metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m143-m144

Aceto­nitrile­{3-[bis­­(2-pyridyl­methyl-κN)amino-κN]propanol-κO}(perchlorato-κO)copper(II) perchlorate

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr

(Received 7 December 2010; accepted 24 December 2010; online 8 January 2011)

In the title compound, [Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4, the CuII ion is coordinated by three N atoms and a hydroxyl-O atom of the tetra­dentate ligand, an O atom of a perchlorate ion and an N atom of an acetonitrile ligand giving a tetra­gonally distorted octa­hedral environment around the copper(II) atom. There is an offset inter-complex face-to-face ππ inter­action [centroid–centroid distance = 3.718 (2) Å] involving one of the pyridine rings of the ligand as well as an intra-complex O—H⋯O hydrogen-bonding inter­action between the coordinated hydroxyl group of the ligand and the perchlorate counter-ion.

Related literature

The preparation and characterization of polyamine complexes have allowed the elucidatation of the mechanisms of metalloenzyme reactions, see: Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]). For studies of complexes with bis­(2-pyridyl­meth­yl)amine moieties, see: Bebout et al. (1998[Bebout, D. C., DeLanoy, A. E., Ehmann, D. E., Kastner, M. E., Parrish, D. A. & Butcher, R. J. (1998). Inorg. Chem. 37, 2952-2959.]); Shin et al. (2010[Shin, J. W., Rowthu, S. R., Kim, B. G. & Min, K. S. (2010). Dalton Trans. pp. 2765-2767.]). For potential biological applications of the tridentate unit, see: van Staveren et al. (2002[Staveren, D. R. van, Bothe, E., Weyherműller, T. & Metzler-Nolte, N. (2002). Eur. J. Inorg. Chem. pp. 1518-1529.]). Examples include the use of PdII and PtII complexes with bis­(2-pyridyl­meth­yl)amine or its derivatives as anti­cancer agents, e.g. cis-platin (Rauterkus et al., 2003[Rauterkus, M. J., Fakih, S., Mock, C., Puscasu, I. & Krebs, B. (2003). Inorg. Chim. Acta 350, 355-365.]). For inter­complex ππ stacking inter­actions, see: Shetty et al. (1996[Shetty, A. S., Zhang, J. & Moore, J. S. (1996). J. Am. Chem. Soc. 118, 1019-1027.]). For the preparation of N,N-bis­(2-pyridyl­meth­yl)-3-amino­propanol, see: Young et al. (1995[Young, M. J., Wahnon, D., Hynes, R. C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441-9447.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4

  • Mr = 560.83

  • Monoclinic, C 2/c

  • a = 18.8394 (16) Å

  • b = 10.6049 (9) Å

  • c = 23.171 (2) Å

  • β = 102.998 (2)°

  • V = 4510.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 200 K

  • 0.20 × 0.17 × 0.08 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.777, Tmax = 0.904

  • 16472 measured reflections

  • 5616 independent reflections

  • 3249 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.188

  • S = 1.11

  • 5616 reflections

  • 303 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.66 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O9 0.74 (5) 2.46 (5) 3.090 (12) 145 (5)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The preparation and characterization of polyamine complexes have allowed the elucidatation of the mechanisms of metalloenzyme reactions (Tshuva & Lippard, 2004). The complexes with bis(2-pyridylmethyl)amine moieties have been widely studied (Bebout et al.,1998; Shin et al., 2010) because the tridentate unit has potential in biological applications (van Staveren et al., 2002), examples being the PdII and PtII complexes with bis(2-pyridylmethyl)amine or its derivatives, as anticancer agents, e.g. cis-platin (Rauterkus et al., 2003). Here, we report the synthesis and crystal structure of a six-coordidine CuII complex with N,N-bis(2-pyridylmethyl)-3-aminopropanol (bpapOH), the title compound [Cu(bpapOH)(CH3CN)(ClO4)] ClO4 (I).

In the title compound (Fig. 1) the copper(II) ion is bonded to three N atoms of the tetradentate ligand and one N atom from an acetonitrile solvent molecule in an equatorial plane and two O atoms in axial sites, one from the hydroxyl group of the ligand, the other from a perchlorate ion, resulting in a tetragonally distorted octahedral stereochemistry. The bond lengths around CuII in the equatorial plane are in the range of 1.986 (4)–2.021 (4) Å while the axial Cu–O distances are 2.232 (4) Å (hydroxy) and 2.868 (4) Å (perchlorate), due to Jahn-Teller distortion. The bond angles about the copper atom lie in the range 84.12 (17)–178.30 (19)°. One of the pyridyl groups of the coordinated bpapOH ligand (N1–C5) is involved in a an offset face-to-face ππ inter-complex stacking interaction (Shetty et al., 1996) (ring centroid separation Cg1···Cgi, 3.718 (2) Å], giving dimers (Fig. 2) [symmetry code: (i) -x + 1/2, -y + 1/2, -z + 1]. The inter-planar separation of these pyridine rings is 3.491 (2) Å and the dihedral angle between the pyridine ring planes is 0.0°. Additionally, an intra-complex O—H···O hydrogen-bonding interaction is found between the hydroxyl group of the ligand and the free perchlorate anion (Table 1) (Fig. 3).

Related literature top

The preparation and characterization of polyamine complexes have allowed the elucidatation of the mechanisms of metalloenzyme reactions, see: Tshuva & Lippard (2004). For studies of complexes with bis(2-pyridylmethyl)amine moieties, see: Bebout et al. (1998); Shin et al. (2010). For potential biological applications of the tridentate unit, see: van Staveren et al. (2002). Examples include the use of PdII and PtII complexes with bis(2-pyridylmethyl)amine or its derivatives, as anticancer agents, e.g. cis-platin (Rauterkus et al., 2003). For intercomplex ππ stacking interactions, see: Shetty et al. (1996). For the preparation of N,N-bis(2-pyridylmethyl)-3-aminopropanol, see: Young et al. (1995).

Experimental top

A MeOH solution (5 ml) of Cu(ClO4)2 . 6H2O (72 mg, 0.194 mmol) was added to a MeOH solution (5 ml) of N,N-bis(2-pyridylmethyl)-3-aminopropanol (bpapOH) (50 mg, 0.194 mmol) (Young et al., 1995). The mixture was stirred for 10 min at room temperature, resulting in a color change to blue-green. Diffusion of diethylether into the mixture gave blue crystals of the title compound after a few days and these were washed with diethyl ether and dried in air (yield: 43 mg, 40%). FTIR (KBr, cm-1): ν(OH), 3393; ν(ClO4-), 1087, 627; ν(C—H), 3070, 2862; ν(C—N), 1607.

Refinement top

All C-bound H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 Å (ring H atoms) and 0.98–0.99 Å (open chain H atoms), and with Uiso(H) values of 1.2 or 1.5Uiso of the parent C atoms. The hydroxyl H atom was located in a difference Fourier and its position and Uiso value were allowed to refine freely.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the title compound, with 30% probability displacement ellipsoids. Non-H atoms are omitted.
[Figure 2] Fig. 2. Perspective view of the title compound showing the offset ππ stacking interaction via one of the pyridine groups of the ligand, (indicated as a dashed line).
[Figure 3] Fig. 3. Perspective view of the title compound showing an hydroxyl O—H···O (perchlorate) hydrogen-bonding interaction, indicated as a dashed line.
Acetonitrile{3-[bis(2-pyridylmethyl-κN)amino-κN]propanol- κO}(perchlorato-κO)copper(II) perchlorate top
Crystal data top
[Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4F(000) = 2296
Mr = 560.83Dx = 1.652 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3827 reflections
a = 18.8394 (16) Åθ = 2.2–27.2°
b = 10.6049 (9) ŵ = 1.26 mm1
c = 23.171 (2) ÅT = 200 K
β = 102.998 (2)°Block, blue
V = 4510.7 (7) Å30.20 × 0.17 × 0.08 mm
Z = 8
Data collection top
Siemens SMART CCD
diffractometer
5616 independent reflections
Radiation source: fine-focus sealed tube3249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.777, Tmax = 0.904k = 1414
16472 measured reflectionsl = 2630
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0574P)2 + 23.552P]
where P = (Fo2 + 2Fc2)/3
5616 reflections(Δ/σ)max = 0.004
303 parametersΔρmax = 1.66 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4V = 4510.7 (7) Å3
Mr = 560.83Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.8394 (16) ŵ = 1.26 mm1
b = 10.6049 (9) ÅT = 200 K
c = 23.171 (2) Å0.20 × 0.17 × 0.08 mm
β = 102.998 (2)°
Data collection top
Siemens SMART CCD
diffractometer
5616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3249 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.904Rint = 0.066
16472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0574P)2 + 23.552P]
where P = (Fo2 + 2Fc2)/3
5616 reflectionsΔρmax = 1.66 e Å3
303 parametersΔρmin = 1.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.

planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13311 (3)0.19042 (6)0.63867 (3)0.0267 (2)
Cl10.35845 (8)0.20097 (13)0.70690 (6)0.0348 (3)
Cl20.11763 (8)0.33890 (14)0.50981 (7)0.0397 (4)
N10.1499 (2)0.1811 (4)0.55716 (19)0.0263 (9)
N20.1661 (2)0.0086 (4)0.6439 (2)0.0279 (10)
N30.1492 (2)0.1799 (4)0.72643 (18)0.0266 (9)
N40.1036 (3)0.3717 (4)0.6338 (2)0.0352 (11)
O10.0140 (2)0.1484 (4)0.6184 (2)0.0464 (12)
H1A0.016 (3)0.176 (5)0.596 (2)0.056 (16)*
O20.4077 (3)0.2983 (5)0.7002 (3)0.0691 (15)
O30.2870 (2)0.2349 (4)0.67406 (19)0.0432 (11)
O40.3794 (2)0.0851 (4)0.6847 (2)0.0569 (13)
O50.3560 (3)0.1857 (5)0.76703 (18)0.0567 (13)
O60.1520 (3)0.3725 (7)0.4524 (2)0.085 (2)
O70.1319 (4)0.4221 (6)0.5530 (3)0.092 (2)
O80.1411 (9)0.2274 (8)0.5240 (4)0.247 (8)
O90.0464 (4)0.3278 (15)0.5138 (3)0.230 (7)
C10.1296 (3)0.2643 (5)0.5134 (2)0.0325 (12)
H10.10380.33770.52030.039*
C20.1449 (3)0.2472 (6)0.4586 (3)0.0367 (13)
H20.13000.30760.42800.044*
C30.1825 (3)0.1403 (5)0.4491 (3)0.0362 (13)
H30.19420.12690.41170.043*
C40.2031 (3)0.0532 (5)0.4936 (2)0.0339 (13)
H40.22780.02180.48720.041*
C50.1870 (3)0.0769 (5)0.5481 (2)0.0254 (11)
C60.2135 (3)0.0071 (5)0.6006 (2)0.0314 (12)
H6A0.21240.09610.58760.038*
H6B0.26440.01470.61980.038*
C70.2068 (3)0.0160 (5)0.7060 (2)0.0296 (12)
H7A0.25980.01100.70800.035*
H7B0.19580.10240.71760.035*
C80.1873 (3)0.0770 (5)0.7490 (2)0.0288 (12)
C90.2105 (3)0.0616 (6)0.8098 (3)0.0370 (13)
H90.23830.01010.82570.044*
C100.1923 (3)0.1526 (6)0.8468 (3)0.0402 (15)
H100.20820.14490.88860.048*
C110.1511 (3)0.2539 (6)0.8227 (3)0.0379 (14)
H110.13640.31530.84750.045*
C120.1315 (3)0.2653 (5)0.7627 (3)0.0334 (13)
H120.10410.33700.74610.040*
C130.1030 (3)0.0805 (5)0.6262 (3)0.0394 (14)
H13A0.08390.07300.58290.047*
H13B0.12150.16760.63430.047*
C140.0411 (4)0.0619 (6)0.6559 (3)0.0504 (18)
H14A0.06010.02630.69590.061*
H14B0.01890.14480.66070.061*
C150.0177 (4)0.0262 (6)0.6211 (4)0.058 (2)
H15A0.03630.00700.58060.070*
H15B0.05890.03190.64100.070*
C160.0700 (3)0.4605 (5)0.6291 (2)0.0291 (12)
C170.0256 (3)0.5744 (5)0.6235 (3)0.0404 (14)
H17A0.02550.61550.58560.061*
H17B0.04590.63220.65610.061*
H17C0.02440.55210.62520.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0314 (4)0.0225 (3)0.0273 (4)0.0038 (3)0.0086 (3)0.0016 (3)
Cl10.0357 (8)0.0375 (7)0.0332 (7)0.0068 (6)0.0120 (6)0.0047 (6)
Cl20.0440 (9)0.0379 (8)0.0365 (8)0.0053 (6)0.0074 (7)0.0025 (6)
N10.030 (2)0.020 (2)0.030 (2)0.0003 (18)0.0085 (19)0.0011 (18)
N20.022 (2)0.032 (2)0.030 (2)0.0014 (19)0.0068 (19)0.002 (2)
N30.036 (2)0.027 (2)0.017 (2)0.0041 (19)0.0062 (18)0.0031 (18)
N40.041 (3)0.032 (3)0.033 (3)0.008 (2)0.009 (2)0.001 (2)
O10.021 (2)0.044 (3)0.068 (3)0.004 (2)0.003 (2)0.011 (2)
O20.053 (3)0.069 (3)0.082 (4)0.030 (3)0.007 (3)0.012 (3)
O30.031 (2)0.045 (2)0.051 (3)0.0031 (19)0.0049 (19)0.009 (2)
O40.044 (3)0.055 (3)0.074 (3)0.006 (2)0.018 (2)0.026 (3)
O50.072 (3)0.077 (3)0.021 (2)0.001 (3)0.010 (2)0.000 (2)
O60.072 (4)0.147 (6)0.034 (3)0.040 (4)0.005 (3)0.016 (3)
O70.128 (6)0.089 (4)0.060 (4)0.026 (4)0.025 (4)0.015 (3)
O80.53 (2)0.092 (6)0.131 (9)0.135 (10)0.107 (12)0.010 (6)
O90.078 (5)0.55 (2)0.059 (5)0.122 (9)0.014 (4)0.020 (8)
C10.038 (3)0.031 (3)0.029 (3)0.003 (2)0.007 (2)0.005 (2)
C20.041 (3)0.042 (3)0.027 (3)0.002 (3)0.006 (3)0.003 (3)
C30.041 (3)0.039 (3)0.029 (3)0.000 (3)0.011 (3)0.000 (3)
C40.033 (3)0.036 (3)0.033 (3)0.004 (2)0.007 (2)0.003 (3)
C50.022 (3)0.024 (2)0.027 (3)0.006 (2)0.000 (2)0.001 (2)
C60.031 (3)0.030 (3)0.033 (3)0.007 (2)0.007 (2)0.001 (2)
C70.029 (3)0.029 (3)0.032 (3)0.005 (2)0.007 (2)0.004 (2)
C80.024 (3)0.033 (3)0.029 (3)0.006 (2)0.008 (2)0.002 (2)
C90.039 (3)0.038 (3)0.035 (3)0.001 (3)0.009 (3)0.005 (3)
C100.053 (4)0.044 (3)0.024 (3)0.011 (3)0.009 (3)0.003 (3)
C110.044 (4)0.036 (3)0.036 (3)0.008 (3)0.013 (3)0.000 (3)
C120.042 (3)0.031 (3)0.031 (3)0.002 (3)0.016 (3)0.002 (2)
C130.034 (3)0.028 (3)0.055 (4)0.002 (2)0.006 (3)0.007 (3)
C140.044 (4)0.034 (3)0.077 (5)0.007 (3)0.023 (4)0.010 (3)
C150.032 (4)0.043 (4)0.099 (6)0.002 (3)0.013 (4)0.004 (4)
C160.034 (3)0.030 (3)0.023 (3)0.002 (2)0.007 (2)0.001 (2)
C170.036 (3)0.032 (3)0.052 (4)0.010 (3)0.010 (3)0.001 (3)
Geometric parameters (Å, º) top
Cu1—N11.986 (4)C3—H30.9500
Cu1—N31.991 (4)C4—C51.386 (7)
Cu1—N41.997 (5)C4—H40.9500
Cu1—N22.021 (4)C5—C61.500 (7)
Cu1—O12.232 (4)C6—H6A0.9900
Cu1—O32.868 (4)C6—H6B0.9900
Cl1—O51.413 (4)C7—C81.505 (7)
Cl1—O21.420 (5)C7—H7A0.9900
Cl1—O41.421 (4)C7—H7B0.9900
Cl1—O31.436 (4)C8—C91.387 (8)
Cl2—O81.330 (8)C9—C101.385 (8)
Cl2—O91.330 (7)C9—H90.9500
Cl2—O61.389 (5)C10—C111.368 (8)
Cl2—O71.405 (5)C10—H100.9500
N1—C11.333 (7)C11—C121.363 (8)
N1—C51.349 (6)C11—H110.9500
N2—C71.493 (7)C12—H120.9500
N2—C61.495 (7)C13—C141.496 (8)
N2—C131.501 (7)C13—H13A0.9900
N3—C121.328 (7)C13—H13B0.9900
N3—C81.346 (7)C14—C151.532 (9)
N4—C161.126 (7)C14—H14A0.9900
O1—C151.434 (8)C14—H14B0.9900
O1—H1A0.73 (6)C15—H15A0.9900
C1—C21.377 (8)C15—H15B0.9900
C1—H10.9500C16—C171.459 (7)
C2—C31.381 (8)C17—H17A0.9800
C2—H20.9500C17—H17B0.9800
C3—C41.374 (8)C17—H17C0.9800
N1—Cu1—N3161.51 (18)N2—C6—C5109.8 (4)
N1—Cu1—N495.48 (18)N2—C6—H6A109.7
N3—Cu1—N495.08 (18)C5—C6—H6A109.7
N1—Cu1—N284.12 (17)N2—C6—H6B109.7
N3—Cu1—N284.88 (17)C5—C6—H6B109.7
N4—Cu1—N2178.30 (19)H6A—C6—H6B108.2
N1—Cu1—O199.08 (19)N2—C7—C8112.0 (4)
N3—Cu1—O196.80 (19)N2—C7—H7A109.2
N4—Cu1—O185.79 (19)C8—C7—H7A109.2
N2—Cu1—O195.91 (17)N2—C7—H7B109.2
O5—Cl1—O2111.0 (3)C8—C7—H7B109.2
O5—Cl1—O4109.3 (3)H7A—C7—H7B107.9
O2—Cl1—O4110.3 (3)N3—C8—C9120.6 (5)
O5—Cl1—O3108.4 (3)N3—C8—C7117.5 (5)
O2—Cl1—O3108.6 (3)C9—C8—C7121.8 (5)
O4—Cl1—O3109.2 (3)C10—C9—C8118.8 (6)
O8—Cl2—O9106.9 (9)C10—C9—H9120.6
O8—Cl2—O6110.8 (6)C8—C9—H9120.6
O9—Cl2—O6109.5 (4)C11—C10—C9119.4 (6)
O8—Cl2—O7104.8 (6)C11—C10—H10120.3
O9—Cl2—O7111.0 (6)C9—C10—H10120.3
O6—Cl2—O7113.5 (4)C12—C11—C10119.1 (6)
C1—N1—C5119.6 (5)C12—C11—H11120.5
C1—N1—Cu1127.6 (4)C10—C11—H11120.5
C5—N1—Cu1112.8 (3)N3—C12—C11122.4 (5)
C7—N2—C6111.8 (4)N3—C12—H12118.8
C7—N2—C13111.0 (4)C11—C12—H12118.8
C6—N2—C13107.5 (4)C14—C13—N2116.2 (5)
C7—N2—Cu1108.0 (3)C14—C13—H13A108.2
C6—N2—Cu1106.7 (3)N2—C13—H13A108.2
C13—N2—Cu1111.8 (3)C14—C13—H13B108.2
C12—N3—C8119.7 (5)N2—C13—H13B108.2
C12—N3—Cu1127.3 (4)H13A—C13—H13B107.4
C8—N3—Cu1112.9 (3)C13—C14—C15112.6 (6)
C16—N4—Cu1162.4 (5)C13—C14—H14A109.1
C15—O1—Cu1125.4 (4)C15—C14—H14A109.1
C15—O1—H1A98 (4)C13—C14—H14B109.1
Cu1—O1—H1A130 (5)C15—C14—H14B109.1
N1—C1—C2122.0 (5)H14A—C14—H14B107.8
N1—C1—H1119.0O1—C15—C14108.4 (5)
C2—C1—H1119.0O1—C15—H15A110.0
C1—C2—C3118.5 (5)C14—C15—H15A110.0
C1—C2—H2120.8O1—C15—H15B110.0
C3—C2—H2120.8C14—C15—H15B110.0
C4—C3—C2120.0 (5)H15A—C15—H15B108.4
C4—C3—H3120.0N4—C16—C17179.1 (6)
C2—C3—H3120.0C16—C17—H17A109.5
C3—C4—C5118.7 (5)C16—C17—H17B109.5
C3—C4—H4120.7H17A—C17—H17B109.5
C5—C4—H4120.7C16—C17—H17C109.5
N1—C5—C4121.1 (5)H17A—C17—H17C109.5
N1—C5—C6116.8 (5)H17B—C17—H17C109.5
C4—C5—C6122.0 (5)
N3—Cu1—N1—C1137.9 (6)N4—Cu1—O1—C15170.7 (6)
N4—Cu1—N1—C113.4 (5)N2—Cu1—O1—C159.4 (6)
N2—Cu1—N1—C1168.3 (5)Cu1—N1—C1—C2179.7 (4)
O1—Cu1—N1—C173.2 (5)Cu1—N1—C5—C4179.2 (4)
N3—Cu1—N1—C541.3 (7)C1—N1—C5—C6175.0 (5)
N4—Cu1—N1—C5165.9 (4)Cu1—N1—C5—C64.3 (6)
N2—Cu1—N1—C512.5 (3)C3—C4—C5—C6174.2 (5)
O1—Cu1—N1—C5107.5 (3)C7—N2—C6—C5151.1 (4)
N1—Cu1—N2—C7145.7 (3)C13—N2—C6—C586.9 (5)
N3—Cu1—N2—C719.4 (3)Cu1—N2—C6—C533.2 (5)
O1—Cu1—N2—C7115.7 (3)N1—C5—C6—N225.8 (6)
N1—Cu1—N2—C625.3 (3)C4—C5—C6—N2157.7 (5)
N3—Cu1—N2—C6139.8 (3)C6—N2—C7—C8139.1 (4)
O1—Cu1—N2—C6123.9 (3)C13—N2—C7—C8100.9 (5)
N1—Cu1—N2—C1391.9 (4)Cu1—N2—C7—C821.9 (5)
N3—Cu1—N2—C13103.0 (4)C12—N3—C8—C92.4 (8)
O1—Cu1—N2—C136.6 (4)Cu1—N3—C8—C9172.8 (4)
N1—Cu1—N3—C12134.6 (6)C12—N3—C8—C7179.2 (5)
N4—Cu1—N3—C1210.0 (5)N2—C7—C8—N312.6 (7)
N2—Cu1—N3—C12171.7 (5)N2—C7—C8—C9170.7 (5)
O1—Cu1—N3—C1276.3 (5)C7—C8—C9—C10178.1 (5)
N1—Cu1—N3—C840.2 (7)C9—C10—C11—C122.7 (9)
N4—Cu1—N3—C8164.8 (4)Cu1—N3—C12—C11173.7 (4)
N2—Cu1—N3—C813.5 (4)C7—N2—C13—C1469.5 (6)
O1—Cu1—N3—C8108.9 (4)C6—N2—C13—C14168.0 (5)
N1—Cu1—N4—C16102.7 (16)Cu1—N2—C13—C1451.2 (6)
N3—Cu1—N4—C1692.5 (16)N2—C13—C14—C1591.7 (7)
N1—Cu1—O1—C1594.4 (6)Cu1—O1—C15—C1415.4 (9)
N3—Cu1—O1—C1576.1 (6)C13—C14—C15—O163.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O90.74 (5)2.46 (5)3.090 (12)145 (5)

Experimental details

Crystal data
Chemical formula[Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4
Mr560.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)18.8394 (16), 10.6049 (9), 23.171 (2)
β (°) 102.998 (2)
V3)4510.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.20 × 0.17 × 0.08
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.777, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
16472, 5616, 3249
Rint0.066
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.188, 1.11
No. of reflections5616
No. of parameters303
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0574P)2 + 23.552P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.66, 1.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O90.74 (5)2.46 (5)3.090 (12)145 (5)
 

Acknowledgements

This work was supported by a Korea Research Foundation (KRF) grant funded by the Korea government (MEST) (No. 2009–0073897). The authors acknowledge the Korea Basic Science Institute for the X-ray data collection.

References

First citationBebout, D. C., DeLanoy, A. E., Ehmann, D. E., Kastner, M. E., Parrish, D. A. & Butcher, R. J. (1998). Inorg. Chem. 37, 2952–2959.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRauterkus, M. J., Fakih, S., Mock, C., Puscasu, I. & Krebs, B. (2003). Inorg. Chim. Acta 350, 355–365.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, A. S., Zhang, J. & Moore, J. S. (1996). J. Am. Chem. Soc. 118, 1019–1027.  CrossRef CAS Web of Science Google Scholar
First citationShin, J. W., Rowthu, S. R., Kim, B. G. & Min, K. S. (2010). Dalton Trans. pp. 2765–2767.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStaveren, D. R. van, Bothe, E., Weyherműller, T. & Metzler-Nolte, N. (2002). Eur. J. Inorg. Chem. pp. 1518–1529.  Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoung, M. J., Wahnon, D., Hynes, R. C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441–9447.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m143-m144
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds