organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]-N′-(naphthalen-1-yl­methyl­­idene)acetohydrazide

aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, bDepartment of Chemistry, Science Faculty, Fırat University, 23119 Elazığ, Turkey, and cDepartment of Chemistry, Science Faculty, Bitlis Eren University, 13000 Bitlis, Turkey
*Correspondence e-mail: ersin.inkaya@oposta.omu.edu.tr

(Received 13 December 2010; accepted 4 January 2011; online 8 January 2011)

In the mol­ecular structure of the title hydrazide derivative, C27H24ClN3OS, the acetohydrazide group is approximately planar, with a maximum deviation of 0.017 (3) Å. The dihedral angle between the naphthyl­ene system and the phenyl ring is 78.91 (18)°. The crystal structure is stabilized by one weak inter­molecular C—H⋯O hydrogen bond and two aliphatic C—H⋯π hydrogen-bonding associations.

Related literature

For the applications and bioactivity of hydrazide derivatives, see: Feng et al. (2006[Feng, D.-J., Wang, P., Li, X.-Q. & Li, Z.-T. (2006). Chin. J. Chem. 24, 1200-1208.]); Yang et al. (2007[Yang, Y., Hu, H.-Y. & Chen, C.-F. (2007). Tetrahedron Lett. 48, 3505-3509.]); Kamal et al. (2007[Kamal, A., Khan, N. A., Reddy, K. S. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004-1013.]); Masunari & Tavares (2007[Masunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229-4236.]); Rando et al. (2002[Rando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., do Amaral, A. T., Ferreira, E. I. & Tavares, L. C. (2002). Bioorg. Med. Chem. 10, 557-560.]). For bond-length data, see: Demir et al. (2006[Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298-o299.]).

[Scheme 1]

Experimental

Crystal data
  • C27H24ClN3OS

  • Mr = 474.00

  • Monoclinic, P 21 /c

  • a = 7.498 (5) Å

  • b = 12.823 (5) Å

  • c = 24.924 (5) Å

  • β = 92.185 (5)°

  • V = 2394.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.36 × 0.22 × 0.12 mm

Data collection
  • Stoe IPDS 2 CCD diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.797, Tmax = 0.961

  • 12524 measured reflections

  • 4206 independent reflections

  • 1375 reflections with I > 2σ(I)

  • Rint = 0.135

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.156

  • S = 0.90

  • 4206 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C12/C13/S1/C14/N1 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.41 3.243 (7) 148
C8—H7ACg1ii 0.96 2.94 3.748 (3) 143
C16—H16BCg2iii 0.97 2.93 3.740 (8) 142
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazide derivatives of various compounds are very important units in host–guest chemistry due to their special arrangement of donor-acceptor functional groups (Feng et al., 2006; Yang et al., 2007). Hydrazine derivatives have also been associated with remarkable anticancer (Kamal et al., 2007), antibacterial (Masunari & Tavares, 2007) and tuberculostatic (Rando et al., 2002) activities. The title compound, the hydrazide derivative C27H24N3OClS (I) has been synthesized and its crystal structure is reported here.

In the structure of (I) (Fig. 1) the phenyl and thiazole rings are cis-related with respect to the cyclobutane ring. The dihedral angle between the naphthylene fragment with the thiazole and phenyl rings are 35.76 (17)° and 78.91 (18)°, respectively. The cyclobutane ring is puckered, with a dihedral angle of 25.20 (5)° between the two three-membered halves of the ring. The dihedral angle between the acetohydrazide group and the thiazole ring is 32.28 (38)°. The CO bond distance is 1.190 (6) Å comparing with a literature value of 1.187 (16) Å (Demir et al., 2006).

The crystal packing involves a weak intermolecular thiazole C13—H···O1 hydrogen bond (Table 1, Fig. 2) and intermoleculer C8—H···π (thiazole ring C12/C13/S1/C14/N1), C16—H···π (ring C22—C27) hydrogen-bonding associations (Fig. 3).

Related literature top

For the applications and bioactivity of hydrazide derivatives, see: Feng et al. (2006); Yang et al. (2007); Kamal et al. (2007); Masunari & Tavares (2007); Rando et al. (2002). For bond-length data, see: Demir et al. (2006).

Experimental top

The synthesis of the title compound was simply carried out in the following reaction (Fig. 4). A solution of 0.3975 gram (1 mmol) of N-[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-N-naphthalen -1-ylmethylenehydrazine was dissolved in 20 ml of dioxane containing 1 mmol triethylamine. To this solution, 90 µL (1 mmol) of chloroacetyl chloride solution in 20 ml 1,4-dioxane was added dropwise over a two hour period at room temperature with stirring. Mixture was stirred two hours more and then neutralized with 5% aqueous ammonia. The compound thus precipitated was filtered, washed with copious water and crystallized from ethanol, giving brown crystals (yield, 93%).

Refinement top

The data was poor because of the weakly diffracting crystals which were not of good quality. Although a long exposure time (5 minute) was applied, the reflections were quite weak, resulting in a too low observed/unique reflection ratio. H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic, methylene or methine C) or 1.5Ueq (methyl C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the C—H···O hydrogen bonding. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the C—H···π interactions. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.
[Figure 4] Fig. 4. Reaction scheme for the title compound.
2-Chloro-N-[4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazol-2-yl]- N'-(naphthalen-1-ylmethylidene)acetohydrazide top
Crystal data top
C27H24ClN3OSF(000) = 992
Mr = 474.00Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 9611 reflections
a = 7.498 (5) Åθ = 1.6–27.3°
b = 12.823 (5) ŵ = 0.27 mm1
c = 24.924 (5) ÅT = 296 K
β = 92.185 (5)°Prism, pale brown
V = 2394.6 (19) Å30.36 × 0.22 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS 2 CCD
diffractometer
4206 independent reflections
Radiation source: fine-focus sealed tube1375 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.135
rotation method scansθmax = 25.0°, θmin = 1.6°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 87
Tmin = 0.797, Tmax = 0.961k = 1515
12524 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
4206 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C27H24ClN3OSV = 2394.6 (19) Å3
Mr = 474.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.498 (5) ŵ = 0.27 mm1
b = 12.823 (5) ÅT = 296 K
c = 24.924 (5) Å0.36 × 0.22 × 0.12 mm
β = 92.185 (5)°
Data collection top
Stoe IPDS 2 CCD
diffractometer
4206 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1375 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.961Rint = 0.135
12524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.90Δρmax = 0.14 e Å3
4206 reflectionsΔρmin = 0.16 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.1715 (3)0.89358 (11)0.38214 (7)0.1256 (8)
S10.0165 (3)0.51892 (13)0.27709 (7)0.1101 (7)
N10.2484 (6)0.4174 (3)0.33380 (17)0.0726 (14)
N20.1837 (6)0.5845 (3)0.37084 (17)0.0721 (14)
N30.2157 (6)0.5688 (3)0.42568 (17)0.0760 (15)
O10.1257 (7)0.7154 (3)0.31249 (16)0.1143 (18)
C10.7867 (12)0.1538 (6)0.3653 (3)0.127 (3)
H10.83390.17240.33270.153*
C20.8984 (11)0.1442 (7)0.4126 (4)0.140 (3)
H21.01980.15770.41060.168*
C30.8345 (13)0.1166 (6)0.4591 (4)0.110 (3)
H30.91160.11000.48910.132*
C40.6583 (13)0.0977 (5)0.4638 (3)0.103 (2)
H40.61280.07890.49660.123*
C50.5461 (9)0.1073 (4)0.4178 (3)0.091 (2)
H50.42480.09430.42080.109*
C60.6064 (11)0.1348 (4)0.3692 (3)0.0798 (18)
C80.4959 (9)0.0466 (4)0.2850 (2)0.103 (2)
H7A0.61920.03270.27890.155*
H7B0.43250.05700.25130.155*
H7C0.44520.01140.30340.155*
C70.4812 (9)0.1451 (4)0.3194 (2)0.0763 (18)
C90.4947 (9)0.2463 (4)0.2867 (2)0.0884 (19)
H9A0.54750.23680.25210.106*
H9B0.55160.30330.30640.106*
C100.2863 (9)0.1759 (4)0.3310 (2)0.0788 (18)
H10A0.20160.11920.32610.095*
H10B0.27370.20930.36560.095*
C110.2862 (9)0.2530 (4)0.2835 (2)0.0811 (18)
H110.23940.21870.25080.097*
C120.1991 (8)0.3552 (4)0.2899 (2)0.0748 (18)
C130.0734 (9)0.3984 (4)0.2568 (2)0.097 (2)
H130.02410.36570.22640.117*
C140.1626 (8)0.5056 (4)0.3315 (2)0.0730 (17)
C150.1622 (8)0.6881 (4)0.3572 (2)0.082 (2)
C160.1878 (8)0.7630 (4)0.4043 (2)0.0866 (19)
H16A0.30400.75150.42170.104*
H16B0.09760.74970.43030.104*
C170.2259 (8)0.4801 (4)0.4471 (2)0.0809 (19)
H170.21390.41980.42650.097*
C180.2573 (8)0.4748 (4)0.5056 (2)0.0760 (17)
C190.2719 (9)0.5651 (5)0.5343 (3)0.108 (3)
H190.26000.62880.51670.129*
C200.3046 (11)0.5631 (6)0.5900 (3)0.135 (3)
H200.31440.62550.60890.162*
C210.3222 (10)0.4714 (7)0.6168 (3)0.123 (3)
H210.34540.47130.65370.148*
C220.3057 (8)0.3774 (5)0.5892 (2)0.0807 (18)
C230.2711 (8)0.3776 (4)0.5329 (2)0.0745 (17)
C240.2565 (8)0.2805 (4)0.5059 (2)0.092 (2)
H240.23920.27860.46870.111*
C250.2679 (10)0.1900 (5)0.5343 (3)0.106 (2)
H250.25220.12700.51630.127*
C260.3021 (10)0.1887 (6)0.5893 (3)0.115 (3)
H260.31260.12570.60760.138*
C270.3200 (9)0.2792 (7)0.6158 (3)0.106 (2)
H270.34240.27790.65270.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.187 (2)0.0619 (9)0.1246 (15)0.0055 (11)0.0343 (14)0.0081 (10)
S10.1371 (17)0.1007 (12)0.0888 (12)0.0283 (12)0.0443 (12)0.0148 (10)
N10.097 (4)0.059 (3)0.061 (3)0.004 (3)0.011 (3)0.002 (2)
N20.106 (4)0.058 (3)0.052 (3)0.011 (3)0.002 (3)0.003 (2)
N30.107 (4)0.069 (3)0.051 (3)0.006 (3)0.009 (3)0.004 (2)
O10.190 (5)0.081 (3)0.069 (3)0.020 (3)0.018 (3)0.014 (2)
C10.104 (7)0.186 (8)0.093 (6)0.001 (6)0.000 (6)0.024 (5)
C20.092 (7)0.232 (10)0.097 (6)0.001 (6)0.000 (6)0.026 (7)
C30.111 (8)0.120 (6)0.097 (6)0.024 (6)0.013 (6)0.029 (5)
C40.123 (7)0.086 (4)0.097 (6)0.002 (5)0.018 (5)0.005 (4)
C50.112 (6)0.079 (4)0.080 (5)0.007 (4)0.014 (5)0.003 (4)
C60.096 (6)0.067 (4)0.077 (5)0.006 (4)0.001 (4)0.017 (4)
C80.129 (6)0.091 (4)0.089 (5)0.017 (4)0.008 (4)0.029 (4)
C70.094 (6)0.068 (4)0.067 (4)0.004 (3)0.000 (4)0.011 (3)
C90.106 (6)0.083 (4)0.077 (4)0.005 (4)0.010 (4)0.016 (4)
C100.099 (6)0.071 (3)0.067 (4)0.004 (4)0.002 (4)0.003 (3)
C110.110 (6)0.064 (4)0.069 (4)0.000 (4)0.005 (4)0.007 (3)
C120.105 (5)0.059 (3)0.060 (4)0.006 (3)0.002 (4)0.006 (3)
C130.128 (6)0.096 (4)0.067 (4)0.004 (4)0.023 (4)0.013 (4)
C140.108 (5)0.063 (4)0.046 (3)0.003 (4)0.013 (3)0.003 (3)
C150.112 (6)0.064 (4)0.069 (4)0.007 (3)0.008 (4)0.008 (3)
C160.114 (6)0.061 (3)0.084 (4)0.006 (3)0.010 (4)0.008 (3)
C170.126 (6)0.067 (4)0.048 (4)0.013 (4)0.012 (3)0.011 (3)
C180.100 (5)0.067 (4)0.060 (4)0.009 (3)0.005 (3)0.003 (3)
C190.166 (8)0.077 (4)0.077 (5)0.001 (4)0.025 (5)0.007 (4)
C200.198 (9)0.118 (6)0.087 (6)0.016 (6)0.029 (6)0.023 (5)
C210.163 (8)0.145 (7)0.061 (5)0.014 (6)0.021 (5)0.007 (5)
C220.089 (5)0.107 (5)0.046 (4)0.000 (4)0.003 (3)0.012 (4)
C230.082 (5)0.079 (4)0.063 (4)0.006 (3)0.002 (3)0.006 (3)
C240.126 (6)0.078 (4)0.071 (4)0.008 (4)0.010 (4)0.012 (4)
C250.145 (7)0.082 (5)0.091 (5)0.006 (4)0.003 (5)0.021 (4)
C260.128 (7)0.108 (6)0.108 (7)0.008 (5)0.005 (5)0.037 (5)
C270.107 (6)0.138 (6)0.073 (5)0.010 (5)0.006 (4)0.032 (5)
Geometric parameters (Å, º) top
Cl1—C161.766 (5)C10—C111.541 (7)
S1—C131.686 (6)C10—H10A0.9700
S1—C141.720 (5)C10—H10B0.9700
N1—C141.301 (6)C11—C121.476 (7)
N1—C121.392 (6)C11—H110.9800
N2—C151.379 (6)C12—C131.349 (7)
N2—N31.393 (5)C13—H130.9300
N2—C141.412 (6)C15—C161.523 (7)
N3—C171.257 (5)C16—H16A0.9700
O1—C151.190 (6)C16—H16B0.9700
C1—C61.380 (9)C17—C181.470 (7)
C1—C21.425 (9)C17—H170.9300
C1—H10.9300C18—C191.364 (7)
C2—C31.321 (9)C18—C231.422 (7)
C2—H20.9300C19—C201.403 (8)
C3—C41.353 (9)C19—H190.9300
C3—H30.9300C20—C211.356 (8)
C4—C51.401 (8)C20—H200.9300
C4—H40.9300C21—C221.391 (8)
C5—C61.356 (8)C21—H210.9300
C5—H50.9300C22—C231.417 (7)
C6—C71.532 (8)C22—C271.425 (8)
C8—C71.532 (6)C23—C241.418 (7)
C8—H7A0.9600C24—C251.361 (7)
C8—H7B0.9600C24—H240.9300
C8—H7C0.9600C25—C261.384 (8)
C7—C91.539 (7)C25—H250.9300
C7—C101.552 (7)C26—C271.340 (8)
C9—C111.565 (8)C26—H260.9300
C9—H9A0.9700C27—H270.9300
C9—H9B0.9700
C13—S1—C1489.2 (3)C9—C11—H11110.0
C14—N1—C12110.4 (4)C13—C12—N1113.8 (5)
C15—N2—N3113.2 (4)C13—C12—C11126.9 (5)
C15—N2—C14120.6 (4)N1—C12—C11119.3 (5)
N3—N2—C14126.0 (4)C12—C13—S1111.8 (4)
C17—N3—N2123.5 (4)C12—C13—H13124.1
C6—C1—C2118.2 (8)S1—C13—H13124.1
C6—C1—H1120.9N1—C14—N2123.4 (4)
C2—C1—H1120.9N1—C14—S1114.8 (4)
C3—C2—C1121.9 (8)N2—C14—S1121.8 (4)
C3—C2—H2119.1O1—C15—N2122.4 (5)
C1—C2—H2119.1O1—C15—C16123.6 (5)
C2—C3—C4120.8 (8)N2—C15—C16114.1 (5)
C2—C3—H3119.6C15—C16—Cl1110.6 (4)
C4—C3—H3119.6C15—C16—H16A109.5
C3—C4—C5118.2 (8)Cl1—C16—H16A109.5
C3—C4—H4120.9C15—C16—H16B109.5
C5—C4—H4120.9Cl1—C16—H16B109.5
C6—C5—C4122.9 (7)H16A—C16—H16B108.1
C6—C5—H5118.5N3—C17—C18117.9 (5)
C4—C5—H5118.5N3—C17—H17121.0
C5—C6—C1118.0 (6)C18—C17—H17121.0
C5—C6—C7122.0 (7)C19—C18—C23119.4 (5)
C1—C6—C7119.9 (7)C19—C18—C17119.1 (5)
C7—C8—H7A109.5C23—C18—C17121.5 (5)
C7—C8—H7B109.5C18—C19—C20120.8 (6)
H7A—C8—H7B109.5C18—C19—H19119.6
C7—C8—H7C109.5C20—C19—H19119.6
H7A—C8—H7C109.5C21—C20—C19120.9 (6)
H7B—C8—H7C109.5C21—C20—H20119.6
C6—C7—C8109.1 (5)C19—C20—H20119.6
C6—C7—C9116.8 (5)C20—C21—C22120.2 (6)
C8—C7—C9113.0 (5)C20—C21—H21119.9
C6—C7—C10115.1 (5)C22—C21—H21119.9
C8—C7—C10113.7 (5)C21—C22—C23119.9 (6)
C9—C7—C1088.0 (4)C21—C22—C27122.1 (6)
C7—C9—C1189.2 (5)C23—C22—C27118.0 (6)
C7—C9—H9A113.8C22—C23—C24118.5 (5)
C11—C9—H9A113.8C22—C23—C18118.9 (5)
C7—C9—H9B113.8C24—C23—C18122.7 (5)
C11—C9—H9B113.8C25—C24—C23119.9 (5)
H9A—C9—H9B111.0C25—C24—H24120.0
C11—C10—C789.7 (5)C23—C24—H24120.0
C11—C10—H10A113.7C24—C25—C26122.2 (7)
C7—C10—H10A113.7C24—C25—H25118.9
C11—C10—H10B113.7C26—C25—H25118.9
C7—C10—H10B113.7C27—C26—C25119.2 (7)
H10A—C10—H10B110.9C27—C26—H26120.4
C12—C11—C10118.3 (5)C25—C26—H26120.4
C12—C11—C9119.2 (5)C26—C27—C22122.2 (6)
C10—C11—C987.4 (4)C26—C27—H27118.9
C12—C11—H11110.0C22—C27—H27118.9
C10—C11—H11110.0
C15—N2—N3—C17174.5 (6)C15—N2—C14—N1149.7 (6)
C14—N2—N3—C171.6 (9)N3—N2—C14—N134.4 (9)
C6—C1—C2—C30.9 (12)C15—N2—C14—S131.5 (8)
C1—C2—C3—C41.0 (13)N3—N2—C14—S1144.4 (5)
C2—C3—C4—C50.6 (12)C13—S1—C14—N10.5 (5)
C3—C4—C5—C60.2 (10)C13—S1—C14—N2178.4 (5)
C4—C5—C6—C10.1 (10)N3—N2—C15—O1176.4 (6)
C4—C5—C6—C7179.9 (5)C14—N2—C15—O10.0 (10)
C2—C1—C6—C50.4 (10)N3—N2—C15—C163.1 (7)
C2—C1—C6—C7179.5 (6)C14—N2—C15—C16179.4 (5)
C5—C6—C7—C8100.5 (7)O1—C15—C16—Cl14.2 (9)
C1—C6—C7—C879.6 (7)N2—C15—C16—Cl1176.3 (4)
C5—C6—C7—C9129.9 (6)N2—N3—C17—C18179.0 (5)
C1—C6—C7—C950.1 (8)N3—C17—C18—C190.8 (9)
C5—C6—C7—C1028.7 (8)N3—C17—C18—C23179.8 (6)
C1—C6—C7—C10151.2 (6)C23—C18—C19—C201.6 (10)
C6—C7—C9—C11135.0 (6)C17—C18—C19—C20179.0 (7)
C8—C7—C9—C1197.2 (5)C18—C19—C20—C210.1 (13)
C10—C7—C9—C1117.8 (4)C19—C20—C21—C220.8 (13)
C6—C7—C10—C11136.9 (5)C20—C21—C22—C230.2 (11)
C8—C7—C10—C1196.2 (5)C20—C21—C22—C27178.8 (8)
C9—C7—C10—C1118.1 (4)C21—C22—C23—C24179.5 (6)
C7—C10—C11—C12139.8 (5)C27—C22—C23—C241.4 (9)
C7—C10—C11—C917.8 (4)C21—C22—C23—C181.2 (9)
C7—C9—C11—C12139.1 (5)C27—C22—C23—C18179.7 (6)
C7—C9—C11—C1017.9 (4)C19—C18—C23—C222.1 (9)
C14—N1—C12—C131.6 (7)C17—C18—C23—C22178.5 (6)
C14—N1—C12—C11177.6 (5)C19—C18—C23—C24179.7 (6)
C10—C11—C12—C13127.6 (7)C17—C18—C23—C240.3 (9)
C9—C11—C12—C13128.4 (6)C22—C23—C24—C252.9 (9)
C10—C11—C12—N153.3 (8)C18—C23—C24—C25178.9 (6)
C9—C11—C12—N150.8 (7)C23—C24—C25—C263.2 (11)
N1—C12—C13—S12.0 (7)C24—C25—C26—C271.8 (12)
C11—C12—C13—S1177.2 (5)C25—C26—C27—C220.3 (12)
C14—S1—C13—C121.4 (5)C21—C22—C27—C26179.2 (8)
C12—N1—C14—N2179.4 (5)C23—C22—C27—C260.2 (10)
C12—N1—C14—S10.5 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C12/C13/S1/C14/N1 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.413.243 (7)148
C8—H7A···Cg1ii0.962.943.748 (3)143
C16—H16B···Cg2iii0.972.933.740 (8)142
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H24ClN3OS
Mr474.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.498 (5), 12.823 (5), 24.924 (5)
β (°) 92.185 (5)
V3)2394.6 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.22 × 0.12
Data collection
DiffractometerStoe IPDS 2 CCD
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.797, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
12524, 4206, 1375
Rint0.135
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.156, 0.90
No. of reflections4206
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C12/C13/S1/C14/N1 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.413.243 (7)148.3
C8—H7A···Cg1ii0.962.943.748 (3)143
C16—H16B···Cg2iii0.972.933.740 (8)142
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z+1.
 

Acknowledgements

This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-461).

References

First citationDemir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298–o299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeng, D.-J., Wang, P., Li, X.-Q. & Li, Z.-T. (2006). Chin. J. Chem. 24, 1200–1208.  Web of Science CrossRef CAS Google Scholar
First citationKamal, A., Khan, N. A., Reddy, K. S. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMasunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229–4236.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., do Amaral, A. T., Ferreira, E. I. & Tavares, L. C. (2002). Bioorg. Med. Chem. 10, 557–560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYang, Y., Hu, H.-Y. & Chen, C.-F. (2007). Tetrahedron Lett. 48, 3505–3509.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds