organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 1-(2,6-di­fluoro­benz­yl)-1H-1,2,3-triazole-4-carboxyl­ate

aCollege of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaiyin 223003, Jiangsu, People's Republic of China
*Correspondence e-mail: dsl710221@163.com

(Received 11 January 2011; accepted 22 February 2011; online 2 March 2011)

In the title compound, C11H9F2N3O2, the triazole ring is planar, with an r.m.s. deviation of 0.0048 Å, and makes a dihedral angle of 77.3 (1)° with the benzene ring. In the crystal, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For the synthetic procedure and applications of the title compound, see: Arroyo (2007[Arroyo, S. (2007). Neurotherapeutics, A4, 155-162.]). The title compound is an inter­mediate in the preparation of the anti­convulsant drug rufinamide [systematic name 1-(2,6-difluoro­benz­yl)-1H-1,2,3-triazole-4-carboxamide], see: Meier (1986[Meier, R. (1986). Eur. Patent No. 0199262.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9F2N3O2

  • Mr = 253.21

  • Monoclinic, P 21

  • a = 8.4570 (17) Å

  • b = 5.4140 (11) Å

  • c = 12.125 (2) Å

  • β = 92.28 (3)°

  • V = 554.72 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.962, Tmax = 0.987

  • 2187 measured reflections

  • 1146 independent reflections

  • 1035 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.04

  • 1146 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯N3i 0.97 2.62 3.538 (4) 157
C8—H8A⋯O1ii 0.93 2.35 3.243 (3) 162
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound C11H9F2N3O2, (I), was synthesized by the reaction of 2,6-fluorobenzyl azide and methyl propiolate (Arroyo, 2007), and it is an important organic intermediate which is useful in preparing medicine rufinamide (Meier, 1986).

The molecular structure of (I) is shown in Fig. 1, the bond lengths and angles are within normal ranges (Allen et al., 1987). For synthetic procedure, see: Meier, 1986. For background to the applications, see: Arroyo, 2007.

Ring A (C1—C6) and B (C8/C9/N1/N2/N3) are planar with r.m.s. deviations of 0.0048 ° and 0.0022 °, respectively, and the dihedral angle between them is 77.3 (1) ° (Fig.1).

As can be seen from the packing diagram (Fig.2), the crystal packing is stabilized by intermolecular C—H···O and C—H···N hydrogen bonds along the b axis.

Related literature top

For the synthetic procedure and applications of the title compound, see: Arroyo (2007). The title compound is an intermediate in the preparation of the anticonvulsant drug rufinamide [systematic name 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide], see: Meier (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2,6-fluorobenzyl azide (390 g, 1.66 mol), methyl propiolate (165 g, 1.97 mol) and methanol (2 L) was stirred and refluxed for 10 h. Removing of the solvent under reduced pressure gave a yellowish soil. The soil could be recrystallized using a mixture of petroleum ether and methanol (4:1) and product to be a white and spiculate soil (yield; 299 g, 51.8%, m.p. 413 K). Crystals of (I) suitable for x-ray diffraction were obtained by slow evaporation from methylalcohol (AR) (10 ml).

Refinement top

H atoms were positioned geometrically and constrained with C—H = 0.96, 0.97 and 0.93 Å for methyl H, methylene H and all the other H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = x Ueq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of (I). Dashed lines indicate C—H···N and the C—H···O hydrogen bonds.
Methyl 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylate top
Crystal data top
C11H9F2N3O2F(000) = 260
Mr = 253.21Dx = 1.516 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 8.4570 (17) Åθ = 10–14°
b = 5.4140 (11) ŵ = 0.13 mm1
c = 12.125 (2) ÅT = 298 K
β = 92.28 (3)°Spiculate, colorless
V = 554.72 (18) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1035 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 66
Tmin = 0.962, Tmax = 0.987l = 1414
2187 measured reflections3 standard reflections every 200 reflections
1146 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.0317P]
where P = (Fo2 + 2Fc2)/3
1146 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C11H9F2N3O2V = 554.72 (18) Å3
Mr = 253.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.4570 (17) ŵ = 0.13 mm1
b = 5.4140 (11) ÅT = 298 K
c = 12.125 (2) Å0.30 × 0.20 × 0.10 mm
β = 92.28 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1035 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.962, Tmax = 0.9873 standard reflections every 200 reflections
2187 measured reflections intensity decay: 1%
1146 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.088H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
1146 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4481 (2)0.4288 (4)0.80667 (14)0.0340 (5)
F10.67849 (18)0.9724 (4)0.74993 (14)0.0589 (5)
O10.3504 (3)0.2067 (5)0.47974 (15)0.0642 (6)
C10.7743 (3)0.7947 (5)0.7942 (2)0.0409 (6)
F20.74809 (18)0.2564 (4)0.96110 (13)0.0595 (5)
N20.3697 (2)0.2386 (5)0.85061 (16)0.0424 (5)
O20.2160 (2)0.0844 (5)0.56720 (16)0.0613 (6)
C20.9334 (3)0.8063 (6)0.7754 (2)0.0500 (7)
H2B0.97450.93320.73360.060*
N30.3078 (2)0.1088 (5)0.76968 (17)0.0436 (5)
C31.0299 (3)0.6249 (7)0.8204 (2)0.0527 (7)
H3B1.13770.62840.80800.063*
C40.9699 (3)0.4388 (7)0.8831 (2)0.0517 (7)
H4A1.03540.31680.91370.062*
C50.8097 (3)0.4382 (5)0.89946 (19)0.0409 (6)
C60.7066 (3)0.6141 (5)0.85681 (19)0.0361 (5)
C70.5322 (3)0.6069 (5)0.87801 (19)0.0373 (6)
H7A0.51790.56330.95460.045*
H7B0.48730.76990.86550.045*
C80.4362 (3)0.4207 (6)0.69632 (18)0.0374 (5)
H8A0.47920.53030.64660.045*
C90.3472 (3)0.2167 (5)0.67313 (19)0.0368 (6)
C100.3059 (3)0.1160 (6)0.5631 (2)0.0438 (6)
C110.1788 (5)0.2037 (8)0.4633 (3)0.0797 (11)
H11A0.11370.34570.47530.120*
H11B0.27490.25450.43040.120*
H11C0.12290.09040.41490.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0291 (9)0.0382 (11)0.0349 (9)0.0038 (10)0.0041 (7)0.0054 (10)
F10.0558 (9)0.0504 (10)0.0709 (10)0.0116 (9)0.0070 (8)0.0213 (9)
O10.0899 (15)0.0602 (15)0.0430 (10)0.0071 (15)0.0099 (10)0.0047 (11)
C10.0411 (13)0.0375 (15)0.0441 (13)0.0042 (12)0.0002 (10)0.0002 (12)
F20.0514 (9)0.0533 (11)0.0742 (11)0.0048 (9)0.0064 (8)0.0239 (10)
N20.0395 (10)0.0474 (14)0.0406 (11)0.0038 (11)0.0050 (9)0.0102 (11)
O20.0674 (12)0.0578 (14)0.0587 (11)0.0161 (13)0.0018 (10)0.0111 (12)
C20.0450 (14)0.0477 (17)0.0580 (15)0.0094 (14)0.0106 (12)0.0005 (15)
N30.0398 (11)0.0470 (13)0.0442 (11)0.0052 (11)0.0038 (9)0.0076 (11)
C30.0364 (13)0.0589 (19)0.0630 (17)0.0032 (15)0.0059 (12)0.0071 (16)
C40.0367 (13)0.0536 (18)0.0644 (16)0.0064 (15)0.0027 (12)0.0005 (17)
C50.0380 (12)0.0394 (15)0.0451 (12)0.0027 (13)0.0018 (10)0.0046 (13)
C60.0335 (11)0.0396 (13)0.0353 (11)0.0012 (12)0.0013 (9)0.0037 (11)
C70.0361 (11)0.0383 (14)0.0377 (11)0.0041 (12)0.0033 (9)0.0012 (11)
C80.0381 (11)0.0386 (13)0.0361 (11)0.0020 (12)0.0076 (9)0.0045 (12)
C90.0316 (10)0.0386 (14)0.0403 (12)0.0033 (11)0.0042 (9)0.0014 (12)
C100.0438 (13)0.0389 (14)0.0489 (15)0.0073 (13)0.0051 (11)0.0037 (13)
C110.098 (3)0.068 (3)0.073 (2)0.016 (2)0.0032 (19)0.025 (2)
Geometric parameters (Å, º) top
N1—C81.339 (3)C3—C41.372 (4)
N1—N21.346 (3)C3—H3B0.9300
N1—C71.461 (3)C4—C51.377 (3)
F1—C11.355 (3)C4—H4A0.9300
O1—C101.198 (3)C5—C61.378 (4)
C1—C21.375 (4)C6—C71.507 (3)
C1—C61.376 (4)C7—H7A0.9700
F2—C51.353 (3)C7—H7B0.9700
N2—N31.300 (3)C8—C91.360 (4)
O2—C101.327 (4)C8—H8A0.9300
O2—C111.439 (4)C9—C101.471 (4)
C2—C31.376 (5)C11—H11A0.9600
C2—H2B0.9300C11—H11B0.9600
N3—C91.362 (3)C11—H11C0.9600
C8—N1—N2110.6 (2)C1—C6—C7122.9 (2)
C8—N1—C7129.0 (2)N1—C7—C6111.9 (2)
N2—N1—C7120.43 (18)N1—C7—H7A109.2
F1—C1—C2118.4 (3)C6—C7—H7A109.2
F1—C1—C6117.9 (2)N1—C7—H7B109.2
C2—C1—C6123.7 (3)C6—C7—H7B109.2
N3—N2—N1107.75 (18)H7A—C7—H7B107.9
C10—O2—C11116.1 (3)N1—C8—C9104.6 (2)
C1—C2—C3118.1 (3)N1—C8—H8A127.7
C1—C2—H2B120.9C9—C8—H8A127.7
C3—C2—H2B120.9C8—C9—N3108.9 (2)
N2—N3—C9108.2 (2)C8—C9—C10126.8 (2)
C4—C3—C2121.1 (2)N3—C9—C10124.3 (2)
C4—C3—H3B119.4O1—C10—O2124.5 (3)
C2—C3—H3B119.4O1—C10—C9122.8 (3)
C3—C4—C5118.0 (3)O2—C10—C9112.7 (2)
C3—C4—H4A121.0O2—C11—H11A109.5
C5—C4—H4A121.0O2—C11—H11B109.5
F2—C5—C6117.3 (2)H11A—C11—H11B109.5
F2—C5—C4118.9 (2)O2—C11—H11C109.5
C6—C5—C4123.8 (3)H11A—C11—H11C109.5
C5—C6—C1115.3 (2)H11B—C11—H11C109.5
C5—C6—C7121.8 (2)
C8—N1—N2—N30.0 (3)C8—N1—C7—C659.3 (3)
C7—N1—N2—N3179.3 (2)N2—N1—C7—C6119.9 (2)
F1—C1—C2—C3179.8 (2)C5—C6—C7—N179.4 (3)
C6—C1—C2—C31.1 (4)C1—C6—C7—N1100.6 (3)
N1—N2—N3—C90.1 (3)N2—N1—C8—C90.2 (3)
C1—C2—C3—C40.7 (5)C7—N1—C8—C9179.1 (2)
C2—C3—C4—C50.3 (4)N1—C8—C9—N30.2 (3)
C3—C4—C5—F2180.0 (2)N1—C8—C9—C10176.5 (2)
C3—C4—C5—C60.3 (4)N2—N3—C9—C80.2 (3)
F2—C5—C6—C1179.7 (2)N2—N3—C9—C10176.6 (2)
C4—C5—C6—C10.6 (4)C11—O2—C10—O13.4 (4)
F2—C5—C6—C70.4 (4)C11—O2—C10—C9176.1 (3)
C4—C5—C6—C7179.3 (3)C8—C9—C10—O11.0 (4)
F1—C1—C6—C5179.9 (2)N3—C9—C10—O1175.3 (3)
C2—C1—C6—C51.0 (4)C8—C9—C10—O2179.4 (2)
F1—C1—C6—C70.2 (4)N3—C9—C10—O24.3 (3)
C2—C1—C6—C7178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···N3i0.972.623.538 (4)157
C8—H8A···O1ii0.932.353.243 (3)162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H9F2N3O2
Mr253.21
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)8.4570 (17), 5.4140 (11), 12.125 (2)
β (°) 92.28 (3)
V3)554.72 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.962, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
2187, 1146, 1035
Rint0.031
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.04
No. of reflections1146
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···N3i0.972.623.538 (4)157
C8—H8A···O1ii0.932.353.243 (3)162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support. They also acknowledge the contract grant sponsors: the Natural Science Foundation of Jiangsu Province of China (BK2008195) and the Science Research Foundation of Huaiyin Institute of Technology (2517045).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArroyo, S. (2007). Neurotherapeutics, A4, 155–162.  CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMeier, R. (1986). Eur. Patent No. 0199262.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds