metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(2,2′-bi­pyridine-κ2N,N′)di­chloridocobalt(II) trihydrate

aDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: dayalan77@gmail.com

(Received 17 February 2011; accepted 10 March 2011; online 19 March 2011)

In the title complex, [CoCl2(C10H8N2)2]·3H2O, the Co(II) ion is situated on a twofold rotation axis and exhibits a slightly distorted octa­hedral geometry and is chelated by four N atoms of the two bidentate 2,2′-bipyridine ligands and two Cl ions. The crystal packing is stabilized by hydrogen bonding formed between chloride ions and adjacent water mol­ecules. One of the two independent water molecules in the asymmetric unit is disordered over two sets of sites, each on a twofold rotation axis, in a 0.734 (17):0.269 (17) ratio.

Related literature

For the anti­bacterial activity of similar complexes, see: Senthilkumar & Arunachalam (2008[Senthilkumar, R. & Arunachalam, M. (2008). Biophys. Chem. 136, 136-144.]). For similar complexes applied in the immunoassay of carcinoma anti­gen-125, see: Shihong et al. (2009[Shihong, C., Ruo, Y., Yaqin, C., Ligen, M., Wenjuan, L. & Yang, X. (2009). Electrochim. Acta, 54, 7242-7247.]). For the application of similar complexes as biosensors, see: Ying et al. (2006[Ying, Z., Ruo, Y., Yaqin, C., Aili, S., Ying, Z. & Jiuzhi, Y. (2006). Biomaterials, 27, 5420-5429.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C10H8N2)2]·3H2O

  • Mr = 496.25

  • Monoclinic, C 2/c

  • a = 18.3644 (8) Å

  • b = 13.1902 (8) Å

  • c = 10.8854 (6) Å

  • β = 120.030 (4)°

  • V = 2282.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.721, Tmax = 0.823

  • 18022 measured reflections

  • 2123 independent reflections

  • 1731 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.143

  • S = 1.19

  • 2123 reflections

  • 152 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.86 (6) 2.43 (5) 3.250 (4) 160 (5)
O1—H1B⋯Cl1i 0.85 (3) 2.37 (4) 3.218 (4) 172 (4)
Symmetry code: (i) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,2-Bipyridine and 1,10-phenanthroline have been extensively used to form different complexes with transition metal ions in their various oxidation states. Tris(2,2'-bipyridine)cobalt(III) complexed with bovine serum albumin has been reported as biosensors (Ying et al., 2006). Bipyridine cobalt complexes were found to have considerable antibacterial activities (Senthilkumar & Arunachalam, 2008). The use of tris(bipyridine)cobalt(II) for immunoassay of carcinoma antigen-125 has been reported recently (Shihong et al., 2009).

The cobalt(II) ion has site symmetry 2 and assumes octahedral geometry with two symmetry related 2,2'- bipyridine ligands and two chloride ions. Cobalt(II) is linked to two 2,2'- bipyridine bidentate ligands via four nitrogen atoms and two chloride ions. The two 2,2'- bipyridine ligands are in cis position with mutually perpendicular to each other. The hydrated water molecules in the crystal packing helps the stabilization of crystal packing by forming hydrogen bonding between adjacent chloride ions.

Related literature top

For the antibacterial activity of similar complexes, see: Senthilkumar & Arunachalam (2008). For similar complexes applied in the immunoassay of carcinoma antigen-125, see: Shihong et al. (2009). For the application of similar complexes as biosensors, see: Ying et al. (2006).

Experimental top

The complex was prepared by adding a solution of 2,2'- bipyridine (0.01 mole) in 60 ml of acetone, to a solution of cobalt(II) chloride (0.005 mole) in 60 ml of acetone. The resulting solution was stirred for two hours, filtered and dried over vacuum desiccator to get red colour complex (yield 90%). The dark red colored crystals, suitable for x-ray analysis, were obtained by slow evaporation from alcoholic solution.

Refinement top

There is 1.5 water molecules per asymmetric unit. The H atoms of water oxygen O1 could be located in difference Fourier map. These H atoms were restrained to be at a distance of 0.85 Å from O1. The inter hydrogen distance was restrained to be 1.388 Å so as to retain the tetrahedral H—O—H angle. The other half molecule was disordered in two positions (O2 and O3). Their occupancies were refined initially as free variables and later the sum of the occupancies restrained as 0.5. The H atoms of disordered water molecules could not be located. The aromatic H atoms were constrained as riding atoms with d(C—H) = 0.93 Å and Uiso(H) = 1.2Uequ(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP of [Co(bpy)2(Cl)2].3H2O drawn with 50% displacement ellipsoid level. Water molecules have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of [Co(bpy)2(Cl)2].3H2O viewed along the c axis.
cis-Bis(2,2'-bipyridine-κ2N,N')dichloridocobalt(II) trihydrate top
Crystal data top
[CoCl2(C10H8N2)2]·3H2OF(000) = 1020
Mr = 496.25Dx = 1.444 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 6958 reflections
a = 18.3644 (8) Åθ = 2.4–25.4°
b = 13.1902 (8) ŵ = 1.01 mm1
c = 10.8854 (6) ÅT = 293 K
β = 120.030 (4)°Block, red
V = 2282.8 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2123 independent reflections
Radiation source: fine-focus sealed tube1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and ϕ scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2219
Tmin = 0.721, Tmax = 0.823k = 1515
18022 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0754P)2 + 3.251P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
2123 reflectionsΔρmax = 0.67 e Å3
152 parametersΔρmin = 0.65 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (5)
Crystal data top
[CoCl2(C10H8N2)2]·3H2OV = 2282.8 (2) Å3
Mr = 496.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.3644 (8) ŵ = 1.01 mm1
b = 13.1902 (8) ÅT = 293 K
c = 10.8854 (6) Å0.30 × 0.20 × 0.20 mm
β = 120.030 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2123 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1731 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.823Rint = 0.051
18022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.67 e Å3
2123 reflectionsΔρmin = 0.65 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9376 (3)0.3673 (3)0.5122 (5)0.0632 (11)
H10.98580.35060.50890.076*
C20.8848 (3)0.4410 (4)0.4210 (6)0.0774 (14)
H20.89730.47400.35830.093*
C30.8134 (3)0.4643 (4)0.4254 (6)0.0772 (14)
H30.77680.51400.36580.093*
C40.7964 (3)0.4142 (3)0.5176 (5)0.0610 (11)
H40.74760.42880.52020.073*
C50.8517 (2)0.3418 (2)0.6070 (4)0.0428 (8)
C60.8377 (2)0.2843 (2)0.7097 (3)0.0394 (8)
C70.7668 (2)0.2959 (3)0.7214 (4)0.0518 (9)
H70.72470.34080.66230.062*
C80.7588 (2)0.2405 (4)0.8212 (5)0.0599 (10)
H80.71200.24860.83190.072*
C90.8211 (2)0.1730 (3)0.9046 (4)0.0576 (10)
H90.81710.13440.97250.069*
C100.8893 (2)0.1635 (3)0.8859 (4)0.0472 (8)
H100.93100.11720.94190.057*
N10.92249 (18)0.3194 (2)0.6043 (3)0.0449 (7)
N20.89867 (17)0.2174 (2)0.7915 (3)0.0392 (6)
O10.8926 (3)0.0960 (3)0.7511 (4)0.0902 (12)
Cl10.92474 (5)0.07552 (7)0.56901 (9)0.0448 (3)
Co11.00000.20323 (5)0.75000.0367 (3)
O21.00000.2593 (12)0.75000.169 (6)0.734 (17)
O31.00000.42270.75000.174 (19)0.269 (17)
H1A0.911 (4)0.046 (3)0.724 (5)0.11 (2)*
H1B0.904 (4)0.085 (4)0.836 (3)0.11 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.068 (3)0.071 (3)0.0005 (18)0.023 (2)0.021 (2)
C20.061 (3)0.076 (3)0.083 (3)0.003 (2)0.027 (2)0.042 (3)
C30.057 (3)0.062 (3)0.088 (3)0.011 (2)0.018 (2)0.036 (2)
C40.046 (2)0.050 (2)0.070 (3)0.0110 (17)0.016 (2)0.0131 (19)
C50.0330 (17)0.0354 (17)0.0441 (18)0.0011 (13)0.0074 (14)0.0034 (14)
C60.0301 (17)0.0368 (17)0.0399 (17)0.0027 (12)0.0089 (14)0.0068 (14)
C70.0332 (19)0.059 (2)0.051 (2)0.0130 (15)0.0122 (16)0.0016 (17)
C80.045 (2)0.077 (3)0.064 (2)0.014 (2)0.032 (2)0.001 (2)
C90.049 (2)0.074 (3)0.053 (2)0.0112 (19)0.0282 (19)0.007 (2)
C100.0359 (18)0.055 (2)0.0461 (19)0.0082 (16)0.0174 (15)0.0074 (17)
N10.0331 (15)0.0416 (16)0.0487 (16)0.0004 (12)0.0120 (13)0.0027 (13)
N20.0265 (14)0.0427 (16)0.0394 (14)0.0044 (11)0.0098 (11)0.0005 (12)
O10.101 (3)0.110 (3)0.064 (2)0.057 (2)0.044 (2)0.018 (2)
Cl10.0335 (5)0.0513 (6)0.0415 (5)0.0071 (3)0.0128 (4)0.0062 (3)
Co10.0238 (4)0.0402 (4)0.0382 (4)0.0000.0097 (3)0.000
O20.133 (10)0.217 (14)0.117 (8)0.0000.032 (7)0.000
O30.20 (3)0.28 (5)0.11 (2)0.0000.12 (2)0.000
Geometric parameters (Å, º) top
C1—N11.327 (5)C8—C91.373 (6)
C1—C21.381 (6)C8—H80.9300
C1—H10.9300C9—C101.373 (5)
C2—C31.370 (7)C9—H90.9300
C2—H20.9300C10—N21.329 (5)
C3—C41.362 (6)C10—H100.9300
C3—H30.9300N1—Co12.151 (3)
C4—C51.379 (5)N2—Co12.132 (3)
C4—H40.9300O1—H1A0.86 (6)
C5—N11.348 (4)O1—H1B0.85 (3)
C5—C61.476 (5)Cl1—Co12.4298 (9)
C6—N21.351 (4)Co1—N2i2.132 (3)
C6—C71.378 (5)Co1—N1i2.151 (3)
C7—C81.377 (6)Co1—Cl1i2.4298 (9)
C7—H70.9300
N1—C1—C2122.8 (4)C8—C9—H9120.6
N1—C1—H1118.6N2—C10—C9123.1 (3)
C2—C1—H1118.6N2—C10—H10118.4
C3—C2—C1118.2 (4)C9—C10—H10118.4
C3—C2—H2120.9C1—N1—C5118.7 (3)
C1—C2—H2120.9C1—N1—Co1125.8 (3)
C4—C3—C2119.5 (4)C5—N1—Co1115.4 (2)
C4—C3—H3120.2C10—N2—C6118.2 (3)
C2—C3—H3120.2C10—N2—Co1125.5 (2)
C3—C4—C5119.8 (4)C6—N2—Co1116.2 (2)
C3—C4—H4120.1H1A—O1—H1B109 (5)
C5—C4—H4120.1N2—Co1—N2i169.92 (15)
N1—C5—C4120.9 (4)N2—Co1—N1i96.14 (11)
N1—C5—C6116.1 (3)N2i—Co1—N1i76.58 (11)
C4—C5—C6123.0 (3)N2—Co1—N176.58 (11)
N2—C6—C7121.4 (3)N2i—Co1—N196.14 (11)
N2—C6—C5115.7 (3)N1i—Co1—N189.19 (16)
C7—C6—C5122.9 (3)N2—Co1—Cl191.72 (8)
C8—C7—C6119.5 (3)N2i—Co1—Cl195.26 (8)
C8—C7—H7120.2N1i—Co1—Cl1171.64 (8)
C6—C7—H7120.2N1—Co1—Cl189.88 (8)
C9—C8—C7118.9 (3)N2—Co1—Cl1i95.26 (8)
C9—C8—H8120.6N2i—Co1—Cl1i91.72 (8)
C7—C8—H8120.6N1i—Co1—Cl1i89.88 (8)
C10—C9—C8118.8 (4)N1—Co1—Cl1i171.64 (8)
C10—C9—H9120.6Cl1—Co1—Cl1i92.22 (5)
N1—C1—C2—C30.8 (8)C7—C6—N2—C100.9 (5)
C1—C2—C3—C40.5 (8)C5—C6—N2—C10180.0 (3)
C2—C3—C4—C51.0 (8)C7—C6—N2—Co1176.4 (3)
C3—C4—C5—N10.3 (6)C5—C6—N2—Co12.7 (4)
C3—C4—C5—C6180.0 (4)C10—N2—Co1—N2i136.3 (3)
N1—C5—C6—N21.5 (4)C6—N2—Co1—N2i46.6 (2)
C4—C5—C6—N2178.8 (3)C10—N2—Co1—N1i93.0 (3)
N1—C5—C6—C7177.5 (3)C6—N2—Co1—N1i89.9 (2)
C4—C5—C6—C72.2 (5)C10—N2—Co1—N1179.3 (3)
N2—C6—C7—C81.9 (5)C6—N2—Co1—N12.2 (2)
C5—C6—C7—C8179.1 (3)C10—N2—Co1—Cl189.8 (3)
C6—C7—C8—C91.5 (6)C6—N2—Co1—Cl187.3 (2)
C7—C8—C9—C100.3 (7)C10—N2—Co1—Cl1i2.6 (3)
C8—C9—C10—N20.7 (6)C6—N2—Co1—Cl1i179.7 (2)
C2—C1—N1—C51.5 (6)C1—N1—Co1—N2179.5 (3)
C2—C1—N1—Co1179.7 (4)C5—N1—Co1—N21.3 (2)
C4—C5—N1—C11.0 (5)C1—N1—Co1—N2i7.5 (3)
C6—C5—N1—C1178.7 (3)C5—N1—Co1—N2i174.3 (2)
C4—C5—N1—Co1179.3 (3)C1—N1—Co1—N1i83.9 (3)
C6—C5—N1—Co10.4 (4)C5—N1—Co1—N1i97.9 (3)
C9—C10—N2—C60.4 (5)C1—N1—Co1—Cl187.7 (3)
C9—C10—N2—Co1177.4 (3)C5—N1—Co1—Cl190.5 (2)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.86 (6)2.43 (5)3.250 (4)160 (5)
O1—H1B···Cl1ii0.85 (3)2.37 (4)3.218 (4)172 (4)
Symmetry code: (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CoCl2(C10H8N2)2]·3H2O
Mr496.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.3644 (8), 13.1902 (8), 10.8854 (6)
β (°) 120.030 (4)
V3)2282.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.721, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
18022, 2123, 1731
Rint0.051
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.143, 1.19
No. of reflections2123
No. of parameters152
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.65

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.86 (6)2.43 (5)3.250 (4)160 (5)
O1—H1B···Cl1i0.85 (3)2.37 (4)3.218 (4)172 (4)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors are grateful to Rev. Fr. Dr B. Jeyaraj, S. J., Principal, Loyola College (Autonomous), Chennai-34, India, for providing the necessary facilities and the Head, SAIF, IIT Madras, Chennai-36, India, for recording the X-ray data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSenthilkumar, R. & Arunachalam, M. (2008). Biophys. Chem. 136, 136–144.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShihong, C., Ruo, Y., Yaqin, C., Ligen, M., Wenjuan, L. & Yang, X. (2009). Electrochim. Acta, 54, 7242–7247.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYing, Z., Ruo, Y., Yaqin, C., Aili, S., Ying, Z. & Jiuzhi, Y. (2006). Biomaterials, 27, 5420–5429.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds