organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­phen­­oxy)benzoic acid

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhjnjut@hotmail.com

(Received 10 February 2011; accepted 19 February 2011; online 2 March 2011)

In the crystal structure of the title compound, C13H9ClO3, the mol­ecules form classical O—H⋯O hydrogen-bonded carb­oxy­lic acid dimers. These dimers are linked by C—H⋯π inter­actions into a three-dimensional network. The benzene rings are oriented at a dihedral angle of 77.8 (1)°.

Related literature

For applications of the title compound, see: Yang et al. (1972[Yang, N. C., Kumler, P. & Yang, S. S. (1972). J. Org. Chem. 37, 4022-4026.]). For a related structure, see: Parkin et al. (2005[Parkin, A., et al. (2005). Acta Cryst. E61, o2280-o2282.]). For the synthesis of the title compound, see: Rolando et al. (1995[Rolando, F. P., Ramon, C., Virgen, M. & Lorenzo, R. (1995). Synth. Commun. 25, 1077-1083.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClO3

  • Mr = 248.65

  • Monoclinic, P 21 /c

  • a = 6.9930 (14) Å

  • b = 24.986 (5) Å

  • c = 7.5140 (15) Å

  • β = 115.79 (3)°

  • V = 1182.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.912, Tmax = 0.969

  • 4651 measured reflections

  • 2177 independent reflections

  • 1061 reflections with I > 2σ(I)

  • Rint = 0.088

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.110

  • S = 1.01

  • 2177 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3i 0.82 1.81 2.621 (3) 172
C11—H11ACg1ii 0.93 2.74 3.582 (4) 151
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y, z-1.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, 2-(2-chlorophenoxy)benzoic acid is an important intermediate (Yang et al., 1972). And we report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, and the intermolecular O—H···O hydrogen bond (Table 1) results in the formation of carboxylic acid dimers (Fig. 2.). The bond lengths and angles are within normal ranges (Allen et al., 1987).

In the molecule of (I), the dihedral angle of the rings (C1—C6) and (C7—C12) is 77.8 (1)°. The O atom lies in the bonded benzene ring planes, and Cl atom is connected with the phenyl ring (C1—C6).

In the crystal of (I), the molecules were connected together via O—H···O intermolecular hydrogen bonds to form dimers. These dimers are linked by C—H···π interactions to give a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure.

Related literature top

For applications of the title compound, see: Yang et al. (1972). For a related structure, see: Parkin et al. (2005). For the synthesis of the title compound, see: Rolando et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by the method of Ullmann condensation reaction reported in literature (Rolando et al., 1995). The crystals were obtained by dissolving (I) (0.2 g, 0.8 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-(2-Chlorophenoxy)benzoic acid top
Crystal data top
C13H9ClO3F(000) = 512
Mr = 248.65Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.9930 (14) Åθ = 9–14°
b = 24.986 (5) ŵ = 0.32 mm1
c = 7.5140 (15) ÅT = 293 K
β = 115.79 (3)°Block, colourless
V = 1182.1 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1061 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 3030
Tmin = 0.912, Tmax = 0.969l = 98
4651 measured reflections3 standard reflections every 200 reflections
2177 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
2177 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C13H9ClO3V = 1182.1 (4) Å3
Mr = 248.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9930 (14) ŵ = 0.32 mm1
b = 24.986 (5) ÅT = 293 K
c = 7.5140 (15) Å0.30 × 0.20 × 0.10 mm
β = 115.79 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1061 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.088
Tmin = 0.912, Tmax = 0.9693 standard reflections every 200 reflections
4651 measured reflections intensity decay: 1%
2177 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
2177 reflectionsΔρmin = 0.31 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.30495 (19)0.80926 (6)0.11968 (19)0.1627 (6)
O10.5536 (3)0.90532 (7)0.1714 (2)0.0654 (6)
C10.5689 (5)0.81539 (15)0.2793 (5)0.0820 (9)
O20.0554 (3)0.99730 (8)0.2082 (2)0.0756 (6)
H2B0.02201.00880.16060.113*
C20.6811 (8)0.77525 (16)0.4047 (6)0.1038 (13)
H2A0.61360.74320.40500.125*
O30.2120 (3)0.96137 (9)0.0872 (2)0.0780 (7)
C30.8874 (8)0.78149 (18)0.5273 (6)0.1116 (16)
H3A0.95970.75420.61500.134*
C40.9925 (6)0.82717 (19)0.5254 (5)0.0998 (13)
H4A1.13670.83080.60760.120*
C50.8814 (5)0.86787 (13)0.3997 (4)0.0701 (9)
H5A0.95060.89940.39670.084*
C60.6706 (5)0.86214 (12)0.2799 (3)0.0533 (7)
C70.5230 (4)0.91164 (10)0.0195 (3)0.0499 (7)
C80.3564 (4)0.94517 (10)0.1407 (3)0.0492 (7)
C90.3345 (4)0.95491 (11)0.3322 (3)0.0608 (8)
H9A0.22750.97780.41430.073*
C100.4647 (5)0.93199 (13)0.4018 (4)0.0755 (9)
H10A0.44630.93880.52990.091*
C110.6243 (5)0.89853 (13)0.2802 (4)0.0760 (10)
H11A0.71400.88260.32680.091*
C120.6529 (4)0.88827 (11)0.0903 (3)0.0619 (8)
H12A0.76080.86540.00990.074*
C130.2020 (4)0.96877 (11)0.0801 (3)0.0492 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1046 (9)0.1774 (14)0.1807 (12)0.0608 (9)0.0384 (8)0.0066 (9)
O10.0724 (13)0.0844 (15)0.0475 (10)0.0307 (11)0.0338 (10)0.0141 (9)
C10.089 (3)0.074 (2)0.091 (2)0.002 (2)0.046 (2)0.0038 (19)
O20.0668 (14)0.1086 (17)0.0618 (11)0.0366 (12)0.0375 (11)0.0274 (11)
C20.133 (4)0.078 (3)0.114 (3)0.014 (3)0.066 (3)0.027 (2)
O30.0779 (14)0.1155 (18)0.0523 (11)0.0450 (13)0.0392 (10)0.0240 (10)
C30.139 (4)0.113 (4)0.095 (3)0.071 (3)0.062 (3)0.047 (3)
C40.073 (3)0.146 (4)0.076 (2)0.045 (3)0.028 (2)0.018 (3)
C50.055 (2)0.088 (3)0.0663 (18)0.0113 (18)0.0260 (16)0.0073 (17)
C60.0579 (18)0.063 (2)0.0439 (14)0.0175 (17)0.0267 (14)0.0095 (13)
C70.0558 (17)0.0591 (18)0.0421 (14)0.0042 (14)0.0283 (13)0.0022 (12)
C80.0453 (15)0.0626 (19)0.0420 (14)0.0029 (14)0.0210 (13)0.0000 (12)
C90.0648 (19)0.072 (2)0.0479 (15)0.0127 (16)0.0267 (15)0.0067 (13)
C100.091 (2)0.096 (2)0.0515 (17)0.028 (2)0.0423 (18)0.0130 (16)
C110.088 (2)0.100 (3)0.0565 (17)0.026 (2)0.0459 (17)0.0012 (17)
C120.066 (2)0.074 (2)0.0525 (16)0.0186 (16)0.0320 (15)0.0053 (14)
C130.0425 (15)0.0625 (18)0.0423 (14)0.0026 (14)0.0181 (12)0.0064 (13)
Geometric parameters (Å, º) top
Cl—C11.716 (3)C5—C61.360 (3)
O1—C71.364 (3)C5—H5A0.9300
O1—C61.385 (3)C7—C121.367 (3)
C1—C21.366 (4)C7—C81.402 (3)
C1—C61.367 (4)C8—C91.401 (3)
O2—C131.276 (3)C8—C131.466 (3)
O2—H2B0.8200C9—C101.358 (4)
C2—C31.341 (5)C9—H9A0.9300
C2—H2A0.9300C10—C111.376 (4)
O3—C131.242 (2)C10—H10A0.9300
C3—C41.361 (5)C11—C121.376 (3)
C3—H3A0.9300C11—H11A0.9300
C4—C51.375 (4)C12—H12A0.9300
C4—H4A0.9300
C7—O1—C6119.41 (19)O1—C7—C8117.3 (2)
C2—C1—C6118.9 (3)C12—C7—C8120.5 (2)
C2—C1—Cl122.5 (3)C9—C8—C7117.4 (2)
C6—C1—Cl118.6 (3)C9—C8—C13118.9 (2)
C13—O2—H2B109.5C7—C8—C13123.7 (2)
C3—C2—C1120.8 (4)C10—C9—C8122.0 (3)
C3—C2—H2A119.6C10—C9—H9A119.0
C1—C2—H2A119.6C8—C9—H9A119.0
C2—C3—C4121.0 (4)C9—C10—C11119.1 (2)
C2—C3—H3A119.5C9—C10—H10A120.4
C4—C3—H3A119.5C11—C10—H10A120.4
C3—C4—C5118.8 (4)C10—C11—C12120.8 (3)
C3—C4—H4A120.6C10—C11—H11A119.6
C5—C4—H4A120.6C12—C11—H11A119.6
C6—C5—C4120.2 (3)C7—C12—C11120.2 (2)
C6—C5—H5A119.9C7—C12—H12A119.9
C4—C5—H5A119.9C11—C12—H12A119.9
C5—C6—C1120.3 (3)O3—C13—O2121.3 (2)
C5—C6—O1120.0 (3)O3—C13—C8122.0 (2)
C1—C6—O1119.4 (3)O2—C13—C8116.7 (2)
O1—C7—C12122.2 (2)
C6—C1—C2—C30.3 (5)O1—C7—C8—C9175.4 (2)
Cl—C1—C2—C3179.9 (3)C12—C7—C8—C92.2 (4)
C1—C2—C3—C42.4 (6)O1—C7—C8—C136.7 (4)
C2—C3—C4—C52.2 (6)C12—C7—C8—C13175.8 (2)
C3—C4—C5—C60.1 (5)C7—C8—C9—C101.7 (4)
C4—C5—C6—C11.8 (4)C13—C8—C9—C10176.4 (3)
C4—C5—C6—O1172.1 (2)C8—C9—C10—C110.5 (5)
C2—C1—C6—C51.7 (4)C9—C10—C11—C120.1 (5)
Cl—C1—C6—C5177.9 (2)O1—C7—C12—C11175.8 (3)
C2—C1—C6—O1172.3 (3)C8—C7—C12—C111.6 (4)
Cl—C1—C6—O18.1 (4)C10—C11—C12—C70.4 (5)
C7—O1—C6—C595.1 (3)C9—C8—C13—O3179.5 (3)
C7—O1—C6—C190.9 (3)C7—C8—C13—O31.7 (4)
C6—O1—C7—C1221.0 (4)C9—C8—C13—O20.2 (4)
C6—O1—C7—C8161.5 (2)C7—C8—C13—O2178.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3i0.821.812.621 (3)172
C11—H11A···Cg1ii0.932.743.582 (4)151
Symmetry codes: (i) x, y+2, z; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC13H9ClO3
Mr248.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.9930 (14), 24.986 (5), 7.5140 (15)
β (°) 115.79 (3)
V3)1182.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.912, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
4651, 2177, 1061
Rint0.088
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.110, 1.01
No. of reflections2177
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.31

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3i0.821.812.621 (3)172
C11—H11A···Cg1ii0.932.743.582 (4)151
Symmetry codes: (i) x, y+2, z; (ii) x, y, z1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationParkin, A., et al. (2005). Acta Cryst. E61, o2280–o2282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRolando, F. P., Ramon, C., Virgen, M. & Lorenzo, R. (1995). Synth. Commun. 25, 1077–1083.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, N. C., Kumler, P. & Yang, S. S. (1972). J. Org. Chem. 37, 4022–4026.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds