organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-acetyl-5-oxo-3-phenyl­hexa­noate

aCollege of Chemistry and Materials Science, Anhui Key Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
*Correspondence e-mail: yiminhu@yahoo.cn

(Received 21 February 2011; accepted 13 March 2011; online 19 March 2011)

The reaction of ethyl 3-bromo-3-phenyl­propano­ate with pentane-2,4-dione, in the presence of palladium(II) acetate and triphenyl­phosphine, in dimethyl­formamide, unexpectedly gave the title product, C16H20O4. The mol­ecule contains one chiral C atom but the crystal is racemic. In the crystal, neighboring mol­ecules form a chain along [100] through three weak C—H⋯O inter­actions. Furthermore, a double-stranded structure is formed through weak C—H⋯O inter­actions between two parallel chains.

Related literature

For Pd-catalysed coupling reactions, see: Hu et al. (2008[Hu, Y.-M., Song, F.-F., Wu, F.-H., Cheng, D. & Wang, S. (2008). Chem. Eur. J. 14, 3110-3117.]); Hu, Ouyang et al. (2009[Hu, Y.-M., Ouyang, Y., Qu, Y., Hu, Q. & Yao, H. (2009). Chem. Commun. pp. 4575-4577.]); Hu, Yu et al. (2009[Hu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009). Angew. Chem. Int. Ed. 48, 5448-5451.]). For the biological activity of pentane-2,4-dione derivatives, see: Vijaikumar & Pitchumani (2010[Vijaikumar, S. & Pitchumani, K. (2010). Indian J. Chem. Sect. B, 49, 469-474.]). For related structures, see: Hu, Lin et al. (2010[Hu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010). Synthesis, 42, 3467-3473.]); Hu, Ren et al. (2010[Hu, Y.-M., Ren, D., Zhang, L.-D., Lin, X.-G. & Wang, J. (2010). Eur. J. Org. Chem. 23, 4454-4459.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20O4

  • Mr = 276.32

  • Triclinic, [P \overline 1]

  • a = 5.8213 (11) Å

  • b = 7.7638 (18) Å

  • c = 17.8532 (15) Å

  • α = 80.973 (2)°

  • β = 88.977 (3)°

  • γ = 75.033 (2)°

  • V = 769.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.982

  • 8564 measured reflections

  • 3033 independent reflections

  • 1726 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.099

  • S = 1.07

  • 3033 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.63 3.534 (2) 165
C8—H8B⋯O1i 0.97 2.70 3.525 (2) 144
C12—H12⋯O1i 0.98 2.46 3.387 (2) 157
C14—H14C⋯O4ii 0.96 2.72 3.405 (2) 129
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Palladium-catalyzed coupling reactions have become an important tool in modern organic synthesis chemistry (Hu et al. 2008). They have made a wide variety of active pharmaceutical ingredients, natural substances and other complex organic molecules economically accessible (Hu & Yu et al., 2009; Hu, Ouyang et al., 2009). The pentane-2,4-dione derivatives, which have physiological activity, are effective intermediates in the synthesis of many complex natural products (Vijaikumar & Pitchumani, 2010). We have reported some novel palladium-catalyzed intermolecular and intramolecular reactions of aryl halides with the olefins and diynes (Hu, Lin et al., 2010; Hu, Ren et al., 2010). The reaction of ethyl 3-bromo-3-phenylpropanoate with pentane-2,4-dione, in the presence of palladium(II) acetate and triphenylphosphine, in DMF at 373 K for 22 h, gave the unexpected title product.

The molecular structure of the title compound, C16H20O4, reveals that all the bond lengths and angles have normal values. As shown in Fig. 1, one chiral carbon, C7, was observed in the molecule. Due to the existence of inversion centers in the crystal packing, the C7 atoms exhibit R-conformation in the half of the molecules, and display S-conformation in the other half of the molecules. So the whole crystal is racemic (Fig. 4). In the crystal packing, the weak C—H···O interactions play important roles. Neighboring molecules form a one dimensional chain through the weak C6—H6···O1ii, C8—H8b···O1ii and C12—H12···O1ii (ii: 1+x, y, z) interactions (Fig. 2). Furthermore, two neighboring chains are parallel to each other to form a double-stranded structure through the weak C14—H14C···O4i (i: 2-x, 1-y, 1-z) interactions (Fig. 3).

Related literature top

For Pd-catalysed coupling reactions, see: Hu et al. (2008); Hu, Ouyang et al. (2009); Hu, Yu et al. (2009). For the biological activity of pentane-2,4-dione derivatives, see: Vijaikumar & Pitchumani (2010). For related structures, see: Hu, Lin et al. (2010); Hu, Ren et al. (2010).

Experimental top

An oven-dried Schlenk flask was evacuated, filled with nitrogen, and then charged with pentane-2,4-dione (1.00 g, 10 mmol), ethyl-3-bromo-3-phenylpropanoate (2.82 g, 11 mmol), tributylamine (3 ml), PPh3 (52.5 mg, 0.2 mmol), Pd(OAc)2 (24 mg, 0.1 mmol), and DMF (10 ml) to give a yellow solution. The reaction mixture was heated at 373 K with stirring. The reaction mixture was cooled to room temperature after 22 h and the resulting yellow-orange mixture was diluted with Et2O (10 ml). The mixture was washed with H2O (15 ml) and the aqueous layer was extracted with Et2O (20 ml). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel (petroleum ether:EtOAc, 9:1) and recrystallized from EtOAc, yield 2.27 g (82%). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization from a solution of the title compound from ethyl acetate, over a period of one week.

Refinement top

H atoms were positioned geometrically and refined using a riding model (including free rotation about the methyl C—C bond), with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(carrier C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound down a axis.
[Figure 3] Fig. 3. A view of the double-stranded structure (i: 2-x, 1-y, 1-z; ii: 1+x, y, z).
[Figure 4] Fig. 4. A view of a pair of recemic molecules.
Ethyl 4-acetyl-5-oxo-3-phenylhexanoate top
Crystal data top
C16H20O4Z = 2
Mr = 276.32F(000) = 296
Triclinic, P1Dx = 1.192 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8213 (11) ÅCell parameters from 3519 reflections
b = 7.7638 (18) Åθ = 2.2–23.2°
c = 17.8532 (15) ŵ = 0.09 mm1
α = 80.973 (2)°T = 291 K
β = 88.977 (3)°Block, colourless
γ = 75.033 (2)°0.28 × 0.24 × 0.22 mm
V = 769.6 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3033 independent reflections
Radiation source: sealed tube1726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 26.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.977, Tmax = 0.982k = 99
8564 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3033 reflectionsΔρmax = 0.16 e Å3
185 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.017 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H20O4γ = 75.033 (2)°
Mr = 276.32V = 769.6 (2) Å3
Triclinic, P1Z = 2
a = 5.8213 (11) ÅMo Kα radiation
b = 7.7638 (18) ŵ = 0.09 mm1
c = 17.8532 (15) ÅT = 291 K
α = 80.973 (2)°0.28 × 0.24 × 0.22 mm
β = 88.977 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3033 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1726 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.982Rint = 0.050
8564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
3033 reflectionsΔρmin = 0.15 e Å3
185 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9743 (3)0.8135 (3)0.22191 (11)0.0424 (5)
C20.8295 (4)0.7260 (3)0.19182 (11)0.0473 (5)
H20.71990.68230.22260.057*
C30.8438 (4)0.7019 (3)0.11675 (11)0.0463 (5)
H30.74500.64110.09780.056*
C41.0006 (4)0.7658 (3)0.07023 (12)0.0464 (5)
H41.00750.75070.01950.056*
C51.1474 (3)0.8521 (3)0.09850 (11)0.0463 (5)
H51.25570.89570.06710.056*
C61.1361 (3)0.8750 (3)0.17330 (11)0.0436 (5)
H61.23890.93290.19200.052*
C70.9534 (4)0.8488 (3)0.30314 (11)0.0411 (5)
H70.83040.79490.32720.049*
C80.8736 (3)1.0549 (3)0.30396 (11)0.0400 (5)
H8A0.85891.07740.35600.048*
H8B0.99291.11110.28020.048*
C90.6410 (3)1.1362 (3)0.26269 (11)0.0411 (5)
C100.4381 (4)1.3543 (3)0.16176 (11)0.0488 (5)
H10A0.41331.48440.15400.059*
H10B0.30321.32560.18870.059*
C110.4545 (4)1.2916 (3)0.08822 (11)0.0470 (5)
H11A0.57641.33230.05930.070*
H11B0.30481.33940.06120.070*
H11C0.49311.16210.09600.070*
C121.1855 (3)0.7662 (3)0.34946 (11)0.0409 (5)
H121.30460.82790.32810.049*
C131.2830 (3)0.5652 (3)0.34769 (11)0.0441 (5)
C141.1213 (4)0.4433 (3)0.36507 (12)0.0490 (5)
H14A1.21150.32000.36750.074*
H14B1.00030.47170.32590.074*
H14C1.04830.45990.41300.074*
C151.1577 (4)0.7879 (3)0.43302 (12)0.0498 (5)
C161.3691 (4)0.8014 (3)0.47412 (12)0.0471 (5)
H16A1.38370.92320.46380.071*
H16B1.50890.72140.45770.071*
H16C1.35200.76830.52760.071*
O10.4638 (2)1.0866 (2)0.27737 (8)0.0483 (4)
O20.6542 (2)1.2691 (2)0.20664 (8)0.0509 (4)
O31.4918 (2)0.50694 (19)0.33553 (7)0.0458 (4)
O40.9718 (2)0.7909 (2)0.46421 (8)0.0488 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0433 (11)0.0391 (11)0.0406 (10)0.0055 (9)0.0051 (8)0.0021 (8)
C20.0545 (12)0.0471 (13)0.0438 (11)0.0141 (10)0.0010 (9)0.0156 (9)
C30.0473 (12)0.0497 (12)0.0450 (11)0.0135 (10)0.0033 (9)0.0146 (9)
C40.0454 (11)0.0485 (12)0.0480 (12)0.0147 (10)0.0068 (9)0.0103 (9)
C50.0433 (12)0.0503 (13)0.0472 (12)0.0173 (10)0.0016 (9)0.0047 (9)
C60.0412 (11)0.0426 (12)0.0476 (12)0.0110 (9)0.0007 (9)0.0080 (9)
C70.0464 (11)0.0380 (11)0.0403 (11)0.0132 (9)0.0007 (8)0.0061 (8)
C80.0374 (10)0.0419 (11)0.0428 (11)0.0108 (9)0.0021 (8)0.0122 (9)
C90.0432 (12)0.0350 (11)0.0471 (11)0.0120 (9)0.0015 (9)0.0095 (8)
C100.0559 (13)0.0427 (12)0.0440 (11)0.0128 (10)0.0086 (9)0.0062 (9)
C110.0435 (11)0.0469 (12)0.0532 (12)0.0131 (9)0.0146 (9)0.0118 (10)
C120.0341 (10)0.0470 (12)0.0445 (11)0.0182 (9)0.0047 (8)0.0034 (9)
C130.0344 (11)0.0526 (12)0.0452 (11)0.0115 (9)0.0020 (8)0.0066 (9)
C140.0525 (13)0.0453 (13)0.0474 (12)0.0148 (10)0.0069 (9)0.0013 (10)
C150.0417 (12)0.0572 (14)0.0509 (12)0.0127 (10)0.0015 (10)0.0095 (10)
C160.0522 (12)0.0447 (11)0.0487 (11)0.0125 (10)0.0114 (9)0.0183 (9)
O10.0402 (8)0.0558 (9)0.0467 (8)0.0135 (7)0.0032 (6)0.0010 (7)
O20.0538 (9)0.0545 (9)0.0414 (8)0.0152 (7)0.0036 (6)0.0040 (7)
O30.0435 (8)0.0476 (9)0.0474 (8)0.0082 (6)0.0065 (6)0.0177 (6)
O40.0493 (9)0.0499 (9)0.0495 (8)0.0138 (7)0.0131 (7)0.0142 (7)
Geometric parameters (Å, º) top
C1—C21.374 (3)C10—O21.450 (2)
C1—C61.393 (3)C10—C111.464 (3)
C1—C71.515 (3)C10—H10A0.9700
C2—C31.380 (3)C10—H10B0.9700
C2—H20.9300C11—H11A0.9600
C3—C41.359 (3)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.360 (3)C12—C131.522 (3)
C4—H40.9300C12—C151.528 (3)
C5—C61.373 (3)C12—H120.9800
C5—H50.9300C13—O31.211 (2)
C6—H60.9300C13—C141.495 (3)
C7—C121.532 (3)C14—H14A0.9600
C7—C81.549 (3)C14—H14B0.9600
C7—H70.9800C14—H14C0.9600
C8—C91.491 (3)C15—O41.205 (2)
C8—H8A0.9700C15—C161.479 (3)
C8—H8B0.9700C16—H16A0.9600
C9—O11.202 (2)C16—H16B0.9600
C9—O21.337 (2)C16—H16C0.9600
C2—C1—C6116.86 (19)C11—C10—H10A109.6
C2—C1—C7121.89 (19)O2—C10—H10B109.6
C6—C1—C7121.21 (19)C11—C10—H10B109.6
C1—C2—C3121.2 (2)H10A—C10—H10B108.1
C1—C2—H2119.4C10—C11—H11A109.5
C3—C2—H2119.4C10—C11—H11B109.5
C4—C3—C2120.8 (2)H11A—C11—H11B109.5
C4—C3—H3119.6C10—C11—H11C109.5
C2—C3—H3119.6H11A—C11—H11C109.5
C3—C4—C5119.4 (2)H11B—C11—H11C109.5
C3—C4—H4120.3C13—C12—C15106.57 (16)
C5—C4—H4120.3C13—C12—C7113.03 (16)
C4—C5—C6120.2 (2)C15—C12—C7112.55 (16)
C4—C5—H5119.9C13—C12—H12108.2
C6—C5—H5119.9C15—C12—H12108.2
C5—C6—C1121.58 (19)C7—C12—H12108.2
C5—C6—H6119.2O3—C13—C14121.6 (2)
C1—C6—H6119.2O3—C13—C12119.19 (18)
C1—C7—C12112.74 (16)C14—C13—C12119.09 (17)
C1—C7—C8109.58 (15)C13—C14—H14A109.5
C12—C7—C8109.89 (15)C13—C14—H14B109.5
C1—C7—H7108.2H14A—C14—H14B109.5
C12—C7—H7108.2C13—C14—H14C109.5
C8—C7—H7108.2H14A—C14—H14C109.5
C9—C8—C7110.65 (15)H14B—C14—H14C109.5
C9—C8—H8A109.5O4—C15—C16121.6 (2)
C7—C8—H8A109.5O4—C15—C12121.10 (18)
C9—C8—H8B109.5C16—C15—C12117.33 (19)
C7—C8—H8B109.5C15—C16—H16A109.5
H8A—C8—H8B108.1C15—C16—H16B109.5
O1—C9—O2124.06 (18)H16A—C16—H16B109.5
O1—C9—C8124.11 (18)C15—C16—H16C109.5
O2—C9—C8111.82 (16)H16A—C16—H16C109.5
O2—C10—C11110.33 (17)H16B—C16—H16C109.5
O2—C10—H10A109.6C9—O2—C10116.13 (15)
C6—C1—C2—C30.4 (3)C1—C7—C12—C1354.2 (2)
C7—C1—C2—C3177.12 (18)C8—C7—C12—C13176.77 (16)
C1—C2—C3—C40.7 (3)C1—C7—C12—C15175.02 (18)
C2—C3—C4—C51.0 (3)C8—C7—C12—C1562.4 (2)
C3—C4—C5—C60.3 (3)C15—C12—C13—O3102.9 (2)
C4—C5—C6—C10.8 (3)C7—C12—C13—O3132.96 (18)
C2—C1—C6—C51.1 (3)C15—C12—C13—C1473.9 (2)
C7—C1—C6—C5176.43 (18)C7—C12—C13—C1450.2 (2)
C2—C1—C7—C12122.1 (2)C13—C12—C15—O493.4 (2)
C6—C1—C7—C1260.5 (2)C7—C12—C15—O431.0 (3)
C2—C1—C7—C8115.2 (2)C13—C12—C15—C1685.4 (2)
C6—C1—C7—C862.2 (2)C7—C12—C15—C16150.14 (18)
C1—C7—C8—C958.7 (2)O1—C9—O2—C100.5 (3)
C12—C7—C8—C9176.91 (16)C8—C9—O2—C10178.60 (17)
C7—C8—C9—O155.4 (3)C11—C10—O2—C9103.9 (2)
C7—C8—C9—O2123.67 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.633.534 (2)165
C8—H8B···O1i0.972.703.525 (2)144
C12—H12···O1i0.982.463.387 (2)157
C14—H14C···O4ii0.962.723.405 (2)129
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H20O4
Mr276.32
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)5.8213 (11), 7.7638 (18), 17.8532 (15)
α, β, γ (°)80.973 (2), 88.977 (3), 75.033 (2)
V3)769.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.977, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8564, 3033, 1726
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.099, 1.07
No. of reflections3033
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.633.534 (2)165
C8—H8B···O1i0.972.703.525 (2)144
C12—H12···O1i0.982.463.387 (2)157
C14—H14C···O4ii0.962.723.405 (2)129
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

We thank the National Science Foundation of China (project Nos. 21072003 and 20872002) for financial support for this work.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010). Synthesis, 42, 3467–3473.  Web of Science CrossRef Google Scholar
First citationHu, Y.-M., Ouyang, Y., Qu, Y., Hu, Q. & Yao, H. (2009). Chem. Commun. pp. 4575–4577.  Web of Science CSD CrossRef Google Scholar
First citationHu, Y.-M., Ren, D., Zhang, L.-D., Lin, X.-G. & Wang, J. (2010). Eur. J. Org. Chem. 23, 4454–4459.  Google Scholar
First citationHu, Y.-M., Song, F.-F., Wu, F.-H., Cheng, D. & Wang, S. (2008). Chem. Eur. J. 14, 3110–3117.  CrossRef PubMed CAS Google Scholar
First citationHu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009). Angew. Chem. Int. Ed. 48, 5448–5451.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijaikumar, S. & Pitchumani, K. (2010). Indian J. Chem. Sect. B, 49, 469–474.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds