organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-5-methyl­cyclo­hexyl di­phenyl­phospho­namidate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 2 March 2011; accepted 22 March 2011; online 31 March 2011)

In the title compound, C22H30NO2P, the P atom has an irregular tetra­hedral geometry. In the crystal, mol­ecules are connected by N—H⋯O hydrogen-bonding inter­actions, giving rise to a chain along the b axis. The phenyl ring of the anilino group is twisted by 77.40 (16)° relative to the other phenyl ring. The absolute configuration of phospho­rus is Sp.

Related literature

For applications of chiral phosphinoyl­imines, see: Benamer et al. (2010[Benamer, M., Turcaud, S. & Royer, J. (2010). Tetrahedron Lett. 51, 645-648.]). For related structures, see: Balakrishna et al. (2001[Balakrishna, M. S., Abhyankar, R. M. & Walawalker, M. G. (2001). Tetrahedron Lett. 42, 2733-2734.]). For the use of chiral organo­phospho­rus compounds in metal-catalyzed and organocatalytic reactions, see: Steinberg (1950[Steinberg, G. M. (1950). J. Org. Chem. 15, 637-647.]).

[Scheme 1]

Experimental

Crystal data
  • C22H30NO2P

  • Mr = 371.44

  • Monoclinic, P 21

  • a = 8.6934 (8) Å

  • b = 5.4716 (5) Å

  • c = 22.100 (2) Å

  • β = 101.006 (1)°

  • V = 1031.90 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 298 K

  • 0.45 × 0.36 × 0.17 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.975

  • 5183 measured reflections

  • 3589 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.104

  • S = 1.09

  • 3589 reflections

  • 238 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1550 Friedel pairs

  • Flack parameter: −0.06 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6⋯O2i 0.86 2.24 3.053 (3) 157
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The catalytic asymmetric synthesis of chiral organophosphorus compounds has attracted considerable attention in the past decades, for these compounds can serve as precursors of many biologically active molecules and play an important role in metal-catalyzed and organocatalytic reactions (Steinberg, 1950). The molecular structure of the P-chiral title compound, (I), is composed of 2-isopropyl-5-methylcyclohexyl phenylphosphinate core with phenylamine (Fig. 1.). The configuration of the central P atom is S. The four groups around the P atom form a irregular tetrahedron (Benamer et al., 2010). The torsion angles of the O(2)–P(1)–N(1)–C(3) and O(1)–P(1)–N(1)–C(3) are -45.0 (3) Å and -170.0 (2) Å. In the crystal structure (Balakrishna et al., 2001), intermolecular N—H···O hydrogen bonds connect molecules into a one-dimensional chain (Table 1. , Fig. 2.).

Related literature top

For applications of chiral phosphinoylimines, see: Benamer et al. (2010). For related structures, see: Balakrishna et al. (2001). For the use of chiral organophosphorus compounds in metal-catalyzed and organocatalytic reactions, see: Steinberg (1950)

Experimental top

Carbon tetrachloride was added to a solution of 2-isopropyl-5-methylcyclohexyl phenylphosphinate dissolved in dry ether and phenylamine. The reaction mixture was stirred for 38 h at room temperature. After washing with water, the resulting solution was purified by preparative TLC on silica gel to afford optically pure product. Single crystals of the title compound suitable for x–ray diffraction were obtained by slow evaporation of ether solution.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93–0.98 Å, with Uiso(H) = 1.5 Ueq(methyl) and Uiso(H) = 1.2 Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The one–dimensional chain of (I), linked by N—H···O hydrogen bonds.
N-({[5-methyl-2-(propan-2-yl)cyclohexyl]oxy}(phenyl)phosphoryl)aniline top
Crystal data top
C22H30NO2PF(000) = 400
Mr = 371.44Dx = 1.195 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1942 reflections
a = 8.6934 (8) Åθ = 2.7–25.2°
b = 5.4716 (5) ŵ = 0.15 mm1
c = 22.100 (2) ÅT = 298 K
β = 101.006 (1)°Block, colorless
V = 1031.90 (17) Å30.45 × 0.36 × 0.17 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
3589 independent reflections
Radiation source: fine-focus sealed tube2814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.936, Tmax = 0.975k = 66
5183 measured reflectionsl = 2613
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.0269P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3589 reflectionsΔρmax = 0.15 e Å3
238 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1550 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (12)
Crystal data top
C22H30NO2PV = 1031.90 (17) Å3
Mr = 371.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6934 (8) ŵ = 0.15 mm1
b = 5.4716 (5) ÅT = 298 K
c = 22.100 (2) Å0.45 × 0.36 × 0.17 mm
β = 101.006 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3589 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2814 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.975Rint = 0.021
5183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.15 e Å3
S = 1.09Δρmin = 0.25 e Å3
3589 reflectionsAbsolute structure: Flack (1983), 1550 Friedel pairs
238 parametersAbsolute structure parameter: 0.06 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0896 (4)0.6404 (9)0.08739 (15)0.0830 (12)
H1A0.07430.47020.07780.100*
H1B0.18400.69700.06020.100*
P10.36057 (8)0.79230 (14)0.29338 (3)0.03738 (19)
C20.5704 (3)0.8039 (6)0.30983 (11)0.0402 (6)
O20.2888 (2)1.0296 (3)0.30075 (8)0.0446 (5)
C30.2897 (3)0.5828 (5)0.39742 (11)0.0351 (6)
O10.3227 (2)0.6846 (4)0.22586 (8)0.0436 (5)
C40.3333 (4)0.7801 (7)0.49563 (12)0.0570 (8)
H40.37540.90870.52100.068*
C50.3513 (3)0.7748 (7)0.43486 (11)0.0459 (7)
H50.40460.90000.41930.055*
N10.3040 (3)0.5712 (4)0.33461 (10)0.0424 (6)
H60.28070.43400.31610.051*
C70.0423 (3)0.6000 (7)0.19730 (13)0.0543 (8)
H7A0.03040.62890.23950.065*
H7B0.06600.42820.19340.065*
C80.6462 (4)0.9995 (6)0.28841 (14)0.0566 (9)
H80.58841.12070.26480.068*
C90.2115 (3)0.3967 (6)0.42092 (13)0.0458 (8)
H90.17100.26590.39600.055*
C100.1771 (3)0.7509 (6)0.18402 (11)0.0439 (8)
H100.15490.92400.18990.053*
C110.2538 (4)0.5968 (7)0.51885 (14)0.0611 (9)
H110.24080.60240.55960.073*
C120.6582 (4)0.6285 (6)0.34548 (13)0.0507 (8)
H120.60850.49720.36040.061*
C130.2020 (4)0.7132 (6)0.11828 (12)0.0534 (9)
H130.21140.53620.11320.064*
C140.1938 (4)0.4062 (7)0.48197 (14)0.0590 (9)
H140.14060.28150.49790.071*
C150.8088 (4)1.0140 (7)0.30229 (16)0.0660 (10)
H150.85971.14380.28730.079*
C160.1120 (4)0.6599 (7)0.15376 (15)0.0641 (10)
H160.14000.82920.16130.077*
C170.3526 (5)0.8226 (9)0.10465 (16)0.0738 (11)
H170.43840.75650.13560.089*
C180.0482 (4)0.7874 (9)0.07536 (13)0.0765 (10)
H18A0.02850.95950.08120.092*
H18B0.05900.76420.03290.092*
C190.8948 (4)0.8369 (7)0.33812 (16)0.0634 (11)
H191.00350.84790.34770.076*
C200.3841 (5)0.7449 (10)0.04193 (16)0.1023 (16)
H20A0.38300.56970.03920.153*
H20B0.48470.80500.03700.153*
H20C0.30440.81090.01000.153*
C210.3603 (7)1.0937 (9)0.1111 (3)0.1244 (19)
H21A0.27361.16590.08350.187*
H21B0.45671.15180.10130.187*
H21C0.35551.13790.15270.187*
C220.2440 (5)0.4933 (9)0.1665 (2)0.0947 (14)
H22A0.21870.32630.15950.142*
H22B0.34030.53660.13960.142*
H22C0.25560.51280.20860.142*
C230.8201 (4)0.6464 (7)0.35934 (15)0.0633 (10)
H230.87830.52670.38340.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.074 (3)0.110 (3)0.054 (2)0.010 (3)0.0144 (19)0.006 (2)
P10.0433 (4)0.0378 (4)0.0310 (3)0.0023 (4)0.0073 (3)0.0027 (4)
C20.0466 (16)0.0431 (15)0.0316 (13)0.0011 (18)0.0092 (11)0.0062 (16)
O20.0501 (13)0.0402 (11)0.0438 (11)0.0053 (10)0.0098 (9)0.0045 (10)
C30.0356 (15)0.0374 (15)0.0322 (14)0.0056 (13)0.0061 (11)0.0004 (13)
O10.0471 (11)0.0513 (11)0.0321 (10)0.0098 (10)0.0065 (8)0.0039 (8)
C40.083 (2)0.0498 (17)0.0370 (15)0.002 (2)0.0088 (14)0.0086 (18)
C50.0541 (17)0.0452 (16)0.0381 (15)0.0033 (18)0.0077 (12)0.0003 (17)
N10.0543 (16)0.0373 (13)0.0365 (13)0.0036 (12)0.0110 (11)0.0059 (11)
C70.052 (2)0.069 (2)0.0417 (17)0.0033 (18)0.0096 (14)0.0063 (17)
C80.057 (2)0.056 (2)0.056 (2)0.0012 (18)0.0110 (16)0.0024 (17)
C90.052 (2)0.0386 (16)0.0476 (18)0.0023 (14)0.0106 (15)0.0001 (14)
C100.0489 (17)0.048 (2)0.0322 (13)0.0108 (16)0.0015 (12)0.0048 (14)
C110.087 (3)0.064 (2)0.0363 (17)0.011 (2)0.0221 (17)0.0024 (18)
C120.049 (2)0.054 (2)0.0504 (18)0.0049 (16)0.0124 (15)0.0018 (16)
C130.070 (2)0.058 (2)0.0328 (15)0.0075 (17)0.0113 (15)0.0003 (14)
C140.074 (3)0.058 (2)0.051 (2)0.0003 (18)0.0259 (18)0.0130 (18)
C150.055 (2)0.069 (2)0.077 (2)0.021 (2)0.0205 (19)0.011 (2)
C160.055 (2)0.076 (2)0.057 (2)0.005 (2)0.0003 (16)0.0064 (18)
C170.081 (3)0.087 (3)0.058 (2)0.010 (3)0.0235 (18)0.015 (2)
C180.090 (3)0.098 (3)0.0375 (17)0.013 (3)0.0002 (16)0.006 (2)
C190.0388 (19)0.085 (3)0.066 (2)0.002 (2)0.0081 (16)0.025 (2)
C200.116 (3)0.141 (5)0.062 (2)0.019 (3)0.047 (2)0.022 (3)
C210.155 (5)0.084 (3)0.153 (5)0.012 (4)0.076 (4)0.010 (3)
C220.060 (3)0.114 (4)0.106 (3)0.005 (3)0.005 (2)0.012 (3)
C230.056 (2)0.072 (3)0.059 (2)0.017 (2)0.0045 (17)0.0031 (19)
Geometric parameters (Å, º) top
C1—C181.508 (5)C11—C141.364 (5)
C1—C161.520 (4)C11—H110.9300
C1—H1A0.9700C12—C231.386 (4)
C1—H1B0.9700C12—H120.9300
P1—O21.463 (2)C13—C171.521 (5)
P1—O11.5795 (19)C13—C181.539 (4)
P1—N11.645 (2)C13—H130.9800
P1—C21.792 (3)C14—H140.9300
C2—C121.376 (4)C15—C191.378 (5)
C2—C81.386 (4)C15—H150.9300
C3—C91.380 (4)C16—C221.533 (5)
C3—C51.380 (4)C16—H160.9800
C3—N11.419 (3)C17—C211.490 (7)
O1—C101.463 (3)C17—C201.524 (5)
C4—C111.372 (5)C17—H170.9800
C4—C51.382 (4)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—H50.9300C19—C231.358 (5)
N1—H60.8600C19—H190.9300
C7—C101.507 (4)C20—H20A0.9600
C7—C161.530 (4)C20—H20B0.9600
C7—H7A0.9700C20—H20C0.9600
C7—H7B0.9700C21—H21A0.9600
C8—C151.390 (4)C21—H21B0.9600
C8—H80.9300C21—H21C0.9600
C9—C141.388 (4)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C131.523 (4)C22—H22C0.9600
C10—H100.9800C23—H230.9300
C18—C1—C16112.6 (3)C17—C13—C18117.0 (3)
C18—C1—H1A109.1C10—C13—C18106.7 (2)
C16—C1—H1A109.1C17—C13—H13105.8
C18—C1—H1B109.1C10—C13—H13105.8
C16—C1—H1B109.1C18—C13—H13105.8
H1A—C1—H1B107.8C11—C14—C9120.6 (3)
O2—P1—O1114.83 (11)C11—C14—H14119.7
O2—P1—N1114.34 (11)C9—C14—H14119.7
O1—P1—N1102.61 (11)C19—C15—C8120.3 (3)
O2—P1—C2112.65 (14)C19—C15—H15119.9
O1—P1—C2103.04 (11)C8—C15—H15119.9
N1—P1—C2108.29 (14)C1—C16—C7109.5 (3)
C12—C2—C8119.1 (3)C1—C16—C22112.0 (3)
C12—C2—P1121.5 (2)C7—C16—C22110.7 (3)
C8—C2—P1119.3 (2)C1—C16—H16108.2
C9—C3—C5119.9 (2)C7—C16—H16108.2
C9—C3—N1118.5 (3)C22—C16—H16108.2
C5—C3—N1121.6 (3)C21—C17—C20110.6 (4)
C10—O1—P1120.25 (16)C21—C17—C13113.4 (4)
C11—C4—C5120.4 (3)C20—C17—C13112.4 (4)
C11—C4—H4119.8C21—C17—H17106.6
C5—C4—H4119.8C20—C17—H17106.6
C3—C5—C4119.7 (3)C13—C17—H17106.6
C3—C5—H5120.1C1—C18—C13112.1 (3)
C4—C5—H5120.1C1—C18—H18A109.2
C3—N1—P1126.9 (2)C13—C18—H18A109.2
C3—N1—H6116.5C1—C18—H18B109.2
P1—N1—H6116.5C13—C18—H18B109.2
C10—C7—C16112.4 (3)H18A—C18—H18B107.9
C10—C7—H7A109.1C23—C19—C15119.7 (3)
C16—C7—H7A109.1C23—C19—H19120.2
C10—C7—H7B109.1C15—C19—H19120.2
C16—C7—H7B109.1C17—C20—H20A109.5
H7A—C7—H7B107.9C17—C20—H20B109.5
C2—C8—C15119.9 (3)H20A—C20—H20B109.5
C2—C8—H8120.1C17—C20—H20C109.5
C15—C8—H8120.1H20A—C20—H20C109.5
C3—C9—C14119.5 (3)H20B—C20—H20C109.5
C3—C9—H9120.2C17—C21—H21A109.5
C14—C9—H9120.2C17—C21—H21B109.5
O1—C10—C7110.6 (2)H21A—C21—H21B109.5
O1—C10—C13107.8 (2)C17—C21—H21C109.5
C7—C10—C13111.6 (2)H21A—C21—H21C109.5
O1—C10—H10108.9H21B—C21—H21C109.5
C7—C10—H10108.9C16—C22—H22A109.5
C13—C10—H10108.9C16—C22—H22B109.5
C14—C11—C4119.8 (3)H22A—C22—H22B109.5
C14—C11—H11120.1C16—C22—H22C109.5
C4—C11—H11120.1H22A—C22—H22C109.5
C2—C12—C23120.4 (3)H22B—C22—H22C109.5
C2—C12—H12119.8C19—C23—C12120.7 (3)
C23—C12—H12119.8C19—C23—H23119.7
C17—C13—C10114.8 (3)C12—C23—H23119.7
O2—P1—C2—C12134.9 (2)C5—C4—C11—C140.9 (5)
O1—P1—C2—C12100.8 (2)C8—C2—C12—C230.5 (4)
N1—P1—C2—C127.4 (3)P1—C2—C12—C23177.7 (2)
O2—P1—C2—C842.3 (3)O1—C10—C13—C1747.9 (4)
O1—P1—C2—C882.0 (2)C7—C10—C13—C17169.6 (3)
N1—P1—C2—C8169.8 (2)O1—C10—C13—C18179.3 (3)
O2—P1—O1—C1027.3 (2)C7—C10—C13—C1859.1 (3)
N1—P1—O1—C1097.4 (2)C4—C11—C14—C90.5 (5)
C2—P1—O1—C10150.1 (2)C3—C9—C14—C110.4 (5)
C9—C3—C5—C40.4 (4)C2—C8—C15—C191.1 (5)
N1—C3—C5—C4179.4 (3)C18—C1—C16—C752.1 (5)
C11—C4—C5—C30.5 (5)C18—C1—C16—C22175.3 (3)
C9—C3—N1—P1167.3 (2)C10—C7—C16—C153.0 (4)
C5—C3—N1—P112.5 (4)C10—C7—C16—C22177.0 (3)
O2—P1—N1—C345.0 (3)C10—C13—C17—C2162.8 (5)
O1—P1—N1—C3170.0 (2)C18—C13—C17—C2163.4 (5)
C2—P1—N1—C381.5 (2)C10—C13—C17—C20170.8 (3)
C12—C2—C8—C151.0 (4)C18—C13—C17—C2063.0 (5)
P1—C2—C8—C15178.2 (2)C16—C1—C18—C1357.0 (5)
C5—C3—C9—C140.8 (4)C17—C13—C18—C1171.6 (3)
N1—C3—C9—C14179.0 (3)C10—C13—C18—C158.3 (4)
P1—O1—C10—C781.0 (3)C8—C15—C19—C230.7 (5)
P1—O1—C10—C13156.7 (2)C15—C19—C23—C120.2 (5)
C16—C7—C10—O1178.9 (2)C2—C12—C23—C190.1 (5)
C16—C7—C10—C1358.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O2i0.862.243.053 (3)157
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H30NO2P
Mr371.44
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)8.6934 (8), 5.4716 (5), 22.100 (2)
β (°) 101.006 (1)
V3)1031.90 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.45 × 0.36 × 0.17
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.936, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
5183, 3589, 2814
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.09
No. of reflections3589
No. of parameters238
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.25
Absolute structureFlack (1983), 1550 Friedel pairs
Absolute structure parameter0.06 (12)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O2i0.862.243.053 (3)157
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We acknowledge financial support by the Natural Science Foundation of China (No. 20772055).

References

First citationBalakrishna, M. S., Abhyankar, R. M. & Walawalker, M. G. (2001). Tetrahedron Lett. 42, 2733–2734.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenamer, M., Turcaud, S. & Royer, J. (2010). Tetrahedron Lett. 51, 645–648.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSteinberg, G. M. (1950). J. Org. Chem. 15, 637–647.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds