organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-chloro­phenyl­sulfon­yl)adipamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 1 March 2011; accepted 6 March 2011; online 12 March 2011)

In the centrosymmetric title compound, C18H18Cl2N2O6S2, the conformation of the N—H and C=O bonds in the C—SO2—NH—C(O)—C—C segment is anti to each other. The dihedral angle between the planes of the benzene ring and the central part of the molecule is 89.6 (2)°. In the crystal, inter­molecular N—H⋯O(S) hydrogen bonds link the mol­ecules into sheets along the b axis.

Related literature

For the effect of substituents on the structures of amides and sulfonamides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.], 2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]); Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o789.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18Cl2N2O6S2

  • Mr = 493.36

  • Monoclinic, P 21 /n

  • a = 11.899 (2) Å

  • b = 5.564 (1) Å

  • c = 16.333 (3) Å

  • β = 96.56 (2)°

  • V = 1074.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 293 K

  • 0.44 × 0.08 × 0.01 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.799, Tmax = 0.995

  • 3439 measured reflections

  • 1971 independent reflections

  • 1120 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.143

  • S = 1.26

  • 1971 reflections

  • 139 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (3) 2.08 (3) 2.901 (6) 168 (6)
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As a part of studying the effect of substituents on the structures of this class of compounds (Gowda et al., 2000, 2005; Rodrigues et al., 2011), in the present work, the structure of N,N-bis(2-chlorophenylsulfonyl)-adipamide (I) has been determined (Fig.1). The asymmetric unit comprises half of a molecule, the remaining portion is generated through an inversion centre, similar to that observed in N,N-bis(2-methylphenylsulfonyl)-adipamide (II) (Rodrigues et al., 2011). The conformation of the N—H and C=O bonds in the C—SO2—NH—C(O)—C—C segment is anti to each other and the amide O atom is also anti to the H atoms attached to the adjacent C atom. The molecule is bent at the S atom with the C—SO2—NH—C(O) torsion angle of -65.1 (6)°, compared to the value of -63.7 (4)° in (II). Further, the S1—N1—C7—C8 and C7—N1—S1—O1 segments are nearly linear. The torsion angles C2—C1—S1—N1 and C6—C1—S1—N1 are -69.5 (6)° and 108.8 (5)°, respectively. The corresponding values in (II) are -71.3 (4)° and 106.9 (4)°.

The dihedral angle between the planes of the benzene ring and the SO2—NH—C(O)—C—C segment in (I) is 89.6 (2)°, compared to the value of 89.9 (1)° in (II).

N—H···O1(S) H-bond formation results in an S=O1 bond longer than the S=O2 bond. A series of N—H···O(S) intermolecular hydrogen bonds (Table 1) link the molecules into sheets running in the direction of b axis (Fig. 2).

Related literature top

For the effect of substituents on the structures of amides and sulfonamides, see: Gowda et al. (2000, 2005); Rodrigues et al. (2011).

Experimental top

N,N-Bis(2-chlorophenylsulfonyl)-adipamide was prepared by refluxing a mixture of adipic acid (0.01 mol) with 2-chlorobenzenesulfonamide (0.02 mol) and POCl3 for 1 hr on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and was characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in the x-ray diffraction studies were grown by a slow evaporation of the solution of the compound in ethanol at room temperature.

Refinement top

The H atom of the NH group was located in a difference Fourier map and later restrained to the distance N—H = 0.86 (3) Å. The other H atoms were positioned with idealized geometry using a riding model with aromatic C—H distance = 0.93 Å and methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N,N'-Bis(2-chlorophenylsulfonyl)heptanediamide top
Crystal data top
C18H18Cl2N2O6S2F(000) = 508
Mr = 493.36Dx = 1.525 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 660 reflections
a = 11.899 (2) Åθ = 2.9–27.9°
b = 5.564 (1) ŵ = 0.54 mm1
c = 16.333 (3) ÅT = 293 K
β = 96.56 (2)°Needle, colourless
V = 1074.3 (3) Å30.44 × 0.08 × 0.01 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1971 independent reflections
Radiation source: fine-focus sealed tube1120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Rotation method data acquisition using ω scans.θmax = 25.7°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1114
Tmin = 0.799, Tmax = 0.995k = 66
3439 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0112P)2 + 2.7686P]
where P = (Fo2 + 2Fc2)/3
1971 reflections(Δ/σ)max = 0.004
139 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C18H18Cl2N2O6S2V = 1074.3 (3) Å3
Mr = 493.36Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.899 (2) ŵ = 0.54 mm1
b = 5.564 (1) ÅT = 293 K
c = 16.333 (3) Å0.44 × 0.08 × 0.01 mm
β = 96.56 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1971 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1120 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.995Rint = 0.049
3439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0892 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 0.34 e Å3
1971 reflectionsΔρmin = 0.30 e Å3
139 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14610 (17)0.2330 (4)0.10849 (12)0.0762 (7)
S10.08046 (13)0.2093 (3)0.23869 (9)0.0378 (4)
O10.1884 (3)0.2383 (8)0.1916 (2)0.0465 (12)
O20.0261 (4)0.4127 (8)0.2782 (3)0.0538 (13)
O30.0751 (3)0.0106 (9)0.3729 (2)0.0498 (13)
N10.1028 (4)0.0070 (10)0.3079 (3)0.0365 (13)
H1N0.166 (3)0.059 (10)0.302 (3)0.044*
C10.0147 (5)0.0762 (12)0.1772 (3)0.0361 (15)
C20.0119 (6)0.1105 (12)0.1239 (4)0.0470 (18)
C30.0707 (8)0.2089 (17)0.0807 (5)0.081 (3)
H30.05300.33630.04470.098*
C40.1783 (9)0.119 (2)0.0912 (6)0.098 (3)
H40.23360.18670.06270.118*
C50.2053 (7)0.069 (2)0.1429 (6)0.087 (3)
H50.27830.13150.14860.105*
C60.1249 (6)0.1668 (15)0.1864 (4)0.060 (2)
H60.14370.29410.22220.072*
C70.0219 (5)0.0781 (11)0.3683 (4)0.0349 (15)
C80.0660 (4)0.2510 (12)0.4273 (3)0.0375 (15)
H8A0.10210.16080.46790.045*
H8B0.12330.35150.39730.045*
C90.0245 (5)0.4113 (11)0.4718 (3)0.0389 (16)
H9A0.08030.31220.50390.047*
H9B0.06250.49840.43150.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0866 (15)0.0669 (15)0.0744 (14)0.0315 (13)0.0064 (11)0.0128 (12)
S10.0402 (9)0.0383 (10)0.0347 (9)0.0033 (8)0.0034 (7)0.0051 (9)
O10.033 (2)0.056 (3)0.048 (3)0.014 (2)0.0038 (19)0.013 (2)
O20.076 (3)0.035 (3)0.049 (3)0.002 (3)0.001 (2)0.003 (2)
O30.036 (2)0.061 (3)0.051 (3)0.008 (2)0.005 (2)0.016 (2)
N10.028 (3)0.047 (4)0.035 (3)0.002 (3)0.002 (2)0.008 (3)
C10.038 (4)0.039 (4)0.031 (4)0.005 (3)0.006 (3)0.005 (3)
C20.059 (4)0.035 (4)0.048 (4)0.006 (3)0.011 (4)0.003 (4)
C30.108 (8)0.072 (6)0.070 (6)0.004 (6)0.036 (5)0.022 (5)
C40.084 (7)0.120 (10)0.101 (8)0.021 (7)0.054 (6)0.008 (7)
C50.052 (5)0.124 (9)0.091 (7)0.005 (6)0.030 (5)0.006 (7)
C60.050 (4)0.080 (6)0.051 (5)0.005 (4)0.014 (4)0.004 (4)
C70.030 (3)0.039 (4)0.036 (4)0.002 (3)0.003 (3)0.009 (3)
C80.039 (3)0.045 (4)0.028 (3)0.002 (3)0.005 (3)0.006 (3)
C90.041 (4)0.038 (4)0.036 (4)0.006 (3)0.004 (3)0.006 (3)
Geometric parameters (Å, º) top
Cl1—C21.728 (7)C4—C51.359 (12)
S1—O21.421 (4)C4—H40.9300
S1—O11.429 (4)C5—C61.367 (10)
S1—N11.638 (5)C5—H50.9300
S1—C11.760 (6)C6—H60.9300
O3—C71.208 (6)C7—C81.499 (8)
N1—C71.381 (7)C8—C91.518 (7)
N1—H1N0.84 (3)C8—H8A0.9700
C1—C21.370 (8)C8—H8B0.9700
C1—C61.397 (8)C9—C9i1.511 (11)
C2—C31.386 (9)C9—H9A0.9700
C3—C41.367 (11)C9—H9B0.9700
C3—H30.9300
O2—S1—O1119.3 (3)C4—C5—C6119.9 (9)
O2—S1—N1109.6 (3)C4—C5—H5120.1
O1—S1—N1104.0 (2)C6—C5—H5120.1
O2—S1—C1107.7 (3)C5—C6—C1120.4 (8)
O1—S1—C1109.7 (3)C5—C6—H6119.8
N1—S1—C1105.7 (3)C1—C6—H6119.8
C7—N1—S1125.0 (4)O3—C7—N1121.4 (6)
C7—N1—H1N119 (4)O3—C7—C8124.2 (5)
S1—N1—H1N116 (4)N1—C7—C8114.4 (5)
C2—C1—C6119.2 (6)C7—C8—C9113.8 (4)
C2—C1—S1124.4 (5)C7—C8—H8A108.8
C6—C1—S1116.4 (5)C9—C8—H8A108.8
C1—C2—C3119.8 (7)C7—C8—H8B108.8
C1—C2—Cl1122.3 (5)C9—C8—H8B108.8
C3—C2—Cl1117.9 (6)H8A—C8—H8B107.7
C4—C3—C2119.9 (8)C9i—C9—C8112.0 (6)
C4—C3—H3120.0C9i—C9—H9A109.2
C2—C3—H3120.0C8—C9—H9A109.2
C5—C4—C3120.8 (8)C9i—C9—H9B109.2
C5—C4—H4119.6C8—C9—H9B109.2
C3—C4—H4119.6H9A—C9—H9B107.9
O2—S1—N1—C750.8 (6)C1—C2—C3—C40.3 (12)
O1—S1—N1—C7179.4 (5)Cl1—C2—C3—C4179.7 (7)
C1—S1—N1—C765.1 (6)C2—C3—C4—C50.8 (15)
O2—S1—C1—C2173.5 (5)C3—C4—C5—C61.4 (16)
O1—S1—C1—C242.1 (6)C4—C5—C6—C10.8 (13)
N1—S1—C1—C269.5 (6)C2—C1—C6—C50.3 (11)
O2—S1—C1—C68.2 (6)S1—C1—C6—C5178.1 (6)
O1—S1—C1—C6139.6 (5)S1—N1—C7—O32.1 (9)
N1—S1—C1—C6108.8 (5)S1—N1—C7—C8176.2 (5)
C6—C1—C2—C30.9 (10)O3—C7—C8—C923.4 (9)
S1—C1—C2—C3177.3 (6)N1—C7—C8—C9158.5 (5)
C6—C1—C2—Cl1179.8 (5)C7—C8—C9—C9i177.9 (6)
S1—C1—C2—Cl11.9 (8)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.84 (3)2.08 (3)2.901 (6)168 (6)
Symmetry code: (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H18Cl2N2O6S2
Mr493.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.899 (2), 5.564 (1), 16.333 (3)
β (°) 96.56 (2)
V3)1074.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.44 × 0.08 × 0.01
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.799, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
3439, 1971, 1120
Rint0.049
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.143, 1.26
No. of reflections1971
No. of parameters139
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (3)2.08 (3)2.901 (6)168 (6)
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for award of a research fellowship.

References

First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds