metal-organic compounds
[1,2-Bis(diisopropylphosphanyl)ethane-κ2P,P′]dichloridonickel(II)–9H-carbazole (1/2)
aFacultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
*Correspondence e-mail: juvent@servidor.unam.mx
In the title compound, [NiCl2(C14H32P2)]·2C12H9N, the neutral [Ni(dppe)Cl2] complex [dppe is 1,2-bis(diisopropylphosphanyl)ethane] consists of a tetracoordinated Ni2+ cation and has a crystallographic twofold axis passing through the metal atom and the mid-point of the CH2—CH2 bond of the dppe ligand. The metal atom shows slight tetrahedral distortion from an ideal square-planar coordination geometry, as reflected in the dihedral angle between NiCl2 and NiP2 planes of 15.32 (2)°. The 9H-carbazole ring system is essentially planar (r.m.s. deviation = 0.022 Å). In the crystal packing, there are two symmetry-related 9H-carbazole molecules between two adjacent NiII complexes, with an angle between the carbazole mean planes of ca 77°.
Related literature
For the use of nickel complexes of the type [Ni(dppe)Cl2] as starting materials and precursors in metal-mediated and catalytic systems, respectively, see: Vicic & Jones (1997); Arévalo & García (2010). For details of tetrahedral distortion and motifs, see: Angulo et al. (2003); Dahlenburg & Kurth (2001); Etter et al. (1990).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811010555/bh2344sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010555/bh2344Isup2.hkl
A THF solution of [Ni(dppe)H]2 (Vicic & Jones, 1997) (0.100 g, 0.15 mmol) was added with 9H-carbazole (0. 261 g, 1.56 mmol) and heated to 80 °C for 10 h. After this time, the solution changed from wine red color to brown. The solvent was eliminated under reduced pressure and the resulting solid dissolved in dichloromethane (DCM). Slow evaporation at room temperature of DCM afforded crystals suitable for X-ray diffraction. NMR: 31P{1H} (acetone-d6,121.32 MHz, 25 °C): d 57.2. NMR 1H (acetone-d6, 300 MHz, 25 °C): d 8.13 (d, JH—H=7.8, 1H), d 7.54 (d, JH—H=7.8, 1H), d 7.39 (dd, JH—H=7.8, JH—H=7.2, 1H), d 7.18 (dd, JH—H=7.2, JH—H=7.8, 1H), d 2.5 (m, CH, 2H), d 1.7 (m, CH2, 2H), d 1.35 (m, CH3, 12H). Elemental analysis (calc.): C 62.9 (62.83), H 6.90 (6.93), N 3.82% (3.85%).
H atom bonded to N atom was located in a difference and was refined with free coordinates and Uiso(H) = 1.2Ueq(N). H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.95 (aromatic CH), 0.98 (methyl CH3), 0.99 (methylene CH2) and 1.00 Å (methine CH), and with Uiso = 1.2–1.5 Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[NiCl2(C14H32P2)]·2C12H9N | F(000) = 1536 |
Mr = 726.35 | Dx = 1.363 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 7654 reflections |
a = 22.5830 (5) Å | θ = 3.3–26.0° |
b = 8.4374 (2) Å | µ = 0.82 mm−1 |
c = 18.9630 (5) Å | T = 122 K |
β = 101.544 (2)° | Prism, orange |
V = 3540.15 (15) Å3 | 0.42 × 0.16 × 0.02 mm |
Z = 4 |
Oxford Diffraction Xcalibur Atlas Gemini diffractometer | 3484 independent reflections |
Radiation source: fine-focus sealed tube | 2908 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 26.1°, θmin = 3.5° |
ω scans | h = −27→27 |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)] | k = −10→10 |
Tmin = 0.851, Tmax = 0.987 | l = −18→23 |
12792 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0343P)2 + 0.7966P] where P = (Fo2 + 2Fc2)/3 |
3484 reflections | (Δ/σ)max = 0.001 |
211 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
0 constraints |
[NiCl2(C14H32P2)]·2C12H9N | V = 3540.15 (15) Å3 |
Mr = 726.35 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.5830 (5) Å | µ = 0.82 mm−1 |
b = 8.4374 (2) Å | T = 122 K |
c = 18.9630 (5) Å | 0.42 × 0.16 × 0.02 mm |
β = 101.544 (2)° |
Oxford Diffraction Xcalibur Atlas Gemini diffractometer | 3484 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)] | 2908 reflections with I > 2σ(I) |
Tmin = 0.851, Tmax = 0.987 | Rint = 0.027 |
12792 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.62 e Å−3 |
3484 reflections | Δρmin = −0.26 e Å−3 |
211 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.13521 (7) | 0.51654 (19) | 0.17978 (9) | 0.0162 (4) | |
C2 | 0.10421 (8) | 0.4878 (2) | 0.10949 (9) | 0.0208 (4) | |
H2 | 0.0704 | 0.4185 | 0.0998 | 0.025* | |
C3 | 0.12477 (8) | 0.5644 (2) | 0.05455 (10) | 0.0237 (4) | |
H3 | 0.1046 | 0.5469 | 0.0062 | 0.028* | |
C4 | 0.17440 (8) | 0.6668 (2) | 0.06818 (10) | 0.0231 (4) | |
H4 | 0.1873 | 0.7177 | 0.0291 | 0.028* | |
C5 | 0.20488 (8) | 0.6947 (2) | 0.13744 (10) | 0.0207 (4) | |
H5 | 0.2385 | 0.7648 | 0.1464 | 0.025* | |
C6 | 0.18570 (7) | 0.61860 (19) | 0.19446 (9) | 0.0163 (4) | |
C7 | 0.20640 (7) | 0.61872 (19) | 0.27183 (9) | 0.0164 (4) | |
C8 | 0.25374 (8) | 0.6941 (2) | 0.31818 (10) | 0.0218 (4) | |
H8 | 0.2812 | 0.7597 | 0.2996 | 0.026* | |
C9 | 0.26007 (8) | 0.6719 (2) | 0.39150 (10) | 0.0251 (4) | |
H9 | 0.2922 | 0.7226 | 0.4235 | 0.03* | |
C10 | 0.21966 (8) | 0.5759 (2) | 0.41916 (10) | 0.0236 (4) | |
H10 | 0.2246 | 0.5635 | 0.4698 | 0.028* | |
C11 | 0.17264 (8) | 0.4985 (2) | 0.37428 (9) | 0.0195 (4) | |
H11 | 0.1453 | 0.4334 | 0.3933 | 0.023* | |
C12 | 0.16687 (7) | 0.51933 (19) | 0.30049 (9) | 0.0164 (4) | |
C13 | 0.12297 (7) | 0.9420 (2) | 0.35115 (9) | 0.0193 (4) | |
H13 | 0.1382 | 0.8312 | 0.361 | 0.023* | |
C14 | 0.14981 (8) | 1.0047 (2) | 0.28869 (10) | 0.0247 (4) | |
H14A | 0.136 | 1.1137 | 0.2776 | 0.037* | |
H14B | 0.1366 | 0.9377 | 0.2463 | 0.037* | |
H14C | 0.194 | 1.0031 | 0.3022 | 0.037* | |
C15 | 0.14581 (8) | 1.0381 (2) | 0.41930 (10) | 0.0247 (4) | |
H15A | 0.19 | 1.0448 | 0.428 | 0.037* | |
H15B | 0.1335 | 0.9862 | 0.4603 | 0.037* | |
H15C | 0.1286 | 1.145 | 0.4134 | 0.037* | |
C16 | 0.01068 (8) | 0.9163 (2) | 0.40785 (9) | 0.0213 (4) | |
H16 | 0.0272 | 1.0094 | 0.4381 | 0.026* | |
C17 | 0.03308 (9) | 0.7674 (2) | 0.45155 (11) | 0.0316 (5) | |
H17A | 0.0223 | 0.7741 | 0.499 | 0.047* | |
H17B | 0.0771 | 0.7595 | 0.4573 | 0.047* | |
H17C | 0.0141 | 0.6734 | 0.4262 | 0.047* | |
C18 | −0.05797 (8) | 0.9302 (2) | 0.39410 (10) | 0.0268 (4) | |
H18A | −0.0761 | 0.8401 | 0.3649 | 0.04* | |
H18B | −0.0705 | 1.0292 | 0.3684 | 0.04* | |
H18C | −0.0714 | 0.9301 | 0.4401 | 0.04* | |
C19 | 0.02934 (8) | 0.7388 (2) | 0.27707 (10) | 0.0251 (4) | |
H19A | 0.0633 | 0.7196 | 0.2523 | 0.03* | |
H19B | 0.029 | 0.6525 | 0.3124 | 0.03* | |
Cl1 | −0.025597 (18) | 1.29303 (5) | 0.16367 (2) | 0.01865 (11) | |
N1 | 0.12485 (7) | 0.45582 (17) | 0.24411 (8) | 0.0174 (3) | |
Ni1 | 0 | 1.11320 (3) | 0.25 | 0.01164 (9) | |
P1 | 0.039792 (19) | 0.93016 (5) | 0.32401 (2) | 0.01575 (11) | |
H1N | 0.0953 (9) | 0.405 (2) | 0.2501 (10) | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0171 (8) | 0.0132 (8) | 0.0203 (9) | 0.0045 (7) | 0.0080 (7) | 0.0006 (7) |
C2 | 0.0194 (9) | 0.0193 (9) | 0.0239 (10) | −0.0008 (7) | 0.0046 (8) | −0.0053 (7) |
C3 | 0.0245 (10) | 0.0283 (10) | 0.0183 (10) | 0.0045 (8) | 0.0045 (8) | −0.0027 (8) |
C4 | 0.0257 (10) | 0.0252 (9) | 0.0214 (10) | 0.0059 (8) | 0.0114 (8) | 0.0056 (8) |
C5 | 0.0188 (9) | 0.0181 (9) | 0.0272 (10) | 0.0014 (7) | 0.0091 (8) | 0.0037 (8) |
C6 | 0.0143 (8) | 0.0140 (8) | 0.0214 (9) | 0.0033 (7) | 0.0060 (7) | 0.0007 (7) |
C7 | 0.0149 (8) | 0.0147 (8) | 0.0205 (9) | 0.0027 (7) | 0.0054 (7) | 0.0006 (7) |
C8 | 0.0184 (9) | 0.0204 (9) | 0.0274 (10) | −0.0012 (8) | 0.0061 (8) | 0.0000 (8) |
C9 | 0.0198 (9) | 0.0280 (10) | 0.0248 (10) | 0.0000 (8) | −0.0016 (8) | −0.0049 (8) |
C10 | 0.0268 (10) | 0.0265 (10) | 0.0169 (9) | 0.0076 (8) | 0.0029 (8) | 0.0026 (7) |
C11 | 0.0221 (9) | 0.0161 (9) | 0.0222 (10) | 0.0029 (7) | 0.0089 (8) | 0.0036 (7) |
C12 | 0.0172 (8) | 0.0127 (8) | 0.0198 (9) | 0.0039 (7) | 0.0047 (7) | −0.0006 (7) |
C13 | 0.0157 (8) | 0.0182 (9) | 0.0218 (9) | 0.0040 (7) | −0.0020 (7) | 0.0012 (7) |
C14 | 0.0183 (9) | 0.0281 (10) | 0.0274 (10) | 0.0031 (8) | 0.0037 (8) | 0.0027 (8) |
C15 | 0.0173 (9) | 0.0268 (10) | 0.0270 (10) | −0.0005 (8) | −0.0027 (8) | −0.0019 (8) |
C16 | 0.0212 (9) | 0.0252 (10) | 0.0165 (9) | −0.0046 (8) | 0.0013 (7) | 0.0039 (7) |
C17 | 0.0337 (11) | 0.0314 (11) | 0.0278 (11) | −0.0026 (9) | 0.0016 (9) | 0.0124 (9) |
C18 | 0.0220 (9) | 0.0363 (11) | 0.0219 (10) | −0.0054 (8) | 0.0042 (8) | 0.0041 (8) |
C19 | 0.0311 (10) | 0.0137 (8) | 0.0276 (10) | 0.0010 (8) | −0.0014 (8) | −0.0001 (8) |
Cl1 | 0.0204 (2) | 0.0144 (2) | 0.0208 (2) | 0.00193 (16) | 0.00338 (17) | 0.00393 (16) |
N1 | 0.0162 (7) | 0.0158 (7) | 0.0218 (8) | −0.0033 (6) | 0.0074 (6) | −0.0011 (6) |
Ni1 | 0.01075 (15) | 0.00869 (15) | 0.01507 (16) | 0 | 0.00161 (11) | 0 |
P1 | 0.0167 (2) | 0.0120 (2) | 0.0169 (2) | −0.00081 (17) | −0.00073 (17) | 0.00090 (17) |
C1—N1 | 1.386 (2) | C13—H13 | 1 |
C1—C2 | 1.397 (2) | C14—H14A | 0.98 |
C1—C6 | 1.411 (2) | C14—H14B | 0.98 |
C2—C3 | 1.383 (3) | C14—H14C | 0.98 |
C2—H2 | 0.95 | C15—H15A | 0.98 |
C3—C4 | 1.398 (3) | C15—H15B | 0.98 |
C3—H3 | 0.95 | C15—H15C | 0.98 |
C4—C5 | 1.376 (2) | C16—C18 | 1.524 (2) |
C4—H4 | 0.95 | C16—C17 | 1.534 (2) |
C5—C6 | 1.399 (2) | C16—P1 | 1.8418 (18) |
C5—H5 | 0.95 | C16—H16 | 1 |
C6—C7 | 1.448 (2) | C17—H17A | 0.98 |
C7—C8 | 1.394 (2) | C17—H17B | 0.98 |
C7—C12 | 1.411 (2) | C17—H17C | 0.98 |
C8—C9 | 1.382 (3) | C18—H18A | 0.98 |
C8—H8 | 0.95 | C18—H18B | 0.98 |
C9—C10 | 1.399 (3) | C18—H18C | 0.98 |
C9—H9 | 0.95 | C19—C19i | 1.505 (3) |
C10—C11 | 1.384 (2) | C19—P1 | 1.8362 (18) |
C10—H10 | 0.95 | C19—H19A | 0.99 |
C11—C12 | 1.390 (2) | C19—H19B | 0.99 |
C11—H11 | 0.95 | Ni1—Cl1 | 2.2221 (4) |
C12—N1 | 1.387 (2) | N1—H1N | 0.821 (19) |
C13—C15 | 1.525 (2) | Ni1—P1i | 2.1581 (5) |
C13—C14 | 1.529 (3) | Ni1—P1 | 2.1581 (5) |
C13—P1 | 1.8482 (17) | Ni1—Cl1i | 2.2221 (4) |
N1—C1—C2 | 129.44 (16) | H14B—C14—H14C | 109.5 |
N1—C1—C6 | 108.91 (15) | C13—C15—H15A | 109.5 |
C2—C1—C6 | 121.65 (16) | C13—C15—H15B | 109.5 |
C3—C2—C1 | 117.26 (16) | H15A—C15—H15B | 109.5 |
C3—C2—H2 | 121.4 | C13—C15—H15C | 109.5 |
C1—C2—H2 | 121.4 | H15A—C15—H15C | 109.5 |
C2—C3—C4 | 121.82 (17) | H15B—C15—H15C | 109.5 |
C2—C3—H3 | 119.1 | C18—C16—C17 | 111.69 (15) |
C4—C3—H3 | 119.1 | C18—C16—P1 | 111.96 (12) |
C5—C4—C3 | 120.79 (17) | C17—C16—P1 | 112.49 (13) |
C5—C4—H4 | 119.6 | C18—C16—H16 | 106.8 |
C3—C4—H4 | 119.6 | C17—C16—H16 | 106.8 |
C4—C5—C6 | 119.09 (17) | P1—C16—H16 | 106.8 |
C4—C5—H5 | 120.5 | C16—C17—H17A | 109.5 |
C6—C5—H5 | 120.5 | C16—C17—H17B | 109.5 |
C5—C6—C1 | 119.38 (16) | H17A—C17—H17B | 109.5 |
C5—C6—C7 | 134.09 (16) | C16—C17—H17C | 109.5 |
C1—C6—C7 | 106.53 (14) | H17A—C17—H17C | 109.5 |
C8—C7—C12 | 119.53 (16) | H17B—C17—H17C | 109.5 |
C8—C7—C6 | 133.67 (16) | C16—C18—H18A | 109.5 |
C12—C7—C6 | 106.80 (14) | C16—C18—H18B | 109.5 |
C9—C8—C7 | 118.98 (16) | H18A—C18—H18B | 109.5 |
C9—C8—H8 | 120.5 | C16—C18—H18C | 109.5 |
C7—C8—H8 | 120.5 | H18A—C18—H18C | 109.5 |
C8—C9—C10 | 120.79 (17) | H18B—C18—H18C | 109.5 |
C8—C9—H9 | 119.6 | C19i—C19—P1 | 109.93 (8) |
C10—C9—H9 | 119.6 | C19i—C19—H19A | 109.7 |
C11—C10—C9 | 121.37 (17) | P1—C19—H19A | 109.7 |
C11—C10—H10 | 119.3 | C19i—C19—H19B | 109.7 |
C9—C10—H10 | 119.3 | P1—C19—H19B | 109.7 |
C10—C11—C12 | 117.70 (16) | H19A—C19—H19B | 108.2 |
C10—C11—H11 | 121.1 | C1—N1—C12 | 109.01 (14) |
C12—C11—H11 | 121.1 | C1—N1—H1N | 126.9 (13) |
N1—C12—C11 | 129.69 (15) | C12—N1—H1N | 123.1 (13) |
N1—C12—C7 | 108.71 (14) | P1i—Ni1—P1 | 88.61 (3) |
C11—C12—C7 | 121.60 (16) | P1i—Ni1—Cl1i | 168.757 (16) |
C15—C13—C14 | 110.67 (15) | P1—Ni1—Cl1i | 89.797 (16) |
C15—C13—P1 | 114.66 (12) | P1i—Ni1—Cl1 | 89.797 (16) |
C14—C13—P1 | 109.96 (12) | P1—Ni1—Cl1 | 168.758 (16) |
C15—C13—H13 | 107.1 | Cl1i—Ni1—Cl1 | 93.87 (2) |
C14—C13—H13 | 107.1 | C19—P1—C16 | 109.21 (9) |
P1—C13—H13 | 107.1 | C19—P1—C13 | 101.97 (8) |
C13—C14—H14A | 109.5 | C16—P1—C13 | 106.35 (8) |
C13—C14—H14B | 109.5 | C19—P1—Ni1 | 108.52 (6) |
H14A—C14—H14B | 109.5 | C16—P1—Ni1 | 115.65 (6) |
C13—C14—H14C | 109.5 | C13—P1—Ni1 | 114.22 (6) |
H14A—C14—H14C | 109.5 | ||
N1—C1—C2—C3 | −179.52 (17) | C6—C1—N1—C12 | 1.32 (18) |
C6—C1—C2—C3 | −0.4 (3) | C11—C12—N1—C1 | 177.09 (17) |
C1—C2—C3—C4 | −0.1 (3) | C7—C12—N1—C1 | −2.04 (18) |
C2—C3—C4—C5 | 0.2 (3) | C19i—C19—P1—C16 | 93.81 (18) |
C3—C4—C5—C6 | 0.3 (3) | C19i—C19—P1—C13 | −153.95 (17) |
C4—C5—C6—C1 | −0.7 (2) | C19i—C19—P1—Ni1 | −33.06 (19) |
C4—C5—C6—C7 | 179.56 (17) | C18—C16—P1—C19 | −79.07 (14) |
N1—C1—C6—C5 | −179.89 (15) | C17—C16—P1—C19 | 47.67 (15) |
C2—C1—C6—C5 | 0.8 (2) | C18—C16—P1—C13 | 171.60 (13) |
N1—C1—C6—C7 | −0.11 (18) | C17—C16—P1—C13 | −61.66 (14) |
C2—C1—C6—C7 | −179.40 (15) | C18—C16—P1—Ni1 | 43.64 (14) |
C5—C6—C7—C8 | −0.7 (3) | C17—C16—P1—Ni1 | 170.38 (11) |
C1—C6—C7—C8 | 179.53 (18) | C15—C13—P1—C19 | −151.39 (13) |
C5—C6—C7—C12 | 178.62 (18) | C14—C13—P1—C19 | 83.17 (14) |
C1—C6—C7—C12 | −1.10 (18) | C15—C13—P1—C16 | −37.02 (15) |
C12—C7—C8—C9 | −1.3 (2) | C14—C13—P1—C16 | −162.46 (12) |
C6—C7—C8—C9 | 178.01 (17) | C15—C13—P1—Ni1 | 91.77 (13) |
C7—C8—C9—C10 | −0.2 (3) | C14—C13—P1—Ni1 | −33.67 (14) |
C8—C9—C10—C11 | 0.8 (3) | P1i—Ni1—P1—C19 | 10.07 (6) |
C9—C10—C11—C12 | 0.0 (3) | Cl1i—Ni1—P1—C19 | 178.94 (7) |
C10—C11—C12—N1 | 179.44 (16) | Cl1—Ni1—P1—C19 | −71.87 (12) |
C10—C11—C12—C7 | −1.5 (2) | P1i—Ni1—P1—C16 | −113.00 (7) |
C8—C7—C12—N1 | −178.60 (15) | Cl1i—Ni1—P1—C16 | 55.87 (6) |
C6—C7—C12—N1 | 1.93 (18) | Cl1—Ni1—P1—C16 | 165.06 (10) |
C8—C7—C12—C11 | 2.2 (2) | P1i—Ni1—P1—C13 | 123.06 (7) |
C6—C7—C12—C11 | −177.29 (15) | Cl1i—Ni1—P1—C13 | −68.07 (6) |
C2—C1—N1—C12 | −179.46 (16) | Cl1—Ni1—P1—C13 | 41.12 (12) |
Symmetry code: (i) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [NiCl2(C14H32P2)]·2C12H9N |
Mr | 726.35 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 122 |
a, b, c (Å) | 22.5830 (5), 8.4374 (2), 18.9630 (5) |
β (°) | 101.544 (2) |
V (Å3) | 3540.15 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.42 × 0.16 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Atlas Gemini diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.851, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12792, 3484, 2908 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.065, 1.05 |
No. of reflections | 3484 |
No. of parameters | 211 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.62, −0.26 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Ni1—Cl1 | 2.2221 (4) | Ni1—P1 | 2.1581 (5) |
P1i—Ni1—P1 | 88.61 (3) | P1i—Ni1—Cl1 | 89.797 (16) |
P1i—Ni1—Cl1i | 168.757 (16) | Cl1i—Ni1—Cl1 | 93.87 (2) |
Symmetry code: (i) −x, y, −z+1/2. |
Acknowledgements
We thank PAPIIT-DGAPA-UNAM (IN-201010) and CONACYT (080606) for their financial support of this work and DGAPA-UNAM for a postdoctoral grant to FCB. We also thank Dr A. Arévalo for technical assistance.
References
Angulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97–106. CSD CrossRef CAS Google Scholar
Arévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063–4074. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176–182. CSD CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855–10856. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The nickel complexes of the type [Ni(dppe)Cl2] are useful starting materials for the preparation of catalysts and catalytic precursors, for an interesting series of active catalyst in a wide variety of stoichiometric (Vicic & Jones, 1997) and catalytic systems (Arévalo & García, 2010). The synthesis of the current complex [Ni (dppe)Cl2](carbazole)2 (see Scheme) can be envisaged as the preparation of a model compound relevant to hydrodenitrogenation and N—H activation process.
In the asymmetric unit, the tetracoordinated [Ni(dppe)Cl2] complex has a 2-fold axis passing through the metal and the centre of the methylene—methylene bond (Fig. 1). The metal center shows slight tetrahedral distortion from ideal square-planar coordination geometry, with the angle between the normals to the planes defined by the two cis-Cl–Ni–Cl and cis-P–Ni–P fragments [15.32 (2)°] being larger than the limiting value of 0° for square-planar coordination. Additionally, the metal ion is situated 0.1144 (1) Å above the Cl1/P1/Cl1i/P1i plane [symmetry code: (i) -x, y, 1/2 - z]. These deviations from planarity, which can safely be attributed to some steric congestion by intermolecular contacts between the metallic complex and the 9H-carbazole molecules (Fig. 2), are somewhat larger than the distortion from ideal square-planar coordination geometry observed for related [Ni(dcpe)Cl2] (Angulo et al., 2003) and [(1S,2S)-C5H8{P(C6H11)2}2NiCl2] (Dahlenburg & Kurth, 2001) complexes, where the NiCl2/NiP2 dihedral angles are 3.96 and 5.37°, respectively. The Ni–P bond lengths in the title compound are equal, by symmetry. Probably as a consequence of the steric bulk of the 9H-carbazole molecules, the Ni–Cl distance, 2.2221 (4) Å, tends to be slightly longer than those in the analogues nickel complexes.
In the crystal packing, there are two 9H-carbazole molecules between two adjacent nickel complexes, with an angle between the carbazole mean planes of ca. 77°. There are two types of intermolecular contacts: one of the van der Waals type N—H···Cl [2.65 (2) Å] is formed from N1 donor atom of the 9H-carbazole to Cl1 chloride atom acceptor of the metallic complex; and other of the type C—H···N [2.645 (1) Å] involving C19 in the dppe ligand and N1 in 9H-carbazole. These van der Waals interactions lead to infinite ribbons based on R12(5) motifs (Etter et al., 1990), as illustrated in Fig. 2.