organic compounds
(S)-4-(2-Chloropropan-2-yl)-1-(2,2,2-trichloroethyl)cyclohexene
aEquipe de Chimie de Coordination et Catalyse, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it
The title compound, C11H16Cl4, was synthesized by the reaction of (1S)-β-pinene with triethylamine in the presence of ZnCl2. The cyclohexene ring assumes a half-boat conformation. The crystal packing is governed only by van der Waals interactions. The structure, which has been refined in P21, presents a striking P21/m pseudosymmetry.
Related literature
For background to the synthesis of polyhalogenated compounds, see: Delaude et al. (2004); Borguet et al. (2007). For the synthesis and structure of natural chlorinated compounds reported by our group, see: Ziyat et al. (2002, 2004); Boualy et al. (2009). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: AED (Belletti et al., 1993); cell AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).
Supporting information
10.1107/S1600536811010257/bg2395sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010257/bg2395Isup2.hkl
A mixture of (1S)-β-pinene (1 g, 7.34 mmol) and triethylamine (1 ml, 7.11 mmol) in carbon tetrachloride (15 ml) was added to a solution of ZnCl2 in (1.1 g, 8.09 mmol) in water (15 ml) under stirring at room temperature. On completion of the reaction, the mixture was diluted with 25 ml of water, extracted with carbon tetrachloride (3 × 10 ml) and dried over Na2SO4. The title compound was isolated as a white powder by on silica gel using n-hexane as (yield 90%; m. p. = 48 °C), but colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of a n-hexane solution. 1H NMR (300 MHz, CDCl3): δ p.p.m. 5.71 (m, 1H), 3.28 (s, 2H), 2.29 (m, 3H), 1.97 (m, 2H), 1.65 (m, 1H), 1.53 (s, 3H), 1.54 (s, 3H). 13C NMR (75 MHz, CDCl3): δ p.p.m. 131.03 (Cq), 130.53 (CH═C), 99.06 (CCl3), 73.09 (CCl), 62.02 (CH2–CCl3), 45.73 (CH), 30.61 (CH2), 29.83 (CH3), 29.76 (CH3), 28.19 (CH2), 24.56 (CH2).
The molecule contains one chiral carbon atom at C4. Irrespective of this it is possible to solve the structure in the higher symmetry P21/m
but this forces the molecule to have a crystallographically imposed mirror symmetry passing through C1 and C4 of the cyclohexene ring, resulting in the C2 (sp2) and C6 (sp3) carbon atoms to be symmetry-related and disordered over two orientations. This disorder is totally absent in the noncentrosymmetric P21 Moreover, refining in P21/m results in significantly worse R values (R1 = 5.4%, wR2 = 18.2%). All H atoms were calculated geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.Data collection: AED (Belletti et al., 1993); cell
AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).C11H16Cl4 | F(000) = 300 |
Mr = 290.04 | Dx = 1.391 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2yb | Cell parameters from 48 reflections |
a = 10.6558 (7) Å | θ = 19.3–31.4° |
b = 10.3017 (6) Å | µ = 7.50 mm−1 |
c = 6.3119 (3) Å | T = 294 K |
β = 91.251 (5)° | Irregular block, colourless |
V = 692.71 (7) Å3 | 0.21 × 0.09 × 0.07 mm |
Z = 2 |
Siemens AED diffractometer | 2206 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
Graphite monochromator | θmax = 68.0°, θmin = 4.2° |
θ/2θ scans | h = −12→12 |
Absorption correction: part of the (DIFABS; Walker & Stuart, 1983) | model (ΔF) k = −12→12 |
Tmin = 0.456, Tmax = 0.601 | l = −1→7 |
2764 measured reflections | 3 standard reflections every 100 reflections |
2528 independent reflections | intensity decay: 0.02% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.0811P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
2528 reflections | Δρmax = 0.27 e Å−3 |
136 parameters | Δρmin = −0.22 e Å−3 |
1 restraint | Absolute structure: Flack (1983); 1188 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.04 (3) |
C11H16Cl4 | V = 692.71 (7) Å3 |
Mr = 290.04 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 10.6558 (7) Å | µ = 7.50 mm−1 |
b = 10.3017 (6) Å | T = 294 K |
c = 6.3119 (3) Å | 0.21 × 0.09 × 0.07 mm |
β = 91.251 (5)° |
Siemens AED diffractometer | 2206 reflections with I > 2σ(I) |
Absorption correction: part of the (DIFABS; Walker & Stuart, 1983) | model (ΔF) Rint = 0.038 |
Tmin = 0.456, Tmax = 0.601 | 3 standard reflections every 100 reflections |
2764 measured reflections | intensity decay: 0.02% |
2528 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.129 | Δρmax = 0.27 e Å−3 |
S = 1.16 | Δρmin = −0.22 e Å−3 |
2528 reflections | Absolute structure: Flack (1983); 1188 Friedel pairs |
136 parameters | Absolute structure parameter: −0.04 (3) |
1 restraint |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.92140 (14) | 0.06856 (10) | −0.3180 (2) | 0.0976 (4) | |
Cl2 | 1.15231 (7) | 0.20291 (18) | −0.23878 (15) | 0.0990 (3) | |
Cl3 | 0.92735 (12) | 0.34740 (9) | −0.3247 (2) | 0.0954 (4) | |
Cl4 | 0.46844 (7) | 0.21653 (15) | 0.60646 (11) | 0.0855 (3) | |
C1 | 0.8287 (2) | 0.2091 (4) | 0.1030 (4) | 0.0667 (6) | |
C2 | 0.7742 (4) | 0.1006 (3) | 0.1658 (7) | 0.0733 (9) | |
H2 | 0.8213 | 0.0247 | 0.1630 | 0.088* | |
C3 | 0.6416 (4) | 0.0915 (3) | 0.2416 (7) | 0.0762 (11) | |
H3A | 0.6436 | 0.0713 | 0.3917 | 0.091* | |
H3B | 0.5996 | 0.0205 | 0.1683 | 0.091* | |
C4 | 0.5658 (2) | 0.2149 (4) | 0.2064 (4) | 0.0630 (5) | |
H4 | 0.5460 | 0.2189 | 0.0542 | 0.076* | |
C5 | 0.6483 (4) | 0.3326 (4) | 0.2565 (7) | 0.0766 (11) | |
H5A | 0.5994 | 0.4114 | 0.2382 | 0.092* | |
H5B | 0.6776 | 0.3285 | 0.4029 | 0.092* | |
C6 | 0.7592 (5) | 0.3362 (4) | 0.1129 (8) | 0.0912 (13) | |
H6A | 0.8167 | 0.4032 | 0.1621 | 0.109* | |
H6B | 0.7302 | 0.3596 | −0.0288 | 0.109* | |
C7 | 0.9642 (2) | 0.2108 (5) | 0.0397 (4) | 0.0721 (6) | |
H7A | 1.0063 | 0.1370 | 0.1052 | 0.086* | |
H7B | 1.0031 | 0.2887 | 0.0971 | 0.086* | |
C8 | 0.9870 (2) | 0.2066 (5) | −0.1959 (4) | 0.0696 (6) | |
C9 | 0.4387 (2) | 0.2159 (4) | 0.3195 (4) | 0.0657 (6) | |
C10 | 0.3606 (4) | 0.3349 (4) | 0.2697 (7) | 0.0826 (11) | |
H10A | 0.4088 | 0.4115 | 0.3014 | 0.124* | |
H10B | 0.2866 | 0.3341 | 0.3539 | 0.124* | |
H10C | 0.3367 | 0.3347 | 0.1222 | 0.124* | |
C11 | 0.3614 (5) | 0.0931 (4) | 0.2681 (8) | 0.0870 (13) | |
H11A | 0.4109 | 0.0175 | 0.3001 | 0.131* | |
H11B | 0.3379 | 0.0929 | 0.1204 | 0.131* | |
H11C | 0.2872 | 0.0924 | 0.3518 | 0.131* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1090 (9) | 0.0869 (6) | 0.0972 (9) | −0.0153 (6) | 0.0089 (8) | −0.0282 (6) |
Cl2 | 0.0705 (4) | 0.1114 (7) | 0.1159 (6) | 0.0073 (6) | 0.0184 (4) | 0.0098 (8) |
Cl3 | 0.0994 (8) | 0.0875 (7) | 0.0998 (8) | 0.0092 (6) | 0.0124 (7) | 0.0294 (6) |
Cl4 | 0.0896 (5) | 0.1015 (6) | 0.0658 (4) | −0.0017 (7) | 0.0100 (3) | −0.0054 (6) |
C1 | 0.0785 (14) | 0.0560 (12) | 0.0656 (13) | 0.011 (2) | 0.0025 (11) | −0.002 (2) |
C2 | 0.084 (2) | 0.0530 (17) | 0.083 (2) | 0.0111 (15) | 0.0145 (18) | 0.0110 (15) |
C3 | 0.090 (3) | 0.0472 (18) | 0.092 (3) | 0.0030 (16) | 0.020 (2) | 0.0037 (17) |
C4 | 0.0766 (14) | 0.0513 (12) | 0.0611 (12) | 0.0043 (18) | 0.0036 (10) | 0.0010 (18) |
C5 | 0.079 (2) | 0.0523 (17) | 0.099 (3) | −0.0007 (16) | 0.013 (2) | −0.009 (2) |
C6 | 0.091 (2) | 0.0473 (15) | 0.136 (4) | 0.0015 (16) | 0.028 (3) | 0.008 (2) |
C7 | 0.0728 (14) | 0.0695 (14) | 0.0736 (14) | 0.000 (2) | −0.0061 (11) | 0.007 (2) |
C8 | 0.0673 (13) | 0.0629 (13) | 0.0787 (15) | 0.0014 (19) | 0.0050 (11) | 0.005 (2) |
C9 | 0.0712 (14) | 0.0567 (13) | 0.0691 (13) | −0.0005 (18) | −0.0036 (10) | −0.0042 (19) |
C10 | 0.078 (3) | 0.071 (2) | 0.099 (3) | 0.0121 (19) | 0.002 (2) | 0.001 (2) |
C11 | 0.089 (3) | 0.071 (3) | 0.100 (4) | −0.007 (2) | −0.001 (3) | −0.008 (2) |
Cl1—C8 | 1.755 (4) | C5—H5A | 0.9700 |
Cl2—C8 | 1.789 (3) | C5—H5B | 0.9700 |
Cl3—C8 | 1.774 (4) | C6—H6A | 0.9700 |
Cl4—C9 | 1.832 (3) | C6—H6B | 0.9700 |
C1—C2 | 1.324 (5) | C7—C8 | 1.512 (4) |
C1—C6 | 1.506 (5) | C7—H7A | 0.9700 |
C1—C7 | 1.507 (4) | C7—H7B | 0.9700 |
C2—C3 | 1.504 (6) | C9—C10 | 1.511 (5) |
C2—H2 | 0.9300 | C9—C11 | 1.541 (6) |
C3—C4 | 1.520 (5) | C10—H10A | 0.9600 |
C3—H3A | 0.9700 | C10—H10B | 0.9600 |
C3—H3B | 0.9700 | C10—H10C | 0.9600 |
C4—C5 | 1.526 (5) | C11—H11A | 0.9600 |
C4—C9 | 1.545 (4) | C11—H11B | 0.9600 |
C4—H4 | 0.9800 | C11—H11C | 0.9600 |
C5—C6 | 1.505 (6) | ||
C2—C1—C6 | 120.1 (3) | C1—C7—C8 | 115.8 (2) |
C2—C1—C7 | 121.2 (4) | C1—C7—H7A | 108.3 |
C6—C1—C7 | 118.5 (4) | C8—C7—H7A | 108.3 |
C1—C2—C3 | 124.7 (3) | C1—C7—H7B | 108.3 |
C1—C2—H2 | 117.7 | C8—C7—H7B | 108.3 |
C3—C2—H2 | 117.7 | H7A—C7—H7B | 107.4 |
C2—C3—C4 | 113.6 (3) | C7—C8—Cl1 | 112.6 (3) |
C2—C3—H3A | 108.8 | C7—C8—Cl3 | 111.3 (3) |
C4—C3—H3A | 108.8 | Cl1—C8—Cl3 | 109.02 (15) |
C2—C3—H3B | 108.8 | C7—C8—Cl2 | 109.21 (18) |
C4—C3—H3B | 108.8 | Cl1—C8—Cl2 | 107.5 (2) |
H3A—C3—H3B | 107.7 | Cl3—C8—Cl2 | 107.0 (2) |
C3—C4—C5 | 109.4 (2) | C10—C9—C11 | 109.4 (2) |
C3—C4—C9 | 114.0 (3) | C10—C9—C4 | 113.2 (3) |
C5—C4—C9 | 113.9 (3) | C11—C9—C4 | 111.5 (3) |
C3—C4—H4 | 106.3 | C10—C9—Cl4 | 106.6 (2) |
C5—C4—H4 | 106.3 | C11—C9—Cl4 | 106.9 (3) |
C9—C4—H4 | 106.3 | C4—C9—Cl4 | 108.81 (17) |
C6—C5—C4 | 110.5 (3) | C9—C10—H10A | 109.5 |
C6—C5—H5A | 109.5 | C9—C10—H10B | 109.5 |
C4—C5—H5A | 109.5 | H10A—C10—H10B | 109.5 |
C6—C5—H5B | 109.5 | C9—C10—H10C | 109.5 |
C4—C5—H5B | 109.5 | H10A—C10—H10C | 109.5 |
H5A—C5—H5B | 108.1 | H10B—C10—H10C | 109.5 |
C5—C6—C1 | 113.4 (3) | C9—C11—H11A | 109.5 |
C5—C6—H6A | 108.9 | C9—C11—H11B | 109.5 |
C1—C6—H6A | 108.9 | H11A—C11—H11B | 109.5 |
C5—C6—H6B | 108.9 | C9—C11—H11C | 109.5 |
C1—C6—H6B | 108.9 | H11A—C11—H11C | 109.5 |
H6A—C6—H6B | 107.7 | H11B—C11—H11C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | C11H16Cl4 |
Mr | 290.04 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 294 |
a, b, c (Å) | 10.6558 (7), 10.3017 (6), 6.3119 (3) |
β (°) | 91.251 (5) |
V (Å3) | 692.71 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 7.50 |
Crystal size (mm) | 0.21 × 0.09 × 0.07 |
Data collection | |
Diffractometer | Siemens AED diffractometer |
Absorption correction | Part of the refinement model (ΔF) (DIFABS; Walker & Stuart, 1983) |
Tmin, Tmax | 0.456, 0.601 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2764, 2528, 2206 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.129, 1.16 |
No. of reflections | 2528 |
No. of parameters | 136 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.22 |
Absolute structure | Flack (1983); 1188 Friedel pairs |
Absolute structure parameter | −0.04 (3) |
Computer programs: AED (Belletti et al., 1993), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).
Acknowledgements
Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy. Google Scholar
Borguet, Y., Richel, A., Delfosse, S., Leclerc, A., Delaude, L. & Demonceau, A. (2007). Tetrahedron Lett. 48, 6334–6338. CrossRef CAS Google Scholar
Boualy, B., El Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2009). Z. Kristallogr. New Cryst. Struct. 224, 1–2. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Delaude, L., Demonceau, A. & Noels, A. F. (2004). Top. Organomet. Chem. 11, 155–171. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany. Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ziyat, H., Ait Itto, M. Y., Ait Ali, M., Karim, A., Riahi, A. & Daran, J.-C. (2002). Acta Cryst. C58, o90–o93. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ziyat, H., El Houssame, S., Ait Ali, M., Ait Itto, M. Y., Karim, A., Wartchow, R. & Butenschën, H. (2004). Z. Naturforsch. Teil B, 59, 1177–1179. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The research on polyhalogenated alkanes, lactams and lactones, which are versatile intermediates in the synthesis of natural products and bioactive molecules, has held the attention of chemists for many years (Delaude et al., 2004). Among others, the Kharasch reaction is an effective method for the formation of these polyhalogenated products. This process consists in the addition of a polyhalogenated alkane to an alkene and requires either a radical initiator or a transition metal catalyst (Borguet et al., 2007). In the course of our ongoing research program aimed at the synthesis of natural chlorinated compounds (Ziyat et al., 2002; Ziyat et al., 2004; Boualy et al., 2009), the title compound has been obtained and its crystal structure is reported herein.
In the molecule of the title compound (Fig. 1) all bond lengths (Allen et al., 1987) and angles are normal. The cyclohexene ring assumes a half-boat conformation, with puckering parameters Q, θ and ϕ of 0.493 (4) Å, 51.9 (4)° and -142.0 (6)°, respectively (Cremer & Pople, 1975). The crystal structure (Fig. 2) is stabilized only by van der Waals interactions. The shortest intermolecular Cl···Cl separation observed is 3.5306 (11) Å (Cl2···Cl4i; symmetry code: (i) 1 + x, y, -1 + z). The structure, which has been refined in P21, presents a striking P21/m pseudosymmetry (See refinement section for details).