organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3-cyclo­hexyl­sulfonyl-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 17 February 2011; accepted 4 March 2011; online 9 March 2011)

In the title compound, C15H17ClO3S, the cyclo­hexyl ring adopts a chair conformation. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 3-aryl­sulfonyl-5-chloro-2-methyl-1-benzofuran derivatives, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1190.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2350.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17ClO3S

  • Mr = 312.80

  • Monoclinic, P 21 /c

  • a = 14.3135 (2) Å

  • b = 9.2829 (2) Å

  • c = 11.3433 (2) Å

  • β = 107.566 (1)°

  • V = 1436.91 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 173 K

  • 0.29 × 0.18 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.954

  • 13251 measured reflections

  • 3287 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.07

  • 3287 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.54 3.2630 (19) 133
C10—H10⋯O2ii 1.00 2.42 3.3899 (19) 162
C9—H9CCgiii 0.98 2.69 3.577 (2) 151
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a benzofuran ring exhibit interesting pharmacological properties such as antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 3-arylsulfonyl-5-chloro-2-methyl-1-benzofuran analogues (Choi et al., 2008, 2010), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The molecular packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds; the first one between a benzene H atom and the O atom of the sulfonyl unit (Table 1: C6–H6···O3i), and the second one between a cyclohexyl H atom and the O atom of the sulfonyl unit (Table 1: C10–H10···O2ii). The crystal packing (Fig. 2) is further stabilized by intermolecular C–H···π interactions between a methyl H atoms and the benzene rings (Table 1: C9–H9C···Cgiii, Cg is the centroid of the C2···C7 benzene ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 3-arylsulfonyl-5-chloro-2-methyl-1-benzofuran derivatives, see: Choi et al. (2008, 2010).

