organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o870-o871

4-Benzyl-3-[(1-oxido­ethyl­idene)amino]-1-phenyl-4,5-di­hydro-1H-1,2,4-triazol-5-iminium

aSouth-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 9 February 2011; accepted 22 February 2011; online 12 March 2011)

The title compound, C17H17N5O, exists in the zwitterionic form with the amide group deprotonated. The mean planes of the 1,2,4-triazole and N-phenyl rings form a dihedral angle of 39.14 (8)°. The N atom of the amino group adopts a trigonal configuration. Inter­moleculat C—H⋯O and C—H⋯N hydrogen bonds occur. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (10[\overline{1}]) by N—H⋯O and N—H⋯N hydrogen bonds. C—H⋯N contacts are also observed.

Related literature

For the synthesis of the starting compound, N-(5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)acetamide, see: Chernyshev et al. (2005[Chernyshev, V. M., Rakitov, V. A., Taranushich, V. A. & Blinov, V. V. (2005). Chem. Heterocycl. Compd, 41, 1139-1146.]). For alkyl­ation and other reactions of related compounds with electrophiles, see: Chernyshev et al. (2008a[Chernyshev, V. M., Sokolov, A. N., Khoroshkin, D. A. & Taranushich, V. A. (2008a). Russ. J. Org. Chem. 44, 715-722.],b[Chernyshev, V. M., Khoroshkin, D. A., Sokolov, A. N., Taranushich, V. A., Gladkov, E. S., Shishkina, S. V., Shishkin, O. V. & Desenko, S. M. (2008b). J. Heterocycl. Chem. 45, 1419-1427.]). For crystal structures of 3(5)-acyl­amino-1,2,4-triazoles, see: Selby & Lepone (1984[Selby, T. P. & Lepone, G. E. (1984). J. Heterocycl. Chem. 21, 61-64.]); Gyorgydeak et al. (1995[Gyorgydeak, Z., Holzer, W., Kunz, R. W. & Linden, A. (1995). Monatsh. Chem. 126, 733-746.]); Chernyshev et al. (2006[Chernyshev, V. M., Kosov, A. E., Gladkov, E. S., Shishkina, S. V., Taranushich, V. A., Desenko, S. M. & Shishkin, O. V. (2006). Russ. Chem. Bull. 55, 338-344.]); Masiukiewicz et al. (2007[Masiukiewicz, E., Rzeszotarska, B., Wawrzycka-Gorczyca, I. & Kolodziejczyk, E. (2007). Synth. Commun. 37, 1917-1925.]); Miao et al. (2009[Miao, J., Jia, M., Liu, X., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2738.]). For crystal structures of 5-amino-1,2,4-triazolium salts, see: Darwich et al. (2008a[Darwich, C., Karaghiosoff, K., Kaloptke, T. M. & Sabate, C. M. (2008a). Z. Anorg. Allg. Chem. 634, 61-68.],b[Darwich, C., Klapotke, T. M. & Sabate, C. M. (2008b). Chem. Eur. J. 14, 5756-5771.]); Klapotke & Sabate (2008[Klapotke, T. M. & Sabate, C. M. (2008). Eur. J. Inorg. Chem. pp. 5350-5366.]); Tao et al. (2009[Tao, G.-H., Twamley, B. & Shreeve, J. M. (2009). J. Mater. Chem. 19, 5850-5854.]); Chernyshev et al. (2010[Chernyshev, V. M., Astakhov, A. V., Ivanov, V. V. & Starikova, Z. A. (2010). Acta Cryst. E66, o1644-o1645.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the correlation of bond lengths with bond orders in sp2-hybridized C and N atoms, see: Burke-Laing & Laing (1976[Burke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216-3224.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N5O

  • Mr = 307.36

  • Monoclinic, P 21 /n

  • a = 10.262 (2) Å

  • b = 15.240 (3) Å

  • c = 10.967 (2) Å

  • β = 113.86 (2)°

  • V = 1568.6 (6) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.06 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3582 measured reflections

  • 3412 independent reflections

  • 2294 reflections with I > 2σ(I)

  • Rint = 0.068

  • 1 standard reflections every 6 min intensity decay: 0%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.160

  • S = 1.03

  • 3412 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N51—H51A⋯O14i 0.94 (3) 1.83 (3) 2.739 (3) 161 (2)
N51—H51B⋯N13ii 0.84 (3) 2.18 (3) 2.971 (3) 157 (3)
C6—H6B⋯O14 0.97 2.30 3.045 (3) 133
C8—H8⋯N13 0.93 2.72 3.454 (4) 136
C12—H12⋯N13ii 0.93 2.54 3.441 (4) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Previously, during investigation of the reactions of 2-amino-4,5,6,7-tetrahydro-1,2,4-triazolo-[1,5-a]pyrimidines (Chernyshev et al., 2008a) we revealed that quaternization of the 2-amino-7-(4-methoxyphenyl)-5-phenyl-4,5,6,7-tetrahydro-1,2,4- triazolo[1,5-a]pyrimidine (1) with benzyl bromide occurred nonselectively and afforded a mixture of compounds 2 and 3 (Fig. 1). Selective alkylation was possible only after protection of the amino group of compound 1 by acylation (Fig. 2). As a result of quaternization of the compound 4 we obtained bromide 5, which was converted into the compound 6 under the action of KOH at room temperature and into the compound 7 at heating. The zwitterionic structure of the compound 6 was proposed on the basis of indirect data, i.e. comparison of its acid–base properties and spectral characteristics with the compound 7, which was considered as the fixed inverse tautomeric form. Unfortunately, we could not confirm the structure of the compound 6 by X-ray analysis due to difficulties in growing a suitable crystal. It was demonstrated in our previous works (Chernyshev et al., 2008a,b) that the chemical properties of 2-amino-4,5,6,7-tetrahydro-1,2,4-triazolo-[1,5-a]pyrimidines in many respects are analogous to 1-substituted 3,5-diamino-1,2,4-triazoles. For elaboration of a selective method for the preparation of 1,4-disubstituted 3,5-diamino-1,2,4-triazoles and additional confirmation of the structure of compound 6, we investigated the alkylation of N-(5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)acetamide (8) (Fig. 3). The present report describes our results of the X-ray investigation of the structure of compound 9, which can be considered as a structural analog of the compound 6.

The possibility of existence of the three tautomeric forms A–B can be presumed for the compound 9 (Fig. 4). In accordance with the X-ray diffraction data, the studied compound in the crystal exists as the zwitterionic tautomer A (Fig. 5). The triazole ring is planar, with the mean deviations of the ring atoms from their least-squares plane being 0.01 (2) Å. The N-phenyl and triazole rings are essentially noncoplanar, with a dihedral angle of 39.14 (8)°. The atom N13 of the deprotonated amide group deviates from the least-squares plane of triazole ring by 0.158 (2) Å, the dihedral angle between the planes of the amide group (N13/C14/O14) and triazole cycle amounts 54.6 (2)°. The length of the bond N13—C14 (1.333 (3) Å) is close to the length of the double bond Nsp2—Csp2 (Allen et al., 1987), whereas the bond O14—C14 (1.251 (2) Å) is longer then the typical amide bond (1.234 Å) (Allen et al., 1987). These results indicate a pronounced delocalization of bonds and negative charge in the deprotonated CON fragment. The bond N13—C3 (1.359 (3) Å) is slightly shorter than the analogous bond in the unionized 3-acylamino-1,2,4-triazoles (1.381 Å–1.395 Å) (Selby & Lepone, 1984; Gyorgydeak et al., 1995; Chernyshev et al., 2006; Masiukiewicz et al., 2007; Miao et al., 2009), probably as a result of an attractive polar interaction between the opposite charged amide and triazole fragments. The N51 atom deviates from the plane of the triazole ring by 0.060 (2) Å. Amino grope adopts a plane configuration (the sum of valence angles is 359.6°) and almost coplanar with the triazole cycle, forming a dihedral angle of 9.1 (2)°. The bonds N4—C5 and N1—C5 of the triazole cycle have almost equal length (1.342 (2)Å and 1.347 (3) Å, correspondingly), however the bond C5—N4 (1.313 (3) Å) is considerably shorter in relation to a purely single Nsp2—Csp2 bond (1.43 Å–1.45 Å) (Burke-Laing & Laing, 1976). It indicates the delocalization of the positive charge in the fragment N4/C5/N51/N1 and the considerable contribution of the imino form to the molecular structure of the discussed compound, analogously to another 5-amino-1,2,4-triazolium salts (Darwich et al., 2008a,b; Klapotke & Sabate, 2008; Tao et al., 2009; Chernyshev et al., 2010).

Two classical intermolecular hydrogen bonds are found in crystal structure (Table 1): N51—H51A···O14i with parameters - N51—H21Ai = 0.94 (3) Å, H51A···O14 = 1.83 (3) Å, N51···O14i = 2.739 (3)Å and angle N51—H21A···O14i = 160 (3)°; N51—H21B···N13ii with parameters - N51—H21Bii = 0.84 (3) Å, H51B···N13ii = 2.18 (3) Å, N51···N13ii = 2.971 (3)Å and angle N51—H21B···N13ii = 157 (3)°. Four non-classical hydrogen bonds are found in crystal structure (Table 1): C6—H6B···O14 with parameters - C6—H6B = 0.97 Å, H6B···O14 = 2.30 Å, C6···O14 = 3.045 (3)Å and angle C6—H6B···O14 = 133°; C8—H8···N13 with parameters - C8—H8 = 0.93 Å, H8···N13 = 2.72 Å, C8···N13 = 3.454 (4)Å and angle C8—H8···N13 = 136°; C17—H17···N51 with parameters - C17—H17 = 0.93 Å, H17···N51 = 2.75 Å, C17···N51 = 3.146 (4)Å and angle C17—H17···N21 = 107°; C12—H12···N13ii with parameters - C12—H12 = 0.93 Å, H12···N13ii = 2.54 Å, C12···N13ii = 3.441 (4)Å and angle C12—H12···N13ii = 162°. Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (ii) x - 1/2, -y + 1/2, z - 1/2.

Due to the structural similarity of compounds 6 and 9, we can conclude that the present results corroborate our previous deduction on the zwitterionic structure of compound 6.

Related literature top

For the synthesis of the starting compound, N-(5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)acetamide, see: Chernyshev et al. (2005). For alkylation and other reactions of related compounds with electrophiles, see: Chernyshev et al. (2008a,b). For crystal structures of 3(5)-acylamino-1,2,4-triazoles, see: Selby & Lepone (1984); Gyorgydeak et al. (1995); Chernyshev et al. (2006); Masiukiewicz et al. (2007); Miao et al. (2009). For crystal structures of 5-amino-1,2,4-triazolium salts, see: Darwich et al. (2008a,b); Klapotke & Sabate (2008); Tao et al. (2009); Chernyshev et al. (2010). For standard bond lengths, see: Allen et al. (1987). For the correlation of bond lengths with bond orders in sp2-hybridized C and N atoms, see: Burke-Laing & Laing (1976).

Experimental top

The crystals of the acetyl(5-amino-4-benzyl-1-phenyl-4H-1,2,4-triazol-1-ium-3 -yl)azanide (9) suitable for X-ray analysis were grown by slow evaporation of ethanol solution at room temperature within one week. The title compound was prepared by the following procedure.

A mixture of compound 8 (2 g, 9.2 mmol), benzyl bromide (1.89 g, 11.1 mmol) and DMF (4.0 ml) was heated at 353 K and stirring for 4 h, then cooled to room temperature and diluted with 20% aqueous solution of NH3 (8 ml). The resulted mixture was cooled to 276–278 K and the precipitate formed was isolated by filtration, washed with cold water, recrystallized from ethanol and dried at 373 K to give 2.21 g (78% yield) of compound 9. White powder, m. p. 472–473 K. Spectrum 13C NMR (150 MHz), δ: 22.57 (CH3), 43.99 (CH2), 118.54, 123.93, 127.12, 127.54, 128.54, 128.79, 135.86, 138.75 (carbons of phenyls), 141.16, 150.43 (carbons of triazole), 170.64 (CO). MS (EI, 70 eV), m/z (%): 307 (6) [M+], 265 (8), 119 (7), 104 (11), 91 (100), 77 (31), 65 (18), 43 (48). Anal. Calcd for C17H17N5O: C, 66.43; H, 5.58; N, 22.79. Found: C, 66.27; H, 5.49; N, 22.98.

The starting N-(5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)acetamide (8) was obtained by the known method (Chernyshev et al., 2005).

Refinement top

C-bound H atoms were placed in calculated positions C—H 0.93Å for aromatic, C—H = 0.97Å for CH2, C—H = 0.96Å for CH3 and refined as riding, with Uiso(H) = 1.2(1.5)Ueq(C). H-atoms forming hydrogen (N-bound H atoms) bonds were found from difference Fourier map and refined independently.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Alkylation of the compound 1 with benzyl bromide (Chernyshev et al., 2008a).
[Figure 2] Fig. 2. Regioselective alkylation of the compound 4 with benzyl bromide and structure of the compound 6 (Chernyshev et al., 2008a).
[Figure 3] Fig. 3. Synthesis of the compound 9.
[Figure 4] Fig. 4. The possible tautomeric forms of the compound 9.
[Figure 5] Fig. 5. ORTEP-3 (Farrugia, 1997) plot of molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 6] Fig. 6. The crystal packing of the title compound along the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 7] Fig. 7. The crystal packing of the title compound along the [1, 0, -1] plane, showing two-dimensional net of hydrogen bonds which are drawn as dashed lines.
4-Benzyl-3-[(1-oxidoethylidene)amino]-1-phenyl-4,5-dihydro-1H- 1,2,4-triazol-5-iminium top
Crystal data top
C17H17N5OF(000) = 648
Mr = 307.36Dx = 1.301 Mg m3
Monoclinic, P21/nMelting point = 472–473 K
Hall symbol: -P 2ynAg Kα radiation, λ = 0.56085 Å
a = 10.262 (2) ÅCell parameters from 25 reflections
b = 15.240 (3) Åθ = 13.2–14.4°
c = 10.967 (2) ŵ = 0.06 mm1
β = 113.86 (2)°T = 295 K
V = 1568.6 (6) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.068
Radiation source: fine-focus sealed tubeθmax = 21.0°, θmin = 1.8°
Graphite monochromatorh = 1311
Non–profiled ω scansk = 019
3582 measured reflectionsl = 013
3412 independent reflections1 standard reflections every 6 min
2294 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.4611P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3412 reflectionsΔρmax = 0.30 e Å3
218 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.066 (6)
Crystal data top
C17H17N5OV = 1568.6 (6) Å3
Mr = 307.36Z = 4
Monoclinic, P21/nAg Kα radiation, λ = 0.56085 Å
a = 10.262 (2) ŵ = 0.06 mm1
b = 15.240 (3) ÅT = 295 K
c = 10.967 (2) Å0.20 × 0.20 × 0.20 mm
β = 113.86 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.068
3582 measured reflections1 standard reflections every 6 min
3412 independent reflections intensity decay: 1%
2294 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
3412 reflectionsΔρmin = 0.22 e Å3
218 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.86753 (18)0.33588 (11)0.43051 (16)0.0345 (4)
N20.96176 (18)0.26764 (11)0.49396 (16)0.0355 (4)
C30.9547 (2)0.21474 (13)0.39830 (19)0.0314 (5)
N40.85963 (17)0.24731 (11)0.27474 (15)0.0314 (4)
C50.8081 (2)0.32385 (13)0.29796 (19)0.0315 (5)
C60.8381 (2)0.21434 (14)0.14185 (19)0.0340 (5)
H6A0.74170.22800.07970.041*
H6B0.84810.15100.14590.041*
C70.9406 (2)0.25232 (14)0.0901 (2)0.0383 (5)
C81.0832 (3)0.2325 (2)0.1442 (3)0.0597 (7)
H81.11900.19480.21690.072*
C91.1747 (3)0.2673 (2)0.0931 (3)0.0688 (8)
H91.27110.25330.13220.083*
C101.1255 (4)0.3211 (2)0.0126 (4)0.0812 (10)
H101.18680.34340.04840.097*
C110.9848 (5)0.3428 (3)0.0668 (5)0.128 (2)
H110.94990.38070.13950.153*
C120.8939 (3)0.3090 (3)0.0146 (4)0.0911 (12)
H120.79830.32520.05180.109*
N131.04305 (18)0.14482 (11)0.41734 (17)0.0371 (4)
C140.9911 (2)0.06725 (14)0.3633 (2)0.0393 (5)
O140.86200 (18)0.04827 (10)0.30395 (16)0.0492 (5)
C151.1022 (3)0.00100 (17)0.3782 (3)0.0563 (7)
H15A1.06850.05750.39140.084*
H15B1.18850.01310.45360.084*
H15C1.12070.00220.29910.084*
C160.8529 (2)0.40728 (14)0.5074 (2)0.0381 (5)
C170.7220 (3)0.44477 (17)0.4786 (2)0.0520 (6)
H170.64110.42310.40950.062*
C180.7124 (4)0.5152 (2)0.5538 (3)0.0678 (8)
H180.62490.54240.53330.081*
C190.8311 (5)0.5452 (2)0.6586 (3)0.0751 (10)
H190.82380.59240.70920.090*
C200.9602 (4)0.50577 (19)0.6889 (3)0.0637 (8)
H201.03970.52560.76140.076*
C210.9741 (3)0.43706 (16)0.6133 (2)0.0474 (6)
H211.06240.41120.63270.057*
N510.7197 (2)0.37631 (13)0.2071 (2)0.0438 (5)
H51A0.695 (3)0.433 (2)0.223 (2)0.053 (7)*
H51B0.689 (3)0.361 (2)0.127 (3)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0351 (9)0.0355 (9)0.0252 (9)0.0034 (7)0.0041 (7)0.0009 (7)
N20.0372 (10)0.0353 (10)0.0254 (8)0.0043 (7)0.0036 (7)0.0026 (7)
C30.0282 (10)0.0337 (10)0.0258 (10)0.0020 (8)0.0040 (8)0.0037 (8)
N40.0315 (9)0.0324 (9)0.0220 (8)0.0001 (7)0.0022 (7)0.0010 (7)
C50.0309 (10)0.0290 (10)0.0269 (10)0.0015 (8)0.0036 (8)0.0007 (8)
C60.0371 (11)0.0330 (11)0.0229 (9)0.0005 (9)0.0029 (8)0.0017 (8)
C70.0432 (12)0.0380 (11)0.0307 (11)0.0021 (10)0.0119 (9)0.0026 (9)
C80.0503 (16)0.0741 (19)0.0557 (16)0.0122 (13)0.0223 (13)0.0085 (14)
C90.0537 (17)0.083 (2)0.079 (2)0.0007 (15)0.0357 (16)0.0137 (18)
C100.082 (2)0.092 (2)0.088 (2)0.021 (2)0.053 (2)0.001 (2)
C110.085 (3)0.190 (5)0.111 (3)0.003 (3)0.043 (2)0.089 (4)
C120.0585 (19)0.130 (3)0.080 (2)0.0083 (19)0.0224 (17)0.063 (2)
N130.0355 (9)0.0360 (10)0.0298 (9)0.0032 (8)0.0029 (7)0.0018 (8)
C140.0459 (13)0.0349 (11)0.0293 (11)0.0040 (10)0.0071 (9)0.0053 (9)
O140.0477 (10)0.0357 (8)0.0474 (10)0.0052 (7)0.0019 (7)0.0030 (7)
C150.0608 (16)0.0463 (14)0.0544 (16)0.0123 (12)0.0158 (13)0.0009 (12)
C160.0493 (13)0.0356 (11)0.0290 (11)0.0031 (10)0.0154 (9)0.0011 (9)
C170.0600 (16)0.0531 (15)0.0425 (13)0.0068 (12)0.0202 (12)0.0015 (11)
C180.096 (2)0.0560 (17)0.0662 (19)0.0191 (16)0.0479 (18)0.0045 (15)
C190.135 (3)0.0474 (16)0.0628 (19)0.0084 (19)0.061 (2)0.0137 (14)
C200.099 (2)0.0552 (16)0.0436 (15)0.0323 (17)0.0357 (15)0.0163 (12)
C210.0587 (15)0.0486 (13)0.0332 (12)0.0147 (11)0.0167 (11)0.0057 (10)
N510.0510 (12)0.0332 (10)0.0284 (10)0.0102 (9)0.0033 (8)0.0023 (8)
Geometric parameters (Å, º) top
N4—C51.347 (3)C11—H110.9300
N4—C31.402 (2)C12—H120.9300
N4—C61.471 (3)N13—C141.333 (3)
C5—N511.313 (3)C14—O141.251 (3)
C5—N11.342 (2)C14—C151.503 (3)
N1—N21.399 (2)C15—H15A0.9600
N1—C161.422 (3)C15—H15B0.9600
N2—C31.302 (3)C15—H15C0.9600
C3—N131.359 (3)C16—C171.374 (3)
C6—C71.499 (3)C16—C211.390 (3)
C6—H6A0.9700C17—C181.382 (4)
C6—H6B0.9700C17—H170.9300
C7—C121.360 (4)C18—C191.371 (5)
C7—C81.371 (3)C18—H180.9300
C8—C91.379 (4)C19—C201.368 (5)
C8—H80.9300C19—H190.9300
C9—C101.341 (5)C20—C211.378 (4)
C9—H90.9300C20—H200.9300
C10—C111.361 (5)C21—H210.9300
C10—H100.9300N51—H51A0.94 (3)
C11—C121.378 (5)N51—H51B0.84 (3)
C5—N4—C3107.27 (16)C7—C12—C11121.5 (3)
C5—N4—C6124.75 (16)C7—C12—H12119.3
C3—N4—C6127.11 (17)C11—C12—H12119.3
N51—C5—N1127.6 (2)C14—N13—C3120.35 (18)
N51—C5—N4125.98 (19)O14—C14—N13125.8 (2)
N1—C5—N4106.38 (16)O14—C14—C15119.6 (2)
C5—N1—N2110.92 (16)N13—C14—C15114.6 (2)
C5—N1—C16129.54 (17)C14—C15—H15A109.5
N2—N1—C16119.44 (16)C14—C15—H15B109.5
C3—N2—N1104.94 (15)H15A—C15—H15B109.5
N2—C3—N13123.07 (17)C14—C15—H15C109.5
N2—C3—N4110.47 (17)H15A—C15—H15C109.5
N13—C3—N4125.89 (18)H15B—C15—H15C109.5
N4—C6—C7113.32 (17)C17—C16—C21121.2 (2)
N4—C6—H6A108.9C17—C16—N1120.7 (2)
C7—C6—H6A108.9C21—C16—N1118.2 (2)
N4—C6—H6B108.9C16—C17—C18119.0 (3)
C7—C6—H6B108.9C16—C17—H17120.5
H6A—C6—H6B107.7C18—C17—H17120.5
C12—C7—C8117.1 (2)C19—C18—C17120.3 (3)
C12—C7—C6120.2 (2)C19—C18—H18119.8
C8—C7—C6122.7 (2)C17—C18—H18119.8
C7—C8—C9121.5 (3)C20—C19—C18120.2 (3)
C7—C8—H8119.2C20—C19—H19119.9
C9—C8—H8119.2C18—C19—H19119.9
C10—C9—C8120.4 (3)C19—C20—C21120.9 (3)
C10—C9—H9119.8C19—C20—H20119.6
C8—C9—H9119.8C21—C20—H20119.6
C9—C10—C11119.3 (3)C20—C21—C16118.4 (3)
C9—C10—H10120.4C20—C21—H21120.8
C11—C10—H10120.4C16—C21—H21120.8
C10—C11—C12120.3 (3)C5—N51—H51A125.1 (15)
C10—C11—H11119.9C5—N51—H51B118 (2)
C12—C11—H11119.9H51A—N51—H51B116 (3)
C3—N4—C5—N51177.4 (2)C7—C8—C9—C100.7 (5)
C6—N4—C5—N517.4 (3)C8—C9—C10—C111.6 (6)
C3—N4—C5—N11.2 (2)C9—C10—C11—C120.8 (7)
C6—N4—C5—N1171.22 (18)C8—C7—C12—C112.0 (6)
N51—C5—N1—N2177.0 (2)C6—C7—C12—C11178.0 (4)
N4—C5—N1—N21.6 (2)C10—C11—C12—C71.1 (8)
N51—C5—N1—C160.7 (4)N2—C3—N13—C14135.3 (2)
N4—C5—N1—C16177.9 (2)N4—C3—N13—C1454.2 (3)
C5—N1—N2—C31.4 (2)C3—N13—C14—O147.3 (3)
C16—N1—N2—C3178.07 (18)C3—N13—C14—C15172.8 (2)
N1—N2—C3—N13172.37 (18)C5—N1—C16—C1742.3 (3)
N1—N2—C3—N40.5 (2)N2—N1—C16—C17141.7 (2)
C5—N4—C3—N20.4 (2)C5—N1—C16—C21138.6 (2)
C6—N4—C3—N2170.09 (18)N2—N1—C16—C2137.4 (3)
C5—N4—C3—N13171.11 (19)C21—C16—C17—C182.2 (4)
C6—N4—C3—N131.4 (3)N1—C16—C17—C18178.7 (2)
C5—N4—C6—C782.4 (2)C16—C17—C18—C192.2 (4)
C3—N4—C6—C785.5 (2)C17—C18—C19—C200.4 (5)
N4—C6—C7—C12110.7 (3)C18—C19—C20—C211.5 (4)
N4—C6—C7—C869.3 (3)C19—C20—C21—C161.5 (4)
C12—C7—C8—C91.1 (4)C17—C16—C21—C200.4 (3)
C6—C7—C8—C9178.9 (2)N1—C16—C21—C20179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51A···O14i0.94 (3)1.83 (3)2.739 (3)161 (2)
N51—H51B···N13ii0.84 (3)2.18 (3)2.971 (3)157 (3)
C6—H6B···O140.972.303.045 (3)133
C8—H8···N130.932.723.454 (4)136
C17—H17···N510.932.753.146 (4)107
C12—H12···N13ii0.932.543.441 (4)162
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H17N5O
Mr307.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.262 (2), 15.240 (3), 10.967 (2)
β (°) 113.86 (2)
V3)1568.6 (6)
Z4
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.06
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3582, 3412, 2294
Rint0.068
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.03
No. of reflections3412
No. of parameters218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51A···O14i0.94 (3)1.83 (3)2.739 (3)161 (2)
N51—H51B···N13ii0.84 (3)2.18 (3)2.971 (3)157 (3)
C6—H6B···O140.972.303.045 (3)133
C8—H8···N130.932.723.454 (4)136
C17—H17···N510.932.753.146 (4)107
C12—H12···N13ii0.932.543.441 (4)162
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
Comparitive selected parameters (Å) for estimated bond distances and corrected following Busing &amp; Levy, (1964). top
BondUncorrectedLower boundUpper boundRiding motionNon–correlated motion
C6–C71.499 (3)1.4991.5831.5041.541
C7–C81.371 (3)1.3751.5171.3941.446
C7–C121.360 (4)1.3751.5751.4181.475
C8–C91.379 (4)1.3801.5731.3881.476
C9–C101.341 (5)1.3421.5391.3561.440
C10–C111.361 (5)1.3701.6791.4131.524
C11–C121.378 (5)1.3821.7731.4171.577
N13–C141.333 (3)1.3331.4491.3351.391
C14–O141.251 (3)1.2521.3931.2641.323
C14–C151.503 (3)1.5051.6361.5191.570
C16–C171.374 (3)1.3751.4931.3881.434
C16–C211.390 (3)1.3911.5191.4011.455
C17–C181.382 (4)1.3831.5731.3971.478
C18–C191.371 (5)1.3721.5381.3781.455
C19–C201.368 (5)1.3691.5001.3791.434
C20–C211.378 (4)1.3801.5491.3941.464
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation through the Federal Target Program `Research and Educational Personnel of Innovative Russia in 2009–2013 Years', State contract P302, project NK–109P/2. The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBurke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216–3224.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChernyshev, V. M., Astakhov, A. V., Ivanov, V. V. & Starikova, Z. A. (2010). Acta Cryst. E66, o1644–o1645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChernyshev, V. M., Khoroshkin, D. A., Sokolov, A. N., Taranushich, V. A., Gladkov, E. S., Shishkina, S. V., Shishkin, O. V. & Desenko, S. M. (2008b). J. Heterocycl. Chem. 45, 1419–1427.  CrossRef CAS Google Scholar
First citationChernyshev, V. M., Kosov, A. E., Gladkov, E. S., Shishkina, S. V., Taranushich, V. A., Desenko, S. M. & Shishkin, O. V. (2006). Russ. Chem. Bull. 55, 338–344.  Web of Science CrossRef CAS Google Scholar
First citationChernyshev, V. M., Rakitov, V. A., Taranushich, V. A. & Blinov, V. V. (2005). Chem. Heterocycl. Compd, 41, 1139–1146.  CrossRef CAS Google Scholar
First citationChernyshev, V. M., Sokolov, A. N., Khoroshkin, D. A. & Taranushich, V. A. (2008a). Russ. J. Org. Chem. 44, 715–722.  CrossRef CAS Google Scholar
First citationDarwich, C., Karaghiosoff, K., Kaloptke, T. M. & Sabate, C. M. (2008a). Z. Anorg. Allg. Chem. 634, 61–68.  CrossRef CAS Google Scholar
First citationDarwich, C., Klapotke, T. M. & Sabate, C. M. (2008b). Chem. Eur. J. 14, 5756–5771.  CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGyorgydeak, Z., Holzer, W., Kunz, R. W. & Linden, A. (1995). Monatsh. Chem. 126, 733–746.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKlapotke, T. M. & Sabate, C. M. (2008). Eur. J. Inorg. Chem. pp. 5350–5366.  Google Scholar
First citationMasiukiewicz, E., Rzeszotarska, B., Wawrzycka-Gorczyca, I. & Kolodziejczyk, E. (2007). Synth. Commun. 37, 1917–1925.  CrossRef CAS Google Scholar
First citationMiao, J., Jia, M., Liu, X., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2738.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSelby, T. P. & Lepone, G. E. (1984). J. Heterocycl. Chem. 21, 61–64.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, G.-H., Twamley, B. & Shreeve, J. M. (2009). J. Mater. Chem. 19, 5850–5854.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o870-o871
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds