine-focus sealed tube | 3249 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
ϕ and ω scans | θmax = 28.3°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −25→25 |
Tmin = 0.777, Tmax = 0.904 | k = −14→14 |
16472 measured reflections | l = −26→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.188 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0574P)2 + 23.552P] where P = (Fo2 + 2Fc2)/3 |
5616 reflections | (Δ/σ)max = 0.004 |
303 parameters | Δρmax = 1.66 e Å−3 |
0 restraints | Δρmin = −1.16 e Å−3 |
[Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4 | V = 4510.7 (7) Å3 |
Mr = 560.83 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.8394 (16) Å | µ = 1.26 mm−1 |
b = 10.6049 (9) Å | T = 200 K |
c = 23.171 (2) Å | 0.20 × 0.17 × 0.08 mm |
β = 102.998 (2)° |
Siemens SMART CCD diffractometer | 5616 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3249 reflections with I > 2σ(I) |
Tmin = 0.777, Tmax = 0.904 | Rint = 0.066 |
16472 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.188 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0574P)2 + 23.552P] where P = (Fo2 + 2Fc2)/3 |
5616 reflections | Δρmax = 1.66 e Å−3 |
303 parameters | Δρmin = −1.16 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.13311 (3) | 0.19042 (6) | 0.63867 (3) | 0.0267 (2) | |
Cl1 | 0.35845 (8) | 0.20097 (13) | 0.70690 (6) | 0.0348 (3) | |
Cl2 | −0.11763 (8) | 0.33890 (14) | 0.50981 (7) | 0.0397 (4) | |
N1 | 0.1499 (2) | 0.1811 (4) | 0.55716 (19) | 0.0263 (9) | |
N2 | 0.1661 (2) | 0.0086 (4) | 0.6439 (2) | 0.0279 (10) | |
N3 | 0.1492 (2) | 0.1799 (4) | 0.72643 (18) | 0.0266 (9) | |
N4 | 0.1036 (3) | 0.3717 (4) | 0.6338 (2) | 0.0352 (11) | |
O1 | 0.0140 (2) | 0.1484 (4) | 0.6184 (2) | 0.0464 (12) | |
H1A | −0.016 (3) | 0.176 (5) | 0.596 (2) | 0.056 (16)* | |
O2 | 0.4077 (3) | 0.2983 (5) | 0.7002 (3) | 0.0691 (15) | |
O3 | 0.2870 (2) | 0.2349 (4) | 0.67406 (19) | 0.0432 (11) | |
O4 | 0.3794 (2) | 0.0851 (4) | 0.6847 (2) | 0.0569 (13) | |
O5 | 0.3560 (3) | 0.1857 (5) | 0.76703 (18) | 0.0567 (13) | |
O6 | −0.1520 (3) | 0.3725 (7) | 0.4524 (2) | 0.085 (2) | |
O7 | −0.1319 (4) | 0.4221 (6) | 0.5530 (3) | 0.092 (2) | |
O8 | −0.1411 (9) | 0.2274 (8) | 0.5240 (4) | 0.247 (8) | |
O9 | −0.0464 (4) | 0.3278 (15) | 0.5138 (3) | 0.230 (7) | |
C1 | 0.1296 (3) | 0.2643 (5) | 0.5134 (2) | 0.0325 (12) | |
H1 | 0.1038 | 0.3377 | 0.5203 | 0.039* | |
C2 | 0.1449 (3) | 0.2472 (6) | 0.4586 (3) | 0.0367 (13) | |
H2 | 0.1300 | 0.3076 | 0.4280 | 0.044* | |
C3 | 0.1825 (3) | 0.1403 (5) | 0.4491 (3) | 0.0362 (13) | |
H3 | 0.1942 | 0.1269 | 0.4117 | 0.043* | |
C4 | 0.2031 (3) | 0.0532 (5) | 0.4936 (2) | 0.0339 (13) | |
H4 | 0.2278 | −0.0218 | 0.4872 | 0.041* | |
C5 | 0.1870 (3) | 0.0769 (5) | 0.5481 (2) | 0.0254 (11) | |
C6 | 0.2135 (3) | −0.0071 (5) | 0.6006 (2) | 0.0314 (12) | |
H6A | 0.2124 | −0.0961 | 0.5876 | 0.038* | |
H6B | 0.2644 | 0.0147 | 0.6198 | 0.038* | |
C7 | 0.2068 (3) | −0.0160 (5) | 0.7060 (2) | 0.0296 (12) | |
H7A | 0.2598 | −0.0110 | 0.7080 | 0.035* | |
H7B | 0.1958 | −0.1024 | 0.7176 | 0.035* | |
C8 | 0.1873 (3) | 0.0770 (5) | 0.7490 (2) | 0.0288 (12) | |
C9 | 0.2105 (3) | 0.0616 (6) | 0.8098 (3) | 0.0370 (13) | |
H9 | 0.2383 | −0.0101 | 0.8257 | 0.044* | |
C10 | 0.1923 (3) | 0.1526 (6) | 0.8468 (3) | 0.0402 (15) | |
H10 | 0.2082 | 0.1449 | 0.8886 | 0.048* | |
C11 | 0.1511 (3) | 0.2539 (6) | 0.8227 (3) | 0.0379 (14) | |
H11 | 0.1364 | 0.3153 | 0.8475 | 0.045* | |
C12 | 0.1315 (3) | 0.2653 (5) | 0.7627 (3) | 0.0334 (13) | |
H12 | 0.1041 | 0.3370 | 0.7461 | 0.040* | |
C13 | 0.1030 (3) | −0.0805 (5) | 0.6262 (3) | 0.0394 (14) | |
H13A | 0.0839 | −0.0730 | 0.5829 | 0.047* | |
H13B | 0.1215 | −0.1676 | 0.6343 | 0.047* | |
C14 | 0.0411 (4) | −0.0619 (6) | 0.6559 (3) | 0.0504 (18) | |
H14A | 0.0601 | −0.0263 | 0.6959 | 0.061* | |
H14B | 0.0189 | −0.1448 | 0.6607 | 0.061* | |
C15 | −0.0177 (4) | 0.0262 (6) | 0.6211 (4) | 0.058 (2) | |
H15A | −0.0363 | −0.0070 | 0.5806 | 0.070* | |
H15B | −0.0589 | 0.0319 | 0.6410 | 0.070* | |
C16 | 0.0700 (3) | 0.4605 (5) | 0.6291 (2) | 0.0291 (12) | |
C17 | 0.0256 (3) | 0.5744 (5) | 0.6235 (3) | 0.0404 (14) | |
H17A | 0.0255 | 0.6155 | 0.5856 | 0.061* | |
H17B | 0.0459 | 0.6322 | 0.6561 | 0.061* | |
H17C | −0.0244 | 0.5521 | 0.6252 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0314 (4) | 0.0225 (3) | 0.0273 (4) | 0.0038 (3) | 0.0086 (3) | 0.0016 (3) |
Cl1 | 0.0357 (8) | 0.0375 (7) | 0.0332 (7) | −0.0068 (6) | 0.0120 (6) | −0.0047 (6) |
Cl2 | 0.0440 (9) | 0.0379 (8) | 0.0365 (8) | 0.0053 (6) | 0.0074 (7) | 0.0025 (6) |
N1 | 0.030 (2) | 0.020 (2) | 0.030 (2) | 0.0003 (18) | 0.0085 (19) | −0.0011 (18) |
N2 | 0.022 (2) | 0.032 (2) | 0.030 (2) | −0.0014 (19) | 0.0068 (19) | −0.002 (2) |
N3 | 0.036 (2) | 0.027 (2) | 0.017 (2) | 0.0041 (19) | 0.0062 (18) | 0.0031 (18) |
N4 | 0.041 (3) | 0.032 (3) | 0.033 (3) | 0.008 (2) | 0.009 (2) | −0.001 (2) |
O1 | 0.021 (2) | 0.044 (3) | 0.068 (3) | 0.004 (2) | −0.003 (2) | 0.011 (2) |
O2 | 0.053 (3) | 0.069 (3) | 0.082 (4) | −0.030 (3) | 0.007 (3) | 0.012 (3) |
O3 | 0.031 (2) | 0.045 (2) | 0.051 (3) | −0.0031 (19) | 0.0049 (19) | 0.009 (2) |
O4 | 0.044 (3) | 0.055 (3) | 0.074 (3) | 0.006 (2) | 0.018 (2) | −0.026 (3) |
O5 | 0.072 (3) | 0.077 (3) | 0.021 (2) | 0.001 (3) | 0.010 (2) | 0.000 (2) |
O6 | 0.072 (4) | 0.147 (6) | 0.034 (3) | 0.040 (4) | 0.005 (3) | 0.016 (3) |
O7 | 0.128 (6) | 0.089 (4) | 0.060 (4) | 0.026 (4) | 0.025 (4) | −0.015 (3) |
O8 | 0.53 (2) | 0.092 (6) | 0.131 (9) | −0.135 (10) | 0.107 (12) | −0.010 (6) |
O9 | 0.078 (5) | 0.55 (2) | 0.059 (5) | 0.122 (9) | 0.014 (4) | 0.020 (8) |
C1 | 0.038 (3) | 0.031 (3) | 0.029 (3) | 0.003 (2) | 0.007 (2) | 0.005 (2) |
C2 | 0.041 (3) | 0.042 (3) | 0.027 (3) | −0.002 (3) | 0.006 (3) | 0.003 (3) |
C3 | 0.041 (3) | 0.039 (3) | 0.029 (3) | 0.000 (3) | 0.011 (3) | 0.000 (3) |
C4 | 0.033 (3) | 0.036 (3) | 0.033 (3) | 0.004 (2) | 0.007 (2) | −0.003 (3) |
C5 | 0.022 (3) | 0.024 (2) | 0.027 (3) | −0.006 (2) | 0.000 (2) | 0.001 (2) |
C6 | 0.031 (3) | 0.030 (3) | 0.033 (3) | 0.007 (2) | 0.007 (2) | 0.001 (2) |
C7 | 0.029 (3) | 0.029 (3) | 0.032 (3) | 0.005 (2) | 0.007 (2) | 0.004 (2) |
C8 | 0.024 (3) | 0.033 (3) | 0.029 (3) | −0.006 (2) | 0.008 (2) | 0.002 (2) |
C9 | 0.039 (3) | 0.038 (3) | 0.035 (3) | 0.001 (3) | 0.009 (3) | 0.005 (3) |
C10 | 0.053 (4) | 0.044 (3) | 0.024 (3) | −0.011 (3) | 0.009 (3) | 0.003 (3) |
C11 | 0.044 (4) | 0.036 (3) | 0.036 (3) | −0.008 (3) | 0.013 (3) | 0.000 (3) |
C12 | 0.042 (3) | 0.031 (3) | 0.031 (3) | 0.002 (3) | 0.016 (3) | 0.002 (2) |
C13 | 0.034 (3) | 0.028 (3) | 0.055 (4) | −0.002 (2) | 0.006 (3) | 0.007 (3) |
C14 | 0.044 (4) | 0.034 (3) | 0.077 (5) | −0.007 (3) | 0.023 (4) | 0.010 (3) |
C15 | 0.032 (4) | 0.043 (4) | 0.099 (6) | −0.002 (3) | 0.013 (4) | 0.004 (4) |
C16 | 0.034 (3) | 0.030 (3) | 0.023 (3) | 0.002 (2) | 0.007 (2) | 0.001 (2) |
C17 | 0.036 (3) | 0.032 (3) | 0.052 (4) | 0.010 (3) | 0.010 (3) | −0.001 (3) |
Cu1—N1 | 1.986 (4) | C3—H3 | 0.9500 |
Cu1—N3 | 1.991 (4) | C4—C5 | 1.386 (7) |
Cu1—N4 | 1.997 (5) | C4—H4 | 0.9500 |
Cu1—N2 | 2.021 (4) | C5—C6 | 1.500 (7) |
Cu1—O1 | 2.232 (4) | C6—H6A | 0.9900 |
Cu1—O3 | 2.868 (4) | C6—H6B | 0.9900 |
Cl1—O5 | 1.413 (4) | C7—C8 | 1.505 (7) |
Cl1—O2 | 1.420 (5) | C7—H7A | 0.9900 |
Cl1—O4 | 1.421 (4) | C7—H7B | 0.9900 |
Cl1—O3 | 1.436 (4) | C8—C9 | 1.387 (8) |
Cl2—O8 | 1.330 (8) | C9—C10 | 1.385 (8) |
Cl2—O9 | 1.330 (7) | C9—H9 | 0.9500 |
Cl2—O6 | 1.389 (5) | C10—C11 | 1.368 (8) |
Cl2—O7 | 1.405 (5) | C10—H10 | 0.9500 |
N1—C1 | 1.333 (7) | C11—C12 | 1.363 (8) |
N1—C5 | 1.349 (6) | C11—H11 | 0.9500 |
N2—C7 | 1.493 (7) | C12—H12 | 0.9500 |
N2—C6 | 1.495 (7) | C13—C14 | 1.496 (8) |
N2—C13 | 1.501 (7) | C13—H13A | 0.9900 |
N3—C12 | 1.328 (7) | C13—H13B | 0.9900 |
N3—C8 | 1.346 (7) | C14—C15 | 1.532 (9) |
N4—C16 | 1.126 (7) | C14—H14A | 0.9900 |
O1—C15 | 1.434 (8) | C14—H14B | 0.9900 |
O1—H1A | 0.73 (6) | C15—H15A | 0.9900 |
C1—C2 | 1.377 (8) | C15—H15B | 0.9900 |
C1—H1 | 0.9500 | C16—C17 | 1.459 (7) |
C2—C3 | 1.381 (8) | C17—H17A | 0.9800 |
C2—H2 | 0.9500 | C17—H17B | 0.9800 |
C3—C4 | 1.374 (8) | C17—H17C | 0.9800 |
N1—Cu1—N3 | 161.51 (18) | N2—C6—C5 | 109.8 (4) |
N1—Cu1—N4 | 95.48 (18) | N2—C6—H6A | 109.7 |
N3—Cu1—N4 | 95.08 (18) | C5—C6—H6A | 109.7 |
N1—Cu1—N2 | 84.12 (17) | N2—C6—H6B | 109.7 |
N3—Cu1—N2 | 84.88 (17) | C5—C6—H6B | 109.7 |
N4—Cu1—N2 | 178.30 (19) | H6A—C6—H6B | 108.2 |
N1—Cu1—O1 | 99.08 (19) | N2—C7—C8 | 112.0 (4) |
N3—Cu1—O1 | 96.80 (19) | N2—C7—H7A | 109.2 |
N4—Cu1—O1 | 85.79 (19) | C8—C7—H7A | 109.2 |
N2—Cu1—O1 | 95.91 (17) | N2—C7—H7B | 109.2 |
O5—Cl1—O2 | 111.0 (3) | C8—C7—H7B | 109.2 |
O5—Cl1—O4 | 109.3 (3) | H7A—C7—H7B | 107.9 |
O2—Cl1—O4 | 110.3 (3) | N3—C8—C9 | 120.6 (5) |
O5—Cl1—O3 | 108.4 (3) | N3—C8—C7 | 117.5 (5) |
O2—Cl1—O3 | 108.6 (3) | C9—C8—C7 | 121.8 (5) |
O4—Cl1—O3 | 109.2 (3) | C10—C9—C8 | 118.8 (6) |
O8—Cl2—O9 | 106.9 (9) | C10—C9—H9 | 120.6 |
O8—Cl2—O6 | 110.8 (6) | C8—C9—H9 | 120.6 |
O9—Cl2—O6 | 109.5 (4) | C11—C10—C9 | 119.4 (6) |
O8—Cl2—O7 | 104.8 (6) | C11—C10—H10 | 120.3 |
O9—Cl2—O7 | 111.0 (6) | C9—C10—H10 | 120.3 |
O6—Cl2—O7 | 113.5 (4) | C12—C11—C10 | 119.1 (6) |
C1—N1—C5 | 119.6 (5) | C12—C11—H11 | 120.5 |
C1—N1—Cu1 | 127.6 (4) | C10—C11—H11 | 120.5 |
C5—N1—Cu1 | 112.8 (3) | N3—C12—C11 | 122.4 (5) |
C7—N2—C6 | 111.8 (4) | N3—C12—H12 | 118.8 |
C7—N2—C13 | 111.0 (4) | C11—C12—H12 | 118.8 |
C6—N2—C13 | 107.5 (4) | C14—C13—N2 | 116.2 (5) |
C7—N2—Cu1 | 108.0 (3) | C14—C13—H13A | 108.2 |
C6—N2—Cu1 | 106.7 (3) | N2—C13—H13A | 108.2 |
C13—N2—Cu1 | 111.8 (3) | C14—C13—H13B | 108.2 |
C12—N3—C8 | 119.7 (5) | N2—C13—H13B | 108.2 |
C12—N3—Cu1 | 127.3 (4) | H13A—C13—H13B | 107.4 |
C8—N3—Cu1 | 112.9 (3) | C13—C14—C15 | 112.6 (6) |
C16—N4—Cu1 | 162.4 (5) | C13—C14—H14A | 109.1 |
C15—O1—Cu1 | 125.4 (4) | C15—C14—H14A | 109.1 |
C15—O1—H1A | 98 (4) | C13—C14—H14B | 109.1 |
Cu1—O1—H1A | 130 (5) | C15—C14—H14B | 109.1 |
N1—C1—C2 | 122.0 (5) | H14A—C14—H14B | 107.8 |
N1—C1—H1 | 119.0 | O1—C15—C14 | 108.4 (5) |
C2—C1—H1 | 119.0 | O1—C15—H15A | 110.0 |
C1—C2—C3 | 118.5 (5) | C14—C15—H15A | 110.0 |
C1—C2—H2 | 120.8 | O1—C15—H15B | 110.0 |
C3—C2—H2 | 120.8 | C14—C15—H15B | 110.0 |
C4—C3—C2 | 120.0 (5) | H15A—C15—H15B | 108.4 |
C4—C3—H3 | 120.0 | N4—C16—C17 | 179.1 (6) |
C2—C3—H3 | 120.0 | C16—C17—H17A | 109.5 |
C3—C4—C5 | 118.7 (5) | C16—C17—H17B | 109.5 |
C3—C4—H4 | 120.7 | H17A—C17—H17B | 109.5 |
C5—C4—H4 | 120.7 | C16—C17—H17C | 109.5 |
N1—C5—C4 | 121.1 (5) | H17A—C17—H17C | 109.5 |
N1—C5—C6 | 116.8 (5) | H17B—C17—H17C | 109.5 |
C4—C5—C6 | 122.0 (5) | ||
N3—Cu1—N1—C1 | −137.9 (6) | N4—Cu1—O1—C15 | −170.7 (6) |
N4—Cu1—N1—C1 | −13.4 (5) | N2—Cu1—O1—C15 | 9.4 (6) |
N2—Cu1—N1—C1 | 168.3 (5) | Cu1—N1—C1—C2 | 179.7 (4) |
O1—Cu1—N1—C1 | 73.2 (5) | Cu1—N1—C5—C4 | 179.2 (4) |
N3—Cu1—N1—C5 | 41.3 (7) | C1—N1—C5—C6 | 175.0 (5) |
N4—Cu1—N1—C5 | 165.9 (4) | Cu1—N1—C5—C6 | −4.3 (6) |
N2—Cu1—N1—C5 | −12.5 (3) | C3—C4—C5—C6 | −174.2 (5) |
O1—Cu1—N1—C5 | −107.5 (3) | C7—N2—C6—C5 | −151.1 (4) |
N1—Cu1—N2—C7 | 145.7 (3) | C13—N2—C6—C5 | 86.9 (5) |
N3—Cu1—N2—C7 | −19.4 (3) | Cu1—N2—C6—C5 | −33.2 (5) |
O1—Cu1—N2—C7 | −115.7 (3) | N1—C5—C6—N2 | 25.8 (6) |
N1—Cu1—N2—C6 | 25.3 (3) | C4—C5—C6—N2 | −157.7 (5) |
N3—Cu1—N2—C6 | −139.8 (3) | C6—N2—C7—C8 | 139.1 (4) |
O1—Cu1—N2—C6 | 123.9 (3) | C13—N2—C7—C8 | −100.9 (5) |
N1—Cu1—N2—C13 | −91.9 (4) | Cu1—N2—C7—C8 | 21.9 (5) |
N3—Cu1—N2—C13 | 103.0 (4) | C12—N3—C8—C9 | −2.4 (8) |
O1—Cu1—N2—C13 | 6.6 (4) | Cu1—N3—C8—C9 | 172.8 (4) |
N1—Cu1—N3—C12 | 134.6 (6) | C12—N3—C8—C7 | −179.2 (5) |
N4—Cu1—N3—C12 | 10.0 (5) | N2—C7—C8—N3 | −12.6 (7) |
N2—Cu1—N3—C12 | −171.7 (5) | N2—C7—C8—C9 | 170.7 (5) |
O1—Cu1—N3—C12 | −76.3 (5) | C7—C8—C9—C10 | 178.1 (5) |
N1—Cu1—N3—C8 | −40.2 (7) | C9—C10—C11—C12 | −2.7 (9) |
N4—Cu1—N3—C8 | −164.8 (4) | Cu1—N3—C12—C11 | −173.7 (4) |
N2—Cu1—N3—C8 | 13.5 (4) | C7—N2—C13—C14 | 69.5 (6) |
O1—Cu1—N3—C8 | 108.9 (4) | C6—N2—C13—C14 | −168.0 (5) |
N1—Cu1—N4—C16 | 102.7 (16) | Cu1—N2—C13—C14 | −51.2 (6) |
N3—Cu1—N4—C16 | −92.5 (16) | N2—C13—C14—C15 | 91.7 (7) |
N1—Cu1—O1—C15 | 94.4 (6) | Cu1—O1—C15—C14 | 15.4 (9) |
N3—Cu1—O1—C15 | −76.1 (6) | C13—C14—C15—O1 | −63.0 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O9 | 0.74 (5) | 2.46 (5) | 3.090 (12) | 145 (5) |
Experimental details
Crystal data | |
Chemical formula | [Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4 |
Mr | 560.83 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 200 |
a, b, c (Å) | 18.8394 (16), 10.6049 (9), 23.171 (2) |
β (°) | 102.998 (2) |
V (Å3) | 4510.7 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.26 |
Crystal size (mm) | 0.20 × 0.17 × 0.08 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.777, 0.904 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16472, 5616, 3249 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.188, 1.11 |
No. of reflections | 5616 |
No. of parameters | 303 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.0574P)2 + 23.552P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.66, −1.16 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O9 | 0.74 (5) | 2.46 (5) | 3.090 (12) | 145 (5) |
Acknowledgements
This work was supported by a Korea Research Foundation (KRF) grant funded by the Korea government (MEST) (No. 2009–0073897). The authors acknowledge the Korea Basic Science Institute for the X-ray data collection.
References
Bebout, D. C., DeLanoy, A. E., Ehmann, D. E., Kastner, M. E., Parrish, D. A. & Butcher, R. J. (1998). Inorg. Chem. 37, 2952–2959. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Rauterkus, M. J., Fakih, S., Mock, C., Puscasu, I. & Krebs, B. (2003). Inorg. Chim. Acta 350, 355–365. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shetty, A. S., Zhang, J. & Moore, J. S. (1996). J. Am. Chem. Soc. 118, 1019–1027. CrossRef CAS Web of Science Google Scholar
Shin, J. W., Rowthu, S. R., Kim, B. G. & Min, K. S. (2010). Dalton Trans. pp. 2765–2767. Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Staveren, D. R. van, Bothe, E., Weyherműller, T. & Metzler-Nolte, N. (2002). Eur. J. Inorg. Chem. pp. 1518–1529. Google Scholar
Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. Web of Science CrossRef PubMed CAS Google Scholar
Young, M. J., Wahnon, D., Hynes, R. C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441–9447. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The preparation and characterization of polyamine complexes have allowed the elucidatation of the mechanisms of metalloenzyme reactions (Tshuva & Lippard, 2004). The complexes with bis(2-pyridylmethyl)amine moieties have been widely studied (Bebout et al.,1998; Shin et al., 2010) because the tridentate unit has potential in biological applications (van Staveren et al., 2002), examples being the PdII and PtII complexes with bis(2-pyridylmethyl)amine or its derivatives, as anticancer agents, e.g. cis-platin (Rauterkus et al., 2003). Here, we report the synthesis and crystal structure of a six-coordidine CuII complex with N,N-bis(2-pyridylmethyl)-3-aminopropanol (bpapOH), the title compound [Cu(bpapOH)(CH3CN)(ClO4)] ClO4 (I).
In the title compound (Fig. 1) the copper(II) ion is bonded to three N atoms of the tetradentate ligand and one N atom from an acetonitrile solvent molecule in an equatorial plane and two O atoms in axial sites, one from the hydroxyl group of the ligand, the other from a perchlorate ion, resulting in a tetragonally distorted octahedral stereochemistry. The bond lengths around CuII in the equatorial plane are in the range of 1.986 (4)–2.021 (4) Å while the axial Cu–O distances are 2.232 (4) Å (hydroxy) and 2.868 (4) Å (perchlorate), due to Jahn-Teller distortion. The bond angles about the copper atom lie in the range 84.12 (17)–178.30 (19)°. One of the pyridyl groups of the coordinated bpapOH ligand (N1–C5) is involved in a an offset face-to-face π–π inter-complex stacking interaction (Shetty et al., 1996) (ring centroid separation Cg1···Cgi, 3.718 (2) Å], giving dimers (Fig. 2) [symmetry code: (i) -x + 1/2, -y + 1/2, -z + 1]. The inter-planar separation of these pyridine rings is 3.491 (2) Å and the dihedral angle between the pyridine ring planes is 0.0°. Additionally, an intra-complex O—H···O hydrogen-bonding interaction is found between the hydroxyl group of the ligand and the free perchlorate anion (Table 1) (Fig. 3).