Experimental top

77% 3-chloroperoxybenzoic acid (515 mg, 2.3 mmol) was added in small portions to a stirred solution of 5-chloro-3-cyclohexylsulfanyl-2-methyl-1-benzofuran (389 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 440-441 K; Rf = 0.63 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O and C–H···π interactions (dotted lines) in the crystal structure of the title compound [Symmetry codes: (i) x, y-1, z; (ii) x, -y+3/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) x, -y+3/2, z+1/2; (v) x, y+1, z].
5-Chloro-3-cyclohexylsulfonyl-2-methyl-1-benzofuran top
Crystal data top
C15H17ClO3SF(000) = 656
Mr = 312.80Dx = 1.446 Mg m3
Monoclinic, P21/cMelting point: 440 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.3135 (2) ÅCell parameters from 5109 reflections
b = 9.2829 (2) Åθ = 2.7–27.5°
c = 11.3433 (2) ŵ = 0.42 mm1
β = 107.566 (1)°T = 173 K
V = 1436.91 (4) Å3Block, colourless
Z = 40.29 × 0.18 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3287 independent reflections
Radiation source: rotating anode2856 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.5°
ϕ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1210
Tmin = 0.891, Tmax = 0.954l = 1414
13251 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.5583P]
where P = (Fo2 + 2Fc2)/3
3287 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
0 constraints
Crystal data top
C15H17ClO3SV = 1436.91 (4) Å3
Mr = 312.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3135 (2) ŵ = 0.42 mm1
b = 9.2829 (2) ÅT = 173 K
c = 11.3433 (2) Å0.29 × 0.18 × 0.11 mm
β = 107.566 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3287 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2856 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.954Rint = 0.027
13251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.07Δρmax = 0.49 e Å3
3287 reflectionsΔρmin = 0.37 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.31521 (3)0.72877 (4)0.40822 (3)0.02105 (11)
Cl0.18841 (3)0.20832 (5)0.64837 (4)0.03919 (13)
O20.28307 (9)0.73602 (12)0.51704 (10)0.0298 (3)
O10.43749 (7)0.36827 (12)0.34930 (10)0.0255 (2)
O30.38824 (8)0.82960 (12)0.39699 (11)0.0320 (3)
C10.35822 (10)0.55463 (15)0.40040 (13)0.0208 (3)
C20.33118 (10)0.42681 (15)0.45538 (13)0.0209 (3)
C30.27018 (10)0.39605 (17)0.52741 (14)0.0242 (3)
H30.23470.46940.55370.029*
C40.26403 (11)0.25316 (18)0.55855 (15)0.0266 (3)
C50.31494 (11)0.14251 (17)0.52184 (15)0.0294 (3)
H50.30750.04590.54520.035*
C60.37639 (11)0.17320 (17)0.45146 (15)0.0284 (3)
H60.41250.10000.42600.034*
C70.38230 (10)0.31567 (16)0.42022 (14)0.0230 (3)
C80.42122 (10)0.51346 (16)0.33784 (13)0.0226 (3)
C90.47360 (11)0.59044 (18)0.26251 (15)0.0292 (3)
H9A0.42620.64270.19560.044*
H9B0.50910.52080.22720.044*
H9C0.52010.65880.31480.044*
C100.21039 (10)0.74609 (15)0.27476 (13)0.0208 (3)
H100.23160.72760.19980.025*
C110.13094 (11)0.63719 (17)0.27601 (15)0.0285 (3)
H11A0.11040.65110.35110.034*
H11B0.15700.53820.27780.034*
C120.04281 (12)0.6570 (2)0.16061 (17)0.0362 (4)
H12A0.06260.63640.08590.043*
H12B0.00940.58800.16280.043*
C130.00340 (12)0.8095 (2)0.15363 (18)0.0367 (4)
H13A0.05230.82090.07730.044*
H13B0.02090.82780.22530.044*
C140.08265 (12)0.91795 (19)0.15367 (16)0.0338 (4)
H14A0.05611.01660.15220.041*
H14B0.10270.90490.07810.041*
C150.17212 (11)0.90049 (16)0.26764 (15)0.0274 (3)
H15A0.22410.96840.26270.033*
H15B0.15390.92310.34310.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.02279 (18)0.01684 (18)0.02228 (19)0.00067 (12)0.00493 (14)0.00147 (13)
Cl0.0382 (2)0.0426 (3)0.0397 (3)0.00341 (17)0.01619 (19)0.01558 (19)
O20.0390 (6)0.0287 (6)0.0215 (5)0.0062 (5)0.0088 (5)0.0033 (4)
O10.0275 (5)0.0225 (5)0.0282 (6)0.0036 (4)0.0111 (4)0.0011 (4)
O30.0265 (5)0.0208 (5)0.0445 (7)0.0038 (4)0.0044 (5)0.0007 (5)
C10.0219 (6)0.0188 (7)0.0213 (7)0.0000 (5)0.0057 (5)0.0003 (5)
C20.0213 (6)0.0183 (7)0.0206 (7)0.0006 (5)0.0027 (5)0.0004 (5)
C30.0239 (7)0.0243 (7)0.0241 (7)0.0019 (6)0.0068 (6)0.0015 (6)
C40.0235 (7)0.0300 (8)0.0246 (7)0.0025 (6)0.0047 (6)0.0063 (6)
C50.0329 (8)0.0203 (7)0.0302 (8)0.0011 (6)0.0025 (6)0.0050 (6)
C60.0305 (8)0.0197 (7)0.0318 (8)0.0037 (6)0.0045 (6)0.0012 (6)
C70.0226 (7)0.0221 (7)0.0227 (7)0.0011 (5)0.0045 (5)0.0011 (6)
C80.0220 (6)0.0221 (7)0.0220 (7)0.0001 (5)0.0039 (5)0.0005 (6)
C90.0282 (7)0.0339 (9)0.0274 (8)0.0029 (6)0.0114 (6)0.0012 (7)
C100.0214 (7)0.0206 (7)0.0196 (7)0.0007 (5)0.0052 (5)0.0002 (5)
C110.0274 (7)0.0225 (7)0.0326 (8)0.0035 (6)0.0047 (6)0.0011 (6)
C120.0282 (8)0.0351 (9)0.0387 (10)0.0083 (7)0.0000 (7)0.0002 (8)
C130.0231 (8)0.0417 (10)0.0403 (10)0.0006 (7)0.0022 (7)0.0053 (8)
C140.0286 (8)0.0321 (9)0.0363 (9)0.0039 (6)0.0030 (7)0.0096 (7)
C150.0264 (7)0.0211 (7)0.0319 (8)0.0014 (6)0.0046 (6)0.0030 (6)
Geometric parameters (Å, º) top
S—O31.4372 (11)C9—H9B0.9800
S—O21.4431 (12)C9—H9C0.9800
S—C11.7416 (15)C10—C111.525 (2)
S—C101.7882 (14)C10—C151.528 (2)
Cl—C41.7461 (16)C10—H101.0000
O1—C81.3673 (18)C11—C121.530 (2)
O1—C71.3760 (18)C11—H11A0.9900
C1—C81.360 (2)C11—H11B0.9900
C1—C21.447 (2)C12—C131.517 (3)
C2—C71.391 (2)C12—H12A0.9900
C2—C31.393 (2)C12—H12B0.9900
C3—C41.382 (2)C13—C141.516 (2)
C3—H30.9500C13—H13A0.9900
C4—C51.394 (2)C13—H13B0.9900
C5—C61.384 (2)C14—C151.529 (2)
C5—H50.9500C14—H14A0.9900
C6—C71.378 (2)C14—H14B0.9900
C6—H60.9500C15—H15A0.9900
C8—C91.480 (2)C15—H15B0.9900
C9—H9A0.9800
O3—S—O2118.27 (7)C11—C10—C15111.46 (12)
O3—S—C1108.80 (7)C11—C10—S111.72 (10)
O2—S—C1107.20 (7)C15—C10—S108.96 (10)
O3—S—C10108.26 (7)C11—C10—H10108.2
O2—S—C10108.50 (7)C15—C10—H10108.2
C1—S—C10105.04 (7)S—C10—H10108.2
C8—O1—C7107.10 (11)C10—C11—C12109.68 (13)
C8—C1—C2107.48 (13)C10—C11—H11A109.7
C8—C1—S126.00 (11)C12—C11—H11A109.7
C2—C1—S126.49 (11)C10—C11—H11B109.7
C7—C2—C3119.53 (13)C12—C11—H11B109.7
C7—C2—C1104.62 (13)H11A—C11—H11B108.2
C3—C2—C1135.84 (13)C13—C12—C11110.76 (14)
C4—C3—C2116.49 (14)C13—C12—H12A109.5
C4—C3—H3121.8C11—C12—H12A109.5
C2—C3—H3121.8C13—C12—H12B109.5
C3—C4—C5123.47 (15)C11—C12—H12B109.5
C3—C4—Cl118.45 (13)H12A—C12—H12B108.1
C5—C4—Cl118.08 (12)C14—C13—C12110.68 (14)
C6—C5—C4120.08 (15)C14—C13—H13A109.5
C6—C5—H5120.0C12—C13—H13A109.5
C4—C5—H5120.0C14—C13—H13B109.5
C7—C6—C5116.40 (14)C12—C13—H13B109.5
C7—C6—H6121.8H13A—C13—H13B108.1
C5—C6—H6121.8C13—C14—C15111.43 (14)
O1—C7—C6125.55 (14)C13—C14—H14A109.3
O1—C7—C2110.42 (13)C15—C14—H14A109.3
C6—C7—C2124.03 (14)C13—C14—H14B109.3
C1—C8—O1110.38 (13)C15—C14—H14B109.3
C1—C8—C9134.19 (14)H14A—C14—H14B108.0
O1—C8—C9115.43 (13)C10—C15—C14109.85 (13)
C8—C9—H9A109.5C10—C15—H15A109.7
C8—C9—H9B109.5C14—C15—H15A109.7
H9A—C9—H9B109.5C10—C15—H15B109.7
C8—C9—H9C109.5C14—C15—H15B109.7
H9A—C9—H9C109.5H15A—C15—H15B108.2
H9B—C9—H9C109.5
O3—S—C1—C829.39 (15)C3—C2—C7—C60.5 (2)
O2—S—C1—C8158.38 (13)C1—C2—C7—C6178.90 (14)
C10—S—C1—C886.33 (14)C2—C1—C8—O10.51 (16)
O3—S—C1—C2152.86 (12)S—C1—C8—O1178.61 (10)
O2—S—C1—C223.87 (14)C2—C1—C8—C9179.31 (15)
C10—S—C1—C291.41 (13)S—C1—C8—C91.2 (3)
C8—C1—C2—C70.17 (16)C7—O1—C8—C10.64 (16)
S—C1—C2—C7178.26 (11)C7—O1—C8—C9179.21 (12)
C8—C1—C2—C3179.09 (16)O3—S—C10—C11177.11 (11)
S—C1—C2—C31.0 (2)O2—S—C10—C1153.37 (12)
C7—C2—C3—C40.6 (2)C1—S—C10—C1161.01 (12)
C1—C2—C3—C4178.57 (15)O3—S—C10—C1559.29 (12)
C2—C3—C4—C50.0 (2)O2—S—C10—C1570.23 (12)
C2—C3—C4—Cl179.83 (11)C1—S—C10—C15175.40 (10)
C3—C4—C5—C60.7 (2)C15—C10—C11—C1257.47 (17)
Cl—C4—C5—C6179.44 (12)S—C10—C11—C12179.64 (12)
C4—C5—C6—C70.8 (2)C10—C11—C12—C1357.59 (19)
C8—O1—C7—C6178.58 (14)C11—C12—C13—C1457.6 (2)
C8—O1—C7—C20.52 (16)C12—C13—C14—C1556.9 (2)
C5—C6—C7—O1178.78 (14)C11—C10—C15—C1456.53 (17)
C5—C6—C7—C20.2 (2)S—C10—C15—C14179.73 (11)
C3—C2—C7—O1179.63 (12)C13—C14—C15—C1055.92 (19)
C1—C2—C7—O10.21 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.543.2630 (19)133
C10—H10···O2ii1.002.423.3899 (19)162
C9—H9C···Cgiii0.982.693.577 (2)151
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H17ClO3S
Mr312.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.3135 (2), 9.2829 (2), 11.3433 (2)
β (°) 107.566 (1)
V3)1436.91 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.29 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.891, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
13251, 3287, 2856
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.07
No. of reflections3287
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.543.2630 (19)133
C10—H10···O2ii1.002.423.3899 (19)162
C9—H9C···Cgiii0.982.693.577 (2)151
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds