organic compounds
4-Benzyl-3-[(1-oxidoethylidene)amino]-1-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-iminium
aSouth-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru
The title compound, C17H17N5O, exists in the zwitterionic form with the amide group deprotonated. The mean planes of the 1,2,4-triazole and N-phenyl rings form a dihedral angle of 39.14 (8)°. The N atom of the amino group adopts a trigonal configuration. Intermoleculat C—H⋯O and C—H⋯N hydrogen bonds occur. In the crystal, molecules are linked into a two-dimensional network parallel to (10) by N—H⋯O and N—H⋯N hydrogen bonds. C—H⋯N contacts are also observed.
Related literature
For the synthesis of the starting compound, N-(5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)acetamide, see: Chernyshev et al. (2005). For alkylation and other reactions of related compounds with electrophiles, see: Chernyshev et al. (2008a,b). For crystal structures of 3(5)-acylamino-1,2,4-triazoles, see: Selby & Lepone (1984); Gyorgydeak et al. (1995); Chernyshev et al. (2006); Masiukiewicz et al. (2007); Miao et al. (2009). For crystal structures of 5-amino-1,2,4-triazolium salts, see: Darwich et al. (2008a,b); Klapotke & Sabate (2008); Tao et al. (2009); Chernyshev et al. (2010). For standard bond lengths, see: Allen et al. (1987). For the correlation of bond lengths with bond orders in sp2-hybridized C and N atoms, see: Burke-Laing & Laing (1976).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811006751/aa2002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811006751/aa2002Isup2.hkl
The crystals of the acetyl(5-amino-4-benzyl-1-phenyl-4H-1,2,4-triazol-1-ium-3 -yl)azanide (9) suitable for X-ray analysis were grown by slow evaporation of ethanol solution at room temperature within one week. The title compound was prepared by the following procedure.
A mixture of compound 8 (2 g, 9.2 mmol), benzyl bromide (1.89 g, 11.1 mmol) and DMF (4.0 ml) was heated at 353 K and stirring for 4 h, then cooled to room temperature and diluted with 20% aqueous solution of NH3 (8 ml). The resulted mixture was cooled to 276–278 K and the precipitate formed was isolated by filtration, washed with cold water, recrystallized from ethanol and dried at 373 K to give 2.21 g (78% yield) of compound 9. White powder, m. p. 472–473 K. Spectrum 13C NMR (150 MHz), δ: 22.57 (CH3), 43.99 (CH2), 118.54, 123.93, 127.12, 127.54, 128.54, 128.79, 135.86, 138.75 (carbons of phenyls), 141.16, 150.43 (carbons of triazole), 170.64 (CO). MS (EI, 70 eV), m/z (%): 307 (6) [M+], 265 (8), 119 (7), 104 (11), 91 (100), 77 (31), 65 (18), 43 (48). Anal. Calcd for C17H17N5O: C, 66.43; H, 5.58; N, 22.79. Found: C, 66.27; H, 5.49; N, 22.98.
The starting N-(5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)acetamide (8) was obtained by the known method (Chernyshev et al., 2005).
C-bound H atoms were placed in calculated positions C—H 0.93Å for aromatic, C—H = 0.97Å for CH2, C—H = 0.96Å for CH3 and refined as riding, with Uiso(H) = 1.2(1.5)Ueq(C). H-atoms forming hydrogen (N-bound H atoms) bonds were found from difference Fourier map and refined independently.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C17H17N5O | F(000) = 648 |
Mr = 307.36 | Dx = 1.301 Mg m−3 |
Monoclinic, P21/n | Melting point = 472–473 K |
Hall symbol: -P 2yn | Ag Kα radiation, λ = 0.56085 Å |
a = 10.262 (2) Å | Cell parameters from 25 reflections |
b = 15.240 (3) Å | θ = 13.2–14.4° |
c = 10.967 (2) Å | µ = 0.06 mm−1 |
β = 113.86 (2)° | T = 295 K |
V = 1568.6 (6) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.20 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.068 |
Radiation source: fine-focus sealed tube | θmax = 21.0°, θmin = 1.8° |
Graphite monochromator | h = −13→11 |
Non–profiled ω scans | k = 0→19 |
3582 measured reflections | l = 0→13 |
3412 independent reflections | 1 standard reflections every 6 min |
2294 reflections with I > 2σ(I) | intensity decay: −1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.160 | w = 1/[σ2(Fo2) + (0.0799P)2 + 0.4611P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3412 reflections | Δρmax = 0.30 e Å−3 |
218 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.066 (6) |
C17H17N5O | V = 1568.6 (6) Å3 |
Mr = 307.36 | Z = 4 |
Monoclinic, P21/n | Ag Kα radiation, λ = 0.56085 Å |
a = 10.262 (2) Å | µ = 0.06 mm−1 |
b = 15.240 (3) Å | T = 295 K |
c = 10.967 (2) Å | 0.20 × 0.20 × 0.20 mm |
β = 113.86 (2)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.068 |
3582 measured reflections | 1 standard reflections every 6 min |
3412 independent reflections | intensity decay: −1% |
2294 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.160 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.30 e Å−3 |
3412 reflections | Δρmin = −0.22 e Å−3 |
218 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.86753 (18) | 0.33588 (11) | 0.43051 (16) | 0.0345 (4) | |
N2 | 0.96176 (18) | 0.26764 (11) | 0.49396 (16) | 0.0355 (4) | |
C3 | 0.9547 (2) | 0.21474 (13) | 0.39830 (19) | 0.0314 (5) | |
N4 | 0.85963 (17) | 0.24731 (11) | 0.27474 (15) | 0.0314 (4) | |
C5 | 0.8081 (2) | 0.32385 (13) | 0.29796 (19) | 0.0315 (5) | |
C6 | 0.8381 (2) | 0.21434 (14) | 0.14185 (19) | 0.0340 (5) | |
H6A | 0.7417 | 0.2280 | 0.0797 | 0.041* | |
H6B | 0.8481 | 0.1510 | 0.1459 | 0.041* | |
C7 | 0.9406 (2) | 0.25232 (14) | 0.0901 (2) | 0.0383 (5) | |
C8 | 1.0832 (3) | 0.2325 (2) | 0.1442 (3) | 0.0597 (7) | |
H8 | 1.1190 | 0.1948 | 0.2169 | 0.072* | |
C9 | 1.1747 (3) | 0.2673 (2) | 0.0931 (3) | 0.0688 (8) | |
H9 | 1.2711 | 0.2533 | 0.1322 | 0.083* | |
C10 | 1.1255 (4) | 0.3211 (2) | −0.0126 (4) | 0.0812 (10) | |
H10 | 1.1868 | 0.3434 | −0.0484 | 0.097* | |
C11 | 0.9848 (5) | 0.3428 (3) | −0.0668 (5) | 0.128 (2) | |
H11 | 0.9499 | 0.3807 | −0.1395 | 0.153* | |
C12 | 0.8939 (3) | 0.3090 (3) | −0.0146 (4) | 0.0911 (12) | |
H12 | 0.7983 | 0.3252 | −0.0518 | 0.109* | |
N13 | 1.04305 (18) | 0.14482 (11) | 0.41734 (17) | 0.0371 (4) | |
C14 | 0.9911 (2) | 0.06725 (14) | 0.3633 (2) | 0.0393 (5) | |
O14 | 0.86200 (18) | 0.04827 (10) | 0.30395 (16) | 0.0492 (5) | |
C15 | 1.1022 (3) | −0.00100 (17) | 0.3782 (3) | 0.0563 (7) | |
H15A | 1.0685 | −0.0575 | 0.3914 | 0.084* | |
H15B | 1.1885 | 0.0131 | 0.4536 | 0.084* | |
H15C | 1.1207 | −0.0022 | 0.2991 | 0.084* | |
C16 | 0.8529 (2) | 0.40728 (14) | 0.5074 (2) | 0.0381 (5) | |
C17 | 0.7220 (3) | 0.44477 (17) | 0.4786 (2) | 0.0520 (6) | |
H17 | 0.6411 | 0.4231 | 0.4095 | 0.062* | |
C18 | 0.7124 (4) | 0.5152 (2) | 0.5538 (3) | 0.0678 (8) | |
H18 | 0.6249 | 0.5424 | 0.5333 | 0.081* | |
C19 | 0.8311 (5) | 0.5452 (2) | 0.6586 (3) | 0.0751 (10) | |
H19 | 0.8238 | 0.5924 | 0.7092 | 0.090* | |
C20 | 0.9602 (4) | 0.50577 (19) | 0.6889 (3) | 0.0637 (8) | |
H20 | 1.0397 | 0.5256 | 0.7614 | 0.076* | |
C21 | 0.9741 (3) | 0.43706 (16) | 0.6133 (2) | 0.0474 (6) | |
H21 | 1.0624 | 0.4112 | 0.6327 | 0.057* | |
N51 | 0.7197 (2) | 0.37631 (13) | 0.2071 (2) | 0.0438 (5) | |
H51A | 0.695 (3) | 0.433 (2) | 0.223 (2) | 0.053 (7)* | |
H51B | 0.689 (3) | 0.361 (2) | 0.127 (3) | 0.070 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0351 (9) | 0.0355 (9) | 0.0252 (9) | 0.0034 (7) | 0.0041 (7) | −0.0009 (7) |
N2 | 0.0372 (10) | 0.0353 (10) | 0.0254 (8) | 0.0043 (7) | 0.0036 (7) | 0.0026 (7) |
C3 | 0.0282 (10) | 0.0337 (10) | 0.0258 (10) | −0.0020 (8) | 0.0040 (8) | 0.0037 (8) |
N4 | 0.0315 (9) | 0.0324 (9) | 0.0220 (8) | −0.0001 (7) | 0.0022 (7) | 0.0010 (7) |
C5 | 0.0309 (10) | 0.0290 (10) | 0.0269 (10) | −0.0015 (8) | 0.0036 (8) | −0.0007 (8) |
C6 | 0.0371 (11) | 0.0330 (11) | 0.0229 (9) | −0.0005 (9) | 0.0029 (8) | −0.0017 (8) |
C7 | 0.0432 (12) | 0.0380 (11) | 0.0307 (11) | −0.0021 (10) | 0.0119 (9) | −0.0026 (9) |
C8 | 0.0503 (16) | 0.0741 (19) | 0.0557 (16) | 0.0122 (13) | 0.0223 (13) | 0.0085 (14) |
C9 | 0.0537 (17) | 0.083 (2) | 0.079 (2) | −0.0007 (15) | 0.0357 (16) | −0.0137 (18) |
C10 | 0.082 (2) | 0.092 (2) | 0.088 (2) | −0.021 (2) | 0.053 (2) | 0.001 (2) |
C11 | 0.085 (3) | 0.190 (5) | 0.111 (3) | 0.003 (3) | 0.043 (2) | 0.089 (4) |
C12 | 0.0585 (19) | 0.130 (3) | 0.080 (2) | 0.0083 (19) | 0.0224 (17) | 0.063 (2) |
N13 | 0.0355 (9) | 0.0360 (10) | 0.0298 (9) | 0.0032 (8) | 0.0029 (7) | 0.0018 (8) |
C14 | 0.0459 (13) | 0.0349 (11) | 0.0293 (11) | 0.0040 (10) | 0.0071 (9) | 0.0053 (9) |
O14 | 0.0477 (10) | 0.0357 (8) | 0.0474 (10) | −0.0052 (7) | 0.0019 (7) | 0.0030 (7) |
C15 | 0.0608 (16) | 0.0463 (14) | 0.0544 (16) | 0.0123 (12) | 0.0158 (13) | −0.0009 (12) |
C16 | 0.0493 (13) | 0.0356 (11) | 0.0290 (11) | −0.0031 (10) | 0.0154 (9) | 0.0011 (9) |
C17 | 0.0600 (16) | 0.0531 (15) | 0.0425 (13) | 0.0068 (12) | 0.0202 (12) | −0.0015 (11) |
C18 | 0.096 (2) | 0.0560 (17) | 0.0662 (19) | 0.0191 (16) | 0.0479 (18) | 0.0045 (15) |
C19 | 0.135 (3) | 0.0474 (16) | 0.0628 (19) | −0.0084 (19) | 0.061 (2) | −0.0137 (14) |
C20 | 0.099 (2) | 0.0552 (16) | 0.0436 (15) | −0.0323 (17) | 0.0357 (15) | −0.0163 (12) |
C21 | 0.0587 (15) | 0.0486 (13) | 0.0332 (12) | −0.0147 (11) | 0.0167 (11) | −0.0057 (10) |
N51 | 0.0510 (12) | 0.0332 (10) | 0.0284 (10) | 0.0102 (9) | −0.0033 (8) | −0.0023 (8) |
N4—C5 | 1.347 (3) | C11—H11 | 0.9300 |
N4—C3 | 1.402 (2) | C12—H12 | 0.9300 |
N4—C6 | 1.471 (3) | N13—C14 | 1.333 (3) |
C5—N51 | 1.313 (3) | C14—O14 | 1.251 (3) |
C5—N1 | 1.342 (2) | C14—C15 | 1.503 (3) |
N1—N2 | 1.399 (2) | C15—H15A | 0.9600 |
N1—C16 | 1.422 (3) | C15—H15B | 0.9600 |
N2—C3 | 1.302 (3) | C15—H15C | 0.9600 |
C3—N13 | 1.359 (3) | C16—C17 | 1.374 (3) |
C6—C7 | 1.499 (3) | C16—C21 | 1.390 (3) |
C6—H6A | 0.9700 | C17—C18 | 1.382 (4) |
C6—H6B | 0.9700 | C17—H17 | 0.9300 |
C7—C12 | 1.360 (4) | C18—C19 | 1.371 (5) |
C7—C8 | 1.371 (3) | C18—H18 | 0.9300 |
C8—C9 | 1.379 (4) | C19—C20 | 1.368 (5) |
C8—H8 | 0.9300 | C19—H19 | 0.9300 |
C9—C10 | 1.341 (5) | C20—C21 | 1.378 (4) |
C9—H9 | 0.9300 | C20—H20 | 0.9300 |
C10—C11 | 1.361 (5) | C21—H21 | 0.9300 |
C10—H10 | 0.9300 | N51—H51A | 0.94 (3) |
C11—C12 | 1.378 (5) | N51—H51B | 0.84 (3) |
C5—N4—C3 | 107.27 (16) | C7—C12—C11 | 121.5 (3) |
C5—N4—C6 | 124.75 (16) | C7—C12—H12 | 119.3 |
C3—N4—C6 | 127.11 (17) | C11—C12—H12 | 119.3 |
N51—C5—N1 | 127.6 (2) | C14—N13—C3 | 120.35 (18) |
N51—C5—N4 | 125.98 (19) | O14—C14—N13 | 125.8 (2) |
N1—C5—N4 | 106.38 (16) | O14—C14—C15 | 119.6 (2) |
C5—N1—N2 | 110.92 (16) | N13—C14—C15 | 114.6 (2) |
C5—N1—C16 | 129.54 (17) | C14—C15—H15A | 109.5 |
N2—N1—C16 | 119.44 (16) | C14—C15—H15B | 109.5 |
C3—N2—N1 | 104.94 (15) | H15A—C15—H15B | 109.5 |
N2—C3—N13 | 123.07 (17) | C14—C15—H15C | 109.5 |
N2—C3—N4 | 110.47 (17) | H15A—C15—H15C | 109.5 |
N13—C3—N4 | 125.89 (18) | H15B—C15—H15C | 109.5 |
N4—C6—C7 | 113.32 (17) | C17—C16—C21 | 121.2 (2) |
N4—C6—H6A | 108.9 | C17—C16—N1 | 120.7 (2) |
C7—C6—H6A | 108.9 | C21—C16—N1 | 118.2 (2) |
N4—C6—H6B | 108.9 | C16—C17—C18 | 119.0 (3) |
C7—C6—H6B | 108.9 | C16—C17—H17 | 120.5 |
H6A—C6—H6B | 107.7 | C18—C17—H17 | 120.5 |
C12—C7—C8 | 117.1 (2) | C19—C18—C17 | 120.3 (3) |
C12—C7—C6 | 120.2 (2) | C19—C18—H18 | 119.8 |
C8—C7—C6 | 122.7 (2) | C17—C18—H18 | 119.8 |
C7—C8—C9 | 121.5 (3) | C20—C19—C18 | 120.2 (3) |
C7—C8—H8 | 119.2 | C20—C19—H19 | 119.9 |
C9—C8—H8 | 119.2 | C18—C19—H19 | 119.9 |
C10—C9—C8 | 120.4 (3) | C19—C20—C21 | 120.9 (3) |
C10—C9—H9 | 119.8 | C19—C20—H20 | 119.6 |
C8—C9—H9 | 119.8 | C21—C20—H20 | 119.6 |
C9—C10—C11 | 119.3 (3) | C20—C21—C16 | 118.4 (3) |
C9—C10—H10 | 120.4 | C20—C21—H21 | 120.8 |
C11—C10—H10 | 120.4 | C16—C21—H21 | 120.8 |
C10—C11—C12 | 120.3 (3) | C5—N51—H51A | 125.1 (15) |
C10—C11—H11 | 119.9 | C5—N51—H51B | 118 (2) |
C12—C11—H11 | 119.9 | H51A—N51—H51B | 116 (3) |
C3—N4—C5—N51 | 177.4 (2) | C7—C8—C9—C10 | −0.7 (5) |
C6—N4—C5—N51 | 7.4 (3) | C8—C9—C10—C11 | 1.6 (6) |
C3—N4—C5—N1 | −1.2 (2) | C9—C10—C11—C12 | −0.8 (7) |
C6—N4—C5—N1 | −171.22 (18) | C8—C7—C12—C11 | 2.0 (6) |
N51—C5—N1—N2 | −177.0 (2) | C6—C7—C12—C11 | −178.0 (4) |
N4—C5—N1—N2 | 1.6 (2) | C10—C11—C12—C7 | −1.1 (8) |
N51—C5—N1—C16 | −0.7 (4) | N2—C3—N13—C14 | 135.3 (2) |
N4—C5—N1—C16 | 177.9 (2) | N4—C3—N13—C14 | −54.2 (3) |
C5—N1—N2—C3 | −1.4 (2) | C3—N13—C14—O14 | −7.3 (3) |
C16—N1—N2—C3 | −178.07 (18) | C3—N13—C14—C15 | 172.8 (2) |
N1—N2—C3—N13 | 172.37 (18) | C5—N1—C16—C17 | 42.3 (3) |
N1—N2—C3—N4 | 0.5 (2) | N2—N1—C16—C17 | −141.7 (2) |
C5—N4—C3—N2 | 0.4 (2) | C5—N1—C16—C21 | −138.6 (2) |
C6—N4—C3—N2 | 170.09 (18) | N2—N1—C16—C21 | 37.4 (3) |
C5—N4—C3—N13 | −171.11 (19) | C21—C16—C17—C18 | 2.2 (4) |
C6—N4—C3—N13 | −1.4 (3) | N1—C16—C17—C18 | −178.7 (2) |
C5—N4—C6—C7 | 82.4 (2) | C16—C17—C18—C19 | −2.2 (4) |
C3—N4—C6—C7 | −85.5 (2) | C17—C18—C19—C20 | 0.4 (5) |
N4—C6—C7—C12 | −110.7 (3) | C18—C19—C20—C21 | 1.5 (4) |
N4—C6—C7—C8 | 69.3 (3) | C19—C20—C21—C16 | −1.5 (4) |
C12—C7—C8—C9 | −1.1 (4) | C17—C16—C21—C20 | −0.4 (3) |
C6—C7—C8—C9 | 178.9 (2) | N1—C16—C21—C20 | −179.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N51—H51A···O14i | 0.94 (3) | 1.83 (3) | 2.739 (3) | 161 (2) |
N51—H51B···N13ii | 0.84 (3) | 2.18 (3) | 2.971 (3) | 157 (3) |
C6—H6B···O14 | 0.97 | 2.30 | 3.045 (3) | 133 |
C8—H8···N13 | 0.93 | 2.72 | 3.454 (4) | 136 |
C17—H17···N51 | 0.93 | 2.75 | 3.146 (4) | 107 |
C12—H12···N13ii | 0.93 | 2.54 | 3.441 (4) | 162 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H17N5O |
Mr | 307.36 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 10.262 (2), 15.240 (3), 10.967 (2) |
β (°) | 113.86 (2) |
V (Å3) | 1568.6 (6) |
Z | 4 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3582, 3412, 2294 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.160, 1.03 |
No. of reflections | 3412 |
No. of parameters | 218 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.22 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N51—H51A···O14i | 0.94 (3) | 1.83 (3) | 2.739 (3) | 161 (2) |
N51—H51B···N13ii | 0.84 (3) | 2.18 (3) | 2.971 (3) | 157 (3) |
C6—H6B···O14 | 0.97 | 2.30 | 3.045 (3) | 133 |
C8—H8···N13 | 0.93 | 2.72 | 3.454 (4) | 136 |
C17—H17···N51 | 0.93 | 2.75 | 3.146 (4) | 107 |
C12—H12···N13ii | 0.93 | 2.54 | 3.441 (4) | 162 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, z−1/2. |
Bond | Uncorrected | Lower bound | Upper bound | Riding motion | Non–correlated motion |
C6–C7 | 1.499 (3) | 1.499 | 1.583 | 1.504 | 1.541 |
C7–C8 | 1.371 (3) | 1.375 | 1.517 | 1.394 | 1.446 |
C7–C12 | 1.360 (4) | 1.375 | 1.575 | 1.418 | 1.475 |
C8–C9 | 1.379 (4) | 1.380 | 1.573 | 1.388 | 1.476 |
C9–C10 | 1.341 (5) | 1.342 | 1.539 | 1.356 | 1.440 |
C10–C11 | 1.361 (5) | 1.370 | 1.679 | 1.413 | 1.524 |
C11–C12 | 1.378 (5) | 1.382 | 1.773 | 1.417 | 1.577 |
N13–C14 | 1.333 (3) | 1.333 | 1.449 | 1.335 | 1.391 |
C14–O14 | 1.251 (3) | 1.252 | 1.393 | 1.264 | 1.323 |
C14–C15 | 1.503 (3) | 1.505 | 1.636 | 1.519 | 1.570 |
C16–C17 | 1.374 (3) | 1.375 | 1.493 | 1.388 | 1.434 |
C16–C21 | 1.390 (3) | 1.391 | 1.519 | 1.401 | 1.455 |
C17–C18 | 1.382 (4) | 1.383 | 1.573 | 1.397 | 1.478 |
C18–C19 | 1.371 (5) | 1.372 | 1.538 | 1.378 | 1.455 |
C19–C20 | 1.368 (5) | 1.369 | 1.500 | 1.379 | 1.434 |
C20–C21 | 1.378 (4) | 1.380 | 1.549 | 1.394 | 1.464 |
Acknowledgements
This work was supported by the Ministry of Education and Science of the Russian Federation through the Federal Target Program `Research and Educational Personnel of Innovative Russia in 2009–2013 Years', State contract P302, project NK–109P/2. The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Burke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216–3224. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Chernyshev, V. M., Astakhov, A. V., Ivanov, V. V. & Starikova, Z. A. (2010). Acta Cryst. E66, o1644–o1645. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chernyshev, V. M., Khoroshkin, D. A., Sokolov, A. N., Taranushich, V. A., Gladkov, E. S., Shishkina, S. V., Shishkin, O. V. & Desenko, S. M. (2008b). J. Heterocycl. Chem. 45, 1419–1427. CrossRef CAS Google Scholar
Chernyshev, V. M., Kosov, A. E., Gladkov, E. S., Shishkina, S. V., Taranushich, V. A., Desenko, S. M. & Shishkin, O. V. (2006). Russ. Chem. Bull. 55, 338–344. Web of Science CrossRef CAS Google Scholar
Chernyshev, V. M., Rakitov, V. A., Taranushich, V. A. & Blinov, V. V. (2005). Chem. Heterocycl. Compd, 41, 1139–1146. CrossRef CAS Google Scholar
Chernyshev, V. M., Sokolov, A. N., Khoroshkin, D. A. & Taranushich, V. A. (2008a). Russ. J. Org. Chem. 44, 715–722. CrossRef CAS Google Scholar
Darwich, C., Karaghiosoff, K., Kaloptke, T. M. & Sabate, C. M. (2008a). Z. Anorg. Allg. Chem. 634, 61–68. CrossRef CAS Google Scholar
Darwich, C., Klapotke, T. M. & Sabate, C. M. (2008b). Chem. Eur. J. 14, 5756–5771. CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gyorgydeak, Z., Holzer, W., Kunz, R. W. & Linden, A. (1995). Monatsh. Chem. 126, 733–746. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Klapotke, T. M. & Sabate, C. M. (2008). Eur. J. Inorg. Chem. pp. 5350–5366. Google Scholar
Masiukiewicz, E., Rzeszotarska, B., Wawrzycka-Gorczyca, I. & Kolodziejczyk, E. (2007). Synth. Commun. 37, 1917–1925. CrossRef CAS Google Scholar
Miao, J., Jia, M., Liu, X., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2738. Web of Science CrossRef IUCr Journals Google Scholar
Selby, T. P. & Lepone, G. E. (1984). J. Heterocycl. Chem. 21, 61–64. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tao, G.-H., Twamley, B. & Shreeve, J. M. (2009). J. Mater. Chem. 19, 5850–5854. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Previously, during investigation of the reactions of 2-amino-4,5,6,7-tetrahydro-1,2,4-triazolo-[1,5-a]pyrimidines (Chernyshev et al., 2008a) we revealed that quaternization of the 2-amino-7-(4-methoxyphenyl)-5-phenyl-4,5,6,7-tetrahydro-1,2,4- triazolo[1,5-a]pyrimidine (1) with benzyl bromide occurred nonselectively and afforded a mixture of compounds 2 and 3 (Fig. 1). Selective alkylation was possible only after protection of the amino group of compound 1 by acylation (Fig. 2). As a result of quaternization of the compound 4 we obtained bromide 5, which was converted into the compound 6 under the action of KOH at room temperature and into the compound 7 at heating. The zwitterionic structure of the compound 6 was proposed on the basis of indirect data, i.e. comparison of its acid–base properties and spectral characteristics with the compound 7, which was considered as the fixed inverse tautomeric form. Unfortunately, we could not confirm the structure of the compound 6 by X-ray analysis due to difficulties in growing a suitable crystal. It was demonstrated in our previous works (Chernyshev et al., 2008a,b) that the chemical properties of 2-amino-4,5,6,7-tetrahydro-1,2,4-triazolo-[1,5-a]pyrimidines in many respects are analogous to 1-substituted 3,5-diamino-1,2,4-triazoles. For elaboration of a selective method for the preparation of 1,4-disubstituted 3,5-diamino-1,2,4-triazoles and additional confirmation of the structure of compound 6, we investigated the alkylation of N-(5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)acetamide (8) (Fig. 3). The present report describes our results of the X-ray investigation of the structure of compound 9, which can be considered as a structural analog of the compound 6.
The possibility of existence of the three tautomeric forms A–B can be presumed for the compound 9 (Fig. 4). In accordance with the X-ray diffraction data, the studied compound in the crystal exists as the zwitterionic tautomer A (Fig. 5). The triazole ring is planar, with the mean deviations of the ring atoms from their least-squares plane being 0.01 (2) Å. The N-phenyl and triazole rings are essentially noncoplanar, with a dihedral angle of 39.14 (8)°. The atom N13 of the deprotonated amide group deviates from the least-squares plane of triazole ring by 0.158 (2) Å, the dihedral angle between the planes of the amide group (N13/C14/O14) and triazole cycle amounts 54.6 (2)°. The length of the bond N13—C14 (1.333 (3) Å) is close to the length of the double bond Nsp2—Csp2 (Allen et al., 1987), whereas the bond O14—C14 (1.251 (2) Å) is longer then the typical amide bond (1.234 Å) (Allen et al., 1987). These results indicate a pronounced delocalization of bonds and negative charge in the deprotonated CON fragment. The bond N13—C3 (1.359 (3) Å) is slightly shorter than the analogous bond in the unionized 3-acylamino-1,2,4-triazoles (1.381 Å–1.395 Å) (Selby & Lepone, 1984; Gyorgydeak et al., 1995; Chernyshev et al., 2006; Masiukiewicz et al., 2007; Miao et al., 2009), probably as a result of an attractive polar interaction between the opposite charged amide and triazole fragments. The N51 atom deviates from the plane of the triazole ring by 0.060 (2) Å. Amino grope adopts a plane configuration (the sum of valence angles is 359.6°) and almost coplanar with the triazole cycle, forming a dihedral angle of 9.1 (2)°. The bonds N4—C5 and N1—C5 of the triazole cycle have almost equal length (1.342 (2)Å and 1.347 (3) Å, correspondingly), however the bond C5—N4 (1.313 (3) Å) is considerably shorter in relation to a purely single Nsp2—Csp2 bond (1.43 Å–1.45 Å) (Burke-Laing & Laing, 1976). It indicates the delocalization of the positive charge in the fragment N4/C5/N51/N1 and the considerable contribution of the imino form to the molecular structure of the discussed compound, analogously to another 5-amino-1,2,4-triazolium salts (Darwich et al., 2008a,b; Klapotke & Sabate, 2008; Tao et al., 2009; Chernyshev et al., 2010).
Two classical intermolecular hydrogen bonds are found in crystal structure (Table 1): N51—H51A···O14i with parameters - N51—H21Ai = 0.94 (3) Å, H51A···O14 = 1.83 (3) Å, N51···O14i = 2.739 (3)Å and angle N51—H21A···O14i = 160 (3)°; N51—H21B···N13ii with parameters - N51—H21Bii = 0.84 (3) Å, H51B···N13ii = 2.18 (3) Å, N51···N13ii = 2.971 (3)Å and angle N51—H21B···N13ii = 157 (3)°. Four non-classical hydrogen bonds are found in crystal structure (Table 1): C6—H6B···O14 with parameters - C6—H6B = 0.97 Å, H6B···O14 = 2.30 Å, C6···O14 = 3.045 (3)Å and angle C6—H6B···O14 = 133°; C8—H8···N13 with parameters - C8—H8 = 0.93 Å, H8···N13 = 2.72 Å, C8···N13 = 3.454 (4)Å and angle C8—H8···N13 = 136°; C17—H17···N51 with parameters - C17—H17 = 0.93 Å, H17···N51 = 2.75 Å, C17···N51 = 3.146 (4)Å and angle C17—H17···N21 = 107°; C12—H12···N13ii with parameters - C12—H12 = 0.93 Å, H12···N13ii = 2.54 Å, C12···N13ii = 3.441 (4)Å and angle C12—H12···N13ii = 162°. Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (ii) x - 1/2, -y + 1/2, z - 1/2.
Due to the structural similarity of compounds 6 and 9, we can conclude that the present results corroborate our previous deduction on the zwitterionic structure of compound 6.