organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-5-Benzyl­­idene-3-butyl-4-phenyl-1,3-oxazolidin-2-one

aSchool of Pharmacy, Guang Dong Medical College, Dong Guan 523808, People's Republic of China
*Correspondence e-mail: jinwuzhao@gmail.com

(Received 1 March 2011; accepted 7 March 2011; online 15 March 2011)

In the title compound, C20H21NO2, the benzyl group and the oxazolidin-2-one unit are each essentially planar, with maximum deviations of 0.026 (2) and 0.031 (2) Å, respectively. The dihedral angle between the phenyl ring and the oxazolidin-2-one unit is 69.25 (2)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For general background to 2-oxazolidinone derivatives and for heterocyclic systems of anti­bacterial inter­est, see: Mukhtar & Wright (2005[Mukhtar, T. A. & Wright, G. D. (2005). Chem. Rev. 105, 529-452.]); Ager et al. (1996[Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835-876.]); Renslo et al. (2006[Renslo, A. R., Luehr, G. W. & Gordeev, M. F. (2006). Bioorg. Med. Chem. 14, 4227-4240.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the chemical structure of the title compound established from NMR data, see: Yoo & Li (2008[Yoo, W. J. & Li, C. J. (2008). Adv. Synth. Catal. 350, 1503-1506.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO2

  • Mr = 307.38

  • Monoclinic, P 21 /n

  • a = 10.029 (2) Å

  • b = 9.1941 (18) Å

  • c = 18.389 (4) Å

  • β = 100.51 (3)°

  • V = 1667.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.31 × 0.25 × 0.18 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.989, Tmax = 0.997

  • 12969 measured reflections

  • 2994 independent reflections

  • 1803 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.03

  • 2994 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.58 3.343 (3) 141
C3—H3⋯Cg2ii 0.93 2.93 3.674 (2) 138
C12—H12⋯Cg1iii 0.93 2.91 3.706 (3) 145
C20—H20BCg2iv 0.96 2.92 3.812 (1) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), C19H17N3O2, is a 2-oxazolidinone derivative. The 2-oxazolidinone ring is an important heterocyclic structural unit. It possesses significant antibacterial activities and plays an important role as an intermediate for the synthesis of more complex active organic compounds and further functionalized heterocyclic systems of antibacterial interest (Mukhtar et al., 2005; Ager et al., 1996; Renslo et al., 2006). The structure of title compound has been established from the NMR data (Yoo et al., 2008). However, the crystal structure of title compound has not been reported. In view of this, the crystal structure determination of the title compound was carried out and the results are presented here.

As depicted in Fig. 1, the benzyl group A (C1-C7) and the heterocyclic ring of 2-oxazolidinone B (N1/C8-C10/O1/O2) are almost planar with maximum deviations of 0.024 (2) Å for C7 and 0.031 (2) Å for O2, respectively, and determine a dihedral angle of 2.56 (2) °. The phenyl ring C (C11—C16) is of also planar (max. deviation 0.007 (2) Å for C15).

The butyl moiety (C17—C20) adopts a slight twist conformation with C20 displaced by 0.123 (3) Å from the plane defined by the atoms C17—C19 (D). The dihedral angles between C/A, C/B, C/D, D/A and D/B are 69.05 (2) °, 69.30 (3) °, 75.17 (1) °, 85.79 (4) ° and 83.29 (2) °, respectively. The bond lengths and bond angles are within normal range (Allen et al., 1987). The molecules are linked into a three-dimensional supramolecular network through intermolecular C—H···O hydrogen bonding interactions and C—H···π stacking interactions (Table 1, Fig. 2). The H-to-centroid distances of H3···Cg2i = 2.93 (2), H12···Cg1ii = 2.91 (3) and H20B···Cg2iii = 2.91 (4) [Cg1 and Cg2 are the centroids of the C1, C2, C3, C4, C5, C6 ring, and C11, C12, C13, C14, C15, C16 ring, respectively. Symmetry codes: (i)-1/2 + x, 1/2 - y, 1/2 + z; (ii)3/2 - x, 1/2 + y, 1/2 - z; (iii)-1/2 + x, 1/2 - y, -1/2 + z]. In addition, intramolecular C—H···O and C—H···N hydrogen bonds are also observed.

Related literature top

For general background to 2-oxazolidinone derivatives and for heterocyclic systems of antibacterial interest, see: Mukhtar et al. (2005); Ager et al. (1996); Renslo et al. (2006). For bond-length data, see: Allen et al. (1987). For the chemical structure of the title compound established from NMR data, see: Yoo et al. (2008).

Experimental top

A 15 ml polytetrafluoroethylene (PTFE) reaction vessel was charged with copper(I)iodide (0.6 mmol, 0.114 g), butylamine (4 mmol, 0.293 g), benzaldehyde (4 mmol, 0.425 g) and ethynylbenzene (3 mmol, 0.204 g). Then the vessel was fixed into a stainless steel autoclave with a pressure-regulating system. The autoclave was sealed. Liquid CO2 was introduced from a cylinder and the reaction mixture was magnetically stirred at 373 K under 8 MPa for 12 h. The vessel was cooled with an ice bath and the pressure was released slowly to atmospheric pressure after the reaction completed. The reaction mixture was flushed with EtOAc (30 ml) and the ethyl acetate fractions were combined. The resulting solvent was placed through a plug of silica gel, and then evaporated. The residue was purified by silica gel (200–300 mesh) column by elution with MSO:EtOAc (8:1) to give 20 fractions (200 ml per fraction). The title compound (539.6 mg) was isolated from the fractions 3–17 (yield 71.2%). Single crystals suitable for X-ray deffraction were prepared by slov evaporation of a solution of the title compound in petroleum ether at room temperature.

Refinement top

All H atoms were located on the difference maps, and were treated as riding atoms with C—H distances of 0.93, 0.96, 0.97 and 0.98 Å, for aryl, methyl, methine and tertiary alkyl, respectively, with Uiso(H) = 1.5Ueq (methyl C-atoms) and 1.2Ueq(non-methyl C-atoms). The hightest peak is located 1.54 Å from C1 and the deepest hole is located 0.86 Å from H13.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the tile compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound; C—H···O, C—H···N and C—H···π interactions are shown as dashed lines. The H-atoms not involved in H-bonds have been excluded for clarity.
(Z)-5-Benzylidene-3-butyl-4-phenyl-1,3-oxazolidin-2-one top
Crystal data top
C20H21NO2F(000) = 656
Mr = 307.38Dx = 1.225 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5837 reflections
a = 10.029 (2) Åθ = 2.8–27.9°
b = 9.1941 (18) ŵ = 0.08 mm1
c = 18.389 (4) ÅT = 293 K
β = 100.51 (3)°Block, colorless
V = 1667.1 (6) Å30.31 × 0.25 × 0.18 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2994 independent reflections
Radiation source: fine-focus sealed tube1803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1212
Tmin = 0.989, Tmax = 0.997k = 1111
12969 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.3223P]
where P = (Fo2 + 2Fc2)/3
2994 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H21NO2V = 1667.1 (6) Å3
Mr = 307.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.029 (2) ŵ = 0.08 mm1
b = 9.1941 (18) ÅT = 293 K
c = 18.389 (4) Å0.31 × 0.25 × 0.18 mm
β = 100.51 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2994 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1803 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.997Rint = 0.041
12969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2994 reflectionsΔρmin = 0.18 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59314 (19)0.3280 (2)0.36032 (11)0.0590 (5)
H10.54410.36030.31540.071*
C20.5426 (2)0.3511 (3)0.42412 (12)0.0675 (6)
H20.46090.40030.42180.081*
C30.6115 (2)0.3023 (3)0.49109 (12)0.0680 (6)
H30.57640.31740.53390.082*
C40.7330 (2)0.2308 (2)0.49425 (11)0.0636 (6)
H40.77980.19660.53930.076*
C50.78512 (19)0.2099 (2)0.43106 (10)0.0532 (5)
H50.86820.16300.43420.064*
C60.71618 (17)0.2574 (2)0.36199 (10)0.0477 (5)
C70.77658 (18)0.2274 (2)0.29672 (10)0.0517 (5)
H70.85650.17370.30590.062*
C80.73519 (17)0.2650 (2)0.22699 (10)0.0477 (5)
C90.6003 (2)0.3656 (2)0.12780 (11)0.0560 (5)
C100.79952 (18)0.2321 (2)0.16033 (10)0.0509 (5)
H100.79670.12700.15120.061*
C110.94436 (17)0.2858 (2)0.16712 (9)0.0471 (5)
C120.9744 (2)0.4219 (2)0.14300 (11)0.0569 (5)
H120.90470.48370.12170.068*
C131.1078 (2)0.4670 (3)0.15040 (12)0.0669 (6)
H131.12710.55840.13330.080*
C141.2119 (2)0.3782 (3)0.18269 (12)0.0688 (6)
H141.30130.40900.18740.083*
C151.1831 (2)0.2442 (3)0.20790 (12)0.0678 (6)
H151.25320.18420.23060.081*
C161.05059 (19)0.1974 (2)0.19989 (11)0.0585 (5)
H161.03220.10540.21670.070*
C170.7052 (2)0.2948 (3)0.02324 (10)0.0651 (6)
H17A0.79830.30110.01590.078*
H17B0.65630.37710.00160.078*
C180.6430 (2)0.1560 (2)0.01191 (10)0.0643 (6)
H18A0.55270.14470.00080.077*
H18B0.69710.07380.00940.077*
C190.6343 (2)0.1550 (3)0.09517 (10)0.0707 (6)
H19A0.72540.15780.10600.085*
H19B0.58750.24210.11580.085*
C200.5609 (3)0.0224 (3)0.13268 (12)0.0880 (8)
H20A0.60690.06430.11280.132*
H20B0.56000.02700.18490.132*
H20C0.46940.02100.12400.132*
N10.70329 (15)0.30487 (19)0.10237 (8)0.0570 (5)
O10.61860 (12)0.34597 (15)0.20363 (7)0.0572 (4)
O20.50276 (13)0.43149 (18)0.09551 (8)0.0707 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0542 (12)0.0656 (14)0.0581 (12)0.0036 (10)0.0127 (10)0.0080 (10)
C20.0576 (12)0.0786 (16)0.0709 (14)0.0087 (12)0.0242 (11)0.0050 (12)
C30.0719 (14)0.0809 (17)0.0569 (13)0.0049 (13)0.0272 (11)0.0012 (11)
C40.0655 (13)0.0775 (16)0.0483 (12)0.0063 (12)0.0121 (10)0.0030 (10)
C50.0486 (10)0.0606 (13)0.0501 (11)0.0024 (9)0.0079 (9)0.0028 (9)
C60.0439 (10)0.0522 (12)0.0478 (11)0.0035 (9)0.0103 (8)0.0021 (9)
C70.0475 (10)0.0575 (13)0.0496 (11)0.0031 (9)0.0079 (9)0.0033 (9)
C80.0403 (9)0.0536 (12)0.0484 (11)0.0000 (9)0.0061 (8)0.0021 (9)
C90.0478 (11)0.0695 (14)0.0498 (11)0.0064 (11)0.0066 (9)0.0065 (10)
C100.0509 (10)0.0564 (12)0.0440 (10)0.0004 (9)0.0050 (8)0.0012 (9)
C110.0451 (10)0.0569 (13)0.0397 (10)0.0054 (9)0.0090 (8)0.0048 (9)
C120.0545 (12)0.0586 (14)0.0572 (12)0.0060 (10)0.0087 (9)0.0024 (10)
C130.0655 (13)0.0702 (15)0.0667 (14)0.0091 (12)0.0163 (11)0.0021 (11)
C140.0495 (12)0.0943 (19)0.0639 (13)0.0051 (13)0.0134 (10)0.0137 (13)
C150.0531 (12)0.0852 (18)0.0638 (14)0.0157 (12)0.0074 (10)0.0040 (12)
C160.0573 (12)0.0622 (14)0.0551 (12)0.0092 (11)0.0074 (10)0.0002 (10)
C170.0596 (12)0.0931 (17)0.0412 (11)0.0056 (12)0.0060 (9)0.0018 (11)
C180.0695 (13)0.0788 (16)0.0429 (11)0.0114 (12)0.0061 (9)0.0005 (10)
C190.0640 (13)0.1041 (19)0.0441 (11)0.0091 (13)0.0105 (10)0.0017 (12)
C200.122 (2)0.091 (2)0.0481 (13)0.0186 (16)0.0078 (13)0.0100 (12)
N10.0505 (9)0.0798 (13)0.0386 (9)0.0037 (9)0.0026 (7)0.0022 (8)
O10.0494 (8)0.0730 (10)0.0493 (8)0.0095 (7)0.0088 (6)0.0084 (7)
O20.0487 (8)0.0929 (12)0.0676 (9)0.0062 (8)0.0029 (7)0.0216 (8)
Geometric parameters (Å, º) top
C1—C21.376 (3)C11—C161.387 (3)
C1—C61.390 (3)C12—C131.383 (3)
C1—H10.9300C12—H120.9300
C2—C31.373 (3)C13—C141.372 (3)
C2—H20.9300C13—H130.9300
C3—C41.376 (3)C14—C151.365 (3)
C3—H30.9300C14—H140.9300
C4—C51.372 (3)C15—C161.379 (3)
C4—H40.9300C15—H150.9300
C5—C61.401 (2)C16—H160.9300
C5—H50.9300C17—N11.461 (2)
C6—C71.466 (3)C17—C181.513 (3)
C7—C81.320 (2)C17—H17A0.9700
C7—H70.9300C17—H17B0.9700
C8—O11.387 (2)C18—C191.518 (3)
C8—C101.516 (3)C18—H18A0.9700
C9—O21.210 (2)C18—H18B0.9700
C9—N11.332 (2)C19—C201.523 (3)
C9—O11.385 (2)C19—H19A0.9700
C10—N11.463 (2)C19—H19B0.9700
C10—C111.518 (2)C20—H20A0.9600
C10—H100.9800C20—H20B0.9600
C11—C121.380 (3)C20—H20C0.9600
C2—C1—C6121.09 (19)C14—C13—H13119.7
C2—C1—H1119.5C12—C13—H13119.7
C6—C1—H1119.5C15—C14—C13119.5 (2)
C1—C2—C3120.7 (2)C15—C14—H14120.2
C1—C2—H2119.6C13—C14—H14120.2
C3—C2—H2119.6C14—C15—C16120.3 (2)
C4—C3—C2119.4 (2)C14—C15—H15119.9
C4—C3—H3120.3C16—C15—H15119.9
C2—C3—H3120.3C15—C16—C11120.8 (2)
C5—C4—C3120.2 (2)C15—C16—H16119.6
C5—C4—H4119.9C11—C16—H16119.6
C3—C4—H4119.9N1—C17—C18113.57 (17)
C4—C5—C6121.53 (19)N1—C17—H17A108.9
C4—C5—H5119.2C18—C17—H17A108.9
C6—C5—H5119.2N1—C17—H17B108.9
C1—C6—C5117.08 (18)C18—C17—H17B108.9
C1—C6—C7124.57 (17)H17A—C17—H17B107.7
C5—C6—C7118.34 (17)C17—C18—C19112.31 (18)
C8—C7—C6130.01 (18)C17—C18—H18A109.1
C8—C7—H7115.0C19—C18—H18A109.1
C6—C7—H7115.0C17—C18—H18B109.1
C7—C8—O1122.65 (17)C19—C18—H18B109.1
C7—C8—C10128.95 (17)H18A—C18—H18B107.9
O1—C8—C10108.40 (15)C18—C19—C20113.3 (2)
O2—C9—N1130.30 (19)C18—C19—H19A108.9
O2—C9—O1120.42 (19)C20—C19—H19A108.9
N1—C9—O1109.27 (17)C18—C19—H19B108.9
N1—C10—C8100.16 (15)C20—C19—H19B108.9
N1—C10—C11113.93 (16)H19A—C19—H19B107.7
C8—C10—C11114.25 (15)C19—C20—H20A109.5
N1—C10—H10109.4C19—C20—H20B109.5
C8—C10—H10109.4H20A—C20—H20B109.5
C11—C10—H10109.4C19—C20—H20C109.5
C12—C11—C16118.39 (18)H20A—C20—H20C109.5
C12—C11—C10122.06 (17)H20B—C20—H20C109.5
C16—C11—C10119.54 (19)C9—N1—C10112.76 (15)
C13—C12—C11120.3 (2)C9—N1—C17121.86 (16)
C13—C12—H12119.8C10—N1—C17124.73 (16)
C11—C12—H12119.8C9—O1—C8109.36 (15)
C14—C13—C12120.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.583.343 (3)141
C3—H3···Cg2ii0.932.933.674 (2)138
C12—H12···Cg1iii0.932.913.706 (3)145
C20—H20B···Cg2iv0.962.923.812 (1)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H21NO2
Mr307.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.029 (2), 9.1941 (18), 18.389 (4)
β (°) 100.51 (3)
V3)1667.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.25 × 0.18
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.989, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
12969, 2994, 1803
Rint0.041
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.03
No. of reflections2994
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.583.343 (3)141
C3—H3···Cg2ii0.932.933.674 (2)138
C12—H12···Cg1iii0.932.913.706 (3)145
C20—H20B···Cg2iv0.962.923.812 (1)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge Guang Dong Medical College for supporting this work.

References

First citationAger, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–876.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMukhtar, T. A. & Wright, G. D. (2005). Chem. Rev. 105, 529–452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRenslo, A. R., Luehr, G. W. & Gordeev, M. F. (2006). Bioorg. Med. Chem. 14, 4227–4240.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoo, W. J. & Li, C. J. (2008). Adv. Synth. Catal. 350, 1503–1506.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds