metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­­(propane-1,3-diaminium) [[aqua­(sulfato-κO)bis­­(sulfato-κ2O,O′)cerate(IV)]-μ-sulfato-κ3O,O′:O′′] dihydrate]

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, Government College University, 54000 Lahore, Pakistan, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 February 2011; accepted 4 March 2011; online 9 March 2011)

The CeIV atom in the title salt, {(H3NCH2CH2CH2NH3)2[Ce(SO4)4(H2O)]·2H2O}n, exists in a monocapped square-anti­prismatic coordination geometry. The water-coordinated metal atom is bonded to four sulfate ions; one of them is monodentate and two function in a chelating mode. The fourth is also chelating but it uses one of the other two O atoms to bind to an adjacent metal atom, generating a polyanionic chain. The cations are linked to the polyanionic chain as well as to the uncoordinated water mol­ecules, resulting in an O—H⋯O and N—H⋯O hydrogen-bonded three-dimensional network.

Related literature

For (C2H10N2)5[Ce2(SO4)9].3H2O, see: Jabeen et al. (2010[Jabeen, N., Ahmad, S., Meer, A. F., Khan, I. U. & Ng, S. W. (2010). Acta Cryst. E66, m797-m798.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)2[Ce(SO4)4(H2O)]·2H2O

  • Mr = 730.70

  • Monoclinic, P 21 /c

  • a = 8.9459 (1) Å

  • b = 20.4497 (3) Å

  • c = 12.8688 (2) Å

  • β = 99.535 (1)°

  • V = 2321.71 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 295 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.531, Tmax = 0.794

  • 21238 measured reflections

  • 5296 independent reflections

  • 4663 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.14

  • 5296 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w2⋯O12i 0.84 2.05 2.854 (4) 162
O2w—H2w1⋯O11i 0.84 2.24 2.935 (5) 140
O2w—H2w2⋯O15ii 0.84 2.08 2.902 (5) 167
O3w—H3w1⋯O3i 0.84 1.90 2.729 (5) 169
O3w—H3w2⋯O2w 0.85 1.98 2.802 (5) 163
N1—H11⋯O9i 0.86 2.04 2.881 (4) 167
N1—H12⋯O3w 0.86 1.95 2.806 (5) 171
N1—H13⋯O13iii 0.86 2.19 3.036 (4) 166
N2—H21⋯O16iv 0.86 2.09 2.904 (5) 157
N2—H22⋯O16ii 0.86 2.25 2.978 (5) 142
N2—H23⋯O2 0.86 2.49 3.180 (6) 137
N2—H23⋯O5 0.86 2.44 2.989 (4) 122
N3—H31⋯O6v 0.86 2.04 2.866 (4) 162
N3—H32⋯O4 0.86 2.37 2.882 (6) 119
N3—H32⋯O2wvi 0.86 2.37 3.085 (6) 141
N3—H33⋯O1 0.86 2.33 3.004 (5) 135
N3—H33⋯O10 0.86 2.43 3.191 (6) 147
N4—H41⋯O6vii 0.86 2.34 2.986 (4) 132
N4—H41⋯O15vii 0.86 2.25 2.951 (5) 138
N4—H43⋯O4viii 0.86 2.00 2.851 (5) 173
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+1, -y, -z+1; (vii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A previous study reports the isolation of pentakis(ethylenediammonium) µ-sulfato-bis[trisulfatocerate(IV) trihydrate, which was synthesized by the reaction of 1,2-diaminoethane with cerium(IV) sulfate (Jabeen et al., 2010). The two independent Ce atoms exist in a nine-coordinate geometry this is best described as a tricapped trigonal prism. Shortening the cationic chain results in the formatoin of a polyanion. The compound obtained with 1,3-diaminopropane in place of 1,2-diamionoethane is 2(H3NCH2CH2CH2NH3) [Ce(H2O)(SO4)4].2H2O (Scheme I, Fig. 1). One of the sulfate ions behaving in a bridging mode to link adjacent cerate ions into a chain. The cations are linked to the polyanionic chain as well as to the lattice water molecules to result in a hydrogen-bonded three-dimensional network. The metal atom shows monocapped square-antiprismatic geometry (Fig. 2).

Related literature top

For (C2H10N2)5[Ce2(SO4)9].3H2O, see: Jabeen et al. (2010).

Experimental top

1,3-Diaminopropane (0.148 g, 2 mmol) was placed in a 1 N sulfuric acid solution (5 ml) of cerium(IV) sulfate tetrahydrate (0.202 g, 0.5 mmol). The yellow solution was filtered and then set aside for the growth of crystals.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions (C–H 0.93 to 0.97 Å; N–H 0.86 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,N). The H-atoms of the water molecules were placed in chemically sensible positions on the basis of hydrogen bonding interactions (O–H 0.84 Å) and their temperature factors were similar tied. The final difference Fouier map had a peak at 0.85 Å from Ce1 and a hole at 1.18 Å from O10.

The (1 0 0), (1 1 0) and (0 2 0) reflections were omitted as they were affected by the beam stop. The reflections (-1 3 10), (-1 7 8), (0 7 6), (0 1 6), (-1 8 12) and (-1 2 12) were omitted because of bad disagreement between the calculated and observed intensities.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric (H3NCH2CH2CH2NH3) [Ce(H2O)(SO4)4].2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Monocapped square-antiprismatic geometry of Ce(IV).
catena-Poly[bis(propane-1,3-diaminium) [[aqua(sulfato-κO)bis(sulfato-κ2O,O')cerate(IV)]- µ-sulfato-κ3O,O':O''] dihydrate] top
Crystal data top
(C3H12N2)2[Ce(SO4)4(H2O)]·2H2OF(000) = 1472
Mr = 730.70Dx = 2.090 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9960 reflections
a = 8.9459 (1) Åθ = 2.8–28.3°
b = 20.4497 (3) ŵ = 2.41 mm1
c = 12.8688 (2) ÅT = 295 K
β = 99.535 (1)°Prism, yellow
V = 2321.71 (6) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
5296 independent reflections
Radiation source: fine-focus sealed tube4663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.531, Tmax = 0.794k = 2620
21238 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0167P)2 + 7.615P]
where P = (Fo2 + 2Fc2)/3
5296 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 1.41 e Å3
Crystal data top
(C3H12N2)2[Ce(SO4)4(H2O)]·2H2OV = 2321.71 (6) Å3
Mr = 730.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9459 (1) ŵ = 2.41 mm1
b = 20.4497 (3) ÅT = 295 K
c = 12.8688 (2) Å0.30 × 0.15 × 0.10 mm
β = 99.535 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
5296 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4663 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.794Rint = 0.024
21238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.14Δρmax = 1.24 e Å3
5296 reflectionsΔρmin = 1.41 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.682986 (19)0.252538 (8)0.326048 (13)0.01407 (6)
S10.58776 (10)0.08286 (4)0.35192 (8)0.02668 (19)
S20.57080 (9)0.24695 (4)0.08631 (6)0.01880 (16)
S31.02446 (9)0.22812 (4)0.34548 (7)0.02170 (17)
S40.66130 (10)0.39960 (4)0.35617 (7)0.02449 (18)
O10.6789 (3)0.14558 (12)0.3672 (2)0.0248 (5)
O20.4287 (3)0.10079 (15)0.3213 (4)0.0588 (11)
O30.6376 (4)0.04469 (15)0.2697 (3)0.0429 (7)
O40.6144 (4)0.04863 (16)0.4518 (3)0.0530 (9)
O50.6001 (3)0.19145 (12)0.16128 (19)0.0266 (5)
O60.6232 (3)0.30497 (11)0.15445 (18)0.0227 (5)
O70.4153 (3)0.25303 (17)0.0394 (2)0.0439 (8)
O80.6718 (3)0.24052 (12)0.00700 (19)0.0246 (5)
O90.9026 (3)0.23795 (12)0.24892 (19)0.0236 (5)
O100.9303 (3)0.23354 (13)0.4321 (2)0.0253 (5)
O111.0895 (3)0.16402 (14)0.3425 (2)0.0384 (7)
O121.1351 (3)0.27980 (14)0.3520 (2)0.0323 (6)
O130.8002 (3)0.35764 (12)0.3595 (2)0.0236 (5)
O140.5368 (3)0.35021 (12)0.3413 (2)0.0231 (5)
O150.6465 (3)0.44422 (15)0.2677 (3)0.0486 (8)
O160.6665 (3)0.43396 (15)0.4552 (3)0.0436 (8)
O1w0.4185 (3)0.23056 (12)0.3117 (2)0.0245 (5)
H1w10.40390.19030.31640.037*
H1w20.34780.25120.33150.037*
O2w0.1571 (4)0.02367 (19)0.3392 (3)0.0621 (10)
H2w10.18340.06220.35590.093*
H2w20.22430.00570.31070.093*
O3w0.1048 (4)0.02558 (18)0.1859 (3)0.0572 (9)
H3w10.18610.02600.21120.086*
H3w20.03250.03290.23600.086*
N10.0516 (4)0.14453 (17)0.0895 (3)0.0332 (7)
H110.06980.17650.12900.050*
H120.07800.10840.11550.050*
H130.10220.14980.02720.050*
N20.4215 (4)0.07383 (16)0.0772 (3)0.0334 (7)
H210.50870.07570.05750.050*
H220.40770.03520.10030.050*
H230.41790.10190.12640.050*
N30.8546 (4)0.1186 (2)0.5827 (3)0.0539 (11)
H310.78830.13540.61610.081*
H320.83460.07780.57130.081*
H330.85220.13840.52360.081*
N41.3989 (4)0.08791 (18)0.5938 (3)0.0445 (9)
H411.48560.09740.63040.067*
H421.39010.10680.53340.067*
H431.39200.04630.58510.067*
C10.1122 (4)0.14262 (19)0.0843 (3)0.0308 (8)
H1A0.16990.13670.15440.037*
H1B0.14300.18360.05630.037*
C20.1438 (4)0.0867 (2)0.0140 (3)0.0322 (8)
H2A0.13070.04570.04930.039*
H2B0.07030.08790.05050.039*
C30.3013 (4)0.0886 (2)0.0138 (3)0.0348 (9)
H3A0.30730.05720.06940.042*
H3B0.31930.13170.04070.042*
C41.0041 (5)0.1253 (2)0.6454 (4)0.0438 (11)
H4A1.00570.10380.71280.053*
H4B1.02600.17130.65870.053*
C51.1240 (5)0.0961 (2)0.5913 (4)0.0379 (9)
H5A1.10980.04910.58620.045*
H5B1.11410.11340.52040.045*
C61.2785 (5)0.1104 (3)0.6490 (4)0.0488 (12)
H6A1.28850.15730.66000.059*
H6B1.29070.08970.71770.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01607 (9)0.01389 (10)0.01262 (9)0.00095 (6)0.00347 (6)0.00052 (6)
S10.0263 (4)0.0165 (4)0.0378 (5)0.0020 (3)0.0068 (4)0.0034 (4)
S20.0183 (4)0.0248 (4)0.0135 (3)0.0014 (3)0.0034 (3)0.0013 (3)
S30.0178 (4)0.0231 (4)0.0246 (4)0.0031 (3)0.0048 (3)0.0003 (3)
S40.0238 (4)0.0151 (4)0.0346 (5)0.0002 (3)0.0049 (3)0.0016 (3)
O10.0269 (13)0.0162 (12)0.0301 (13)0.0039 (10)0.0017 (10)0.0035 (10)
O20.0221 (14)0.0242 (16)0.129 (4)0.0024 (12)0.0085 (17)0.0031 (18)
O30.0468 (17)0.0337 (16)0.0485 (19)0.0058 (13)0.0090 (14)0.0141 (14)
O40.084 (3)0.0323 (17)0.0453 (19)0.0127 (16)0.0176 (18)0.0116 (14)
O50.0414 (15)0.0198 (12)0.0197 (12)0.0089 (11)0.0079 (10)0.0012 (10)
O60.0318 (13)0.0166 (12)0.0197 (12)0.0016 (10)0.0045 (9)0.0005 (9)
O70.0197 (13)0.082 (3)0.0286 (15)0.0005 (14)0.0004 (11)0.0020 (15)
O80.0264 (12)0.0317 (14)0.0173 (12)0.0022 (10)0.0085 (10)0.0005 (10)
O90.0202 (11)0.0301 (14)0.0204 (12)0.0001 (10)0.0031 (9)0.0020 (10)
O100.0210 (12)0.0319 (14)0.0230 (13)0.0031 (10)0.0039 (9)0.0037 (10)
O110.0404 (16)0.0291 (15)0.0460 (18)0.0150 (12)0.0087 (13)0.0000 (13)
O120.0199 (12)0.0370 (16)0.0395 (16)0.0061 (11)0.0037 (11)0.0016 (12)
O130.0197 (11)0.0184 (12)0.0326 (14)0.0008 (9)0.0041 (10)0.0020 (10)
O140.0205 (11)0.0198 (12)0.0294 (13)0.0002 (9)0.0049 (10)0.0038 (10)
O150.0407 (17)0.0327 (17)0.069 (2)0.0003 (13)0.0012 (15)0.0261 (16)
O160.0383 (16)0.0337 (16)0.060 (2)0.0041 (13)0.0110 (14)0.0263 (15)
O1w0.0227 (12)0.0217 (12)0.0302 (14)0.0015 (10)0.0076 (10)0.0023 (10)
O2w0.049 (2)0.054 (2)0.086 (3)0.0027 (17)0.0191 (19)0.005 (2)
O3w0.053 (2)0.064 (2)0.056 (2)0.0085 (18)0.0129 (17)0.0049 (18)
N10.0322 (17)0.0359 (19)0.0298 (17)0.0104 (14)0.0005 (13)0.0055 (14)
N20.0296 (16)0.0261 (17)0.044 (2)0.0017 (13)0.0034 (14)0.0044 (15)
N30.037 (2)0.076 (3)0.047 (2)0.022 (2)0.0011 (17)0.008 (2)
N40.0301 (18)0.033 (2)0.073 (3)0.0063 (15)0.0152 (18)0.0067 (18)
C10.033 (2)0.029 (2)0.030 (2)0.0023 (16)0.0053 (15)0.0011 (16)
C20.0249 (18)0.035 (2)0.037 (2)0.0001 (16)0.0035 (15)0.0076 (17)
C30.033 (2)0.041 (2)0.031 (2)0.0027 (17)0.0079 (16)0.0011 (17)
C40.035 (2)0.046 (3)0.049 (3)0.0014 (19)0.0043 (19)0.012 (2)
C50.037 (2)0.035 (2)0.042 (2)0.0055 (18)0.0066 (18)0.0005 (18)
C60.037 (2)0.049 (3)0.062 (3)0.007 (2)0.012 (2)0.015 (2)
Geometric parameters (Å, º) top
Ce1—O12.252 (2)N1—C11.479 (5)
Ce1—O8i2.352 (2)N1—H110.8600
Ce1—O92.362 (2)N1—H120.8600
Ce1—O1w2.385 (2)N1—H130.8600
Ce1—O132.399 (2)N2—C31.484 (5)
Ce1—O142.413 (2)N2—H210.8600
Ce1—O102.431 (2)N2—H220.8600
Ce1—O62.433 (2)N2—H230.8600
Ce1—O52.467 (2)N3—C41.450 (6)
S1—O31.444 (3)N3—H310.8600
S1—O41.448 (3)N3—H320.8600
S1—O21.459 (3)N3—H330.8600
S1—O11.515 (2)N4—C61.460 (6)
S2—O71.427 (3)N4—H410.8600
S2—O81.477 (2)N4—H420.8600
S2—O51.485 (3)N4—H430.8600
S2—O61.503 (2)C1—C21.514 (5)
S3—O111.437 (3)C1—H1A0.9700
S3—O121.441 (3)C1—H1B0.9700
S3—O101.508 (3)C2—C31.510 (5)
S3—O91.524 (3)C2—H2A0.9700
S4—O151.448 (3)C2—H2B0.9700
S4—O161.449 (3)C3—H3A0.9700
S4—O141.492 (2)C3—H3B0.9700
S4—O131.505 (2)C4—C51.496 (6)
O8—Ce1ii2.352 (2)C4—H4A0.9700
O1w—H1w10.8368C4—H4B0.9700
O1w—H1w20.8351C5—C61.486 (6)
O2w—H2w10.8401C5—H5A0.9700
O2w—H2w20.8390C5—H5B0.9700
O3w—H3w10.8444C6—H6A0.9700
O3w—H3w20.8478C6—H6B0.9700
O1—Ce1—O8i79.66 (9)S4—O14—Ce199.66 (12)
O1—Ce1—O991.34 (9)Ce1—O1w—H1w1110.1
O8i—Ce1—O9126.76 (9)Ce1—O1w—H1w2132.2
O1—Ce1—O1w77.33 (9)H1w1—O1w—H1w2109.9
O8i—Ce1—O1w83.33 (9)H2w1—O2w—H2w2109.4
O9—Ce1—O1w145.79 (8)H3w1—O3w—H3w2107.6
O1—Ce1—O13148.37 (9)C1—N1—H11109.5
O8i—Ce1—O1381.78 (9)C1—N1—H12109.5
O9—Ce1—O1379.59 (8)H11—N1—H12109.5
O1w—Ce1—O13125.54 (8)C1—N1—H13109.5
O1—Ce1—O14138.98 (8)H11—N1—H13109.5
O8i—Ce1—O1475.94 (9)H12—N1—H13109.5
O9—Ce1—O14129.67 (8)C3—N2—H21109.5
O1w—Ce1—O1467.56 (8)C3—N2—H22109.5
O13—Ce1—O1458.03 (8)H21—N2—H22109.5
O1—Ce1—O1076.20 (9)C3—N2—H23109.5
O8i—Ce1—O1068.77 (8)H21—N2—H23109.5
O9—Ce1—O1058.17 (8)H22—N2—H23109.5
O1w—Ce1—O10144.34 (9)C4—N3—H31109.5
O13—Ce1—O1073.27 (8)C4—N3—H32109.5
O14—Ce1—O10122.81 (8)H31—N3—H32109.5
O1—Ce1—O6129.18 (9)C4—N3—H33109.5
O8i—Ce1—O6146.41 (8)H31—N3—H33109.5
O9—Ce1—O675.37 (8)H32—N3—H33109.5
O1w—Ce1—O686.94 (8)C6—N4—H41109.5
O13—Ce1—O678.00 (8)C6—N4—H42109.5
O14—Ce1—O670.63 (8)H41—N4—H42109.5
O10—Ce1—O6128.51 (8)C6—N4—H43109.5
O1—Ce1—O572.31 (9)H41—N4—H43109.5
O8i—Ce1—O5145.65 (8)H42—N4—H43109.5
O9—Ce1—O574.19 (8)N1—C1—C2109.4 (3)
O1w—Ce1—O571.61 (9)N1—C1—H1A109.8
O13—Ce1—O5131.94 (8)C2—C1—H1A109.8
O14—Ce1—O5113.52 (9)N1—C1—H1B109.8
O10—Ce1—O5121.19 (9)C2—C1—H1B109.8
O6—Ce1—O556.88 (8)H1A—C1—H1B108.2
O3—S1—O4111.3 (2)C3—C2—C1113.3 (3)
O3—S1—O2110.1 (2)C3—C2—H2A108.9
O4—S1—O2111.7 (2)C1—C2—H2A108.9
O3—S1—O1109.16 (17)C3—C2—H2B108.9
O4—S1—O1106.74 (18)C1—C2—H2B108.9
O2—S1—O1107.59 (16)H2A—C2—H2B107.7
O7—S2—O8112.34 (16)N2—C3—C2113.0 (3)
O7—S2—O5113.34 (18)N2—C3—H3A109.0
O8—S2—O5108.60 (15)C2—C3—H3A109.0
O7—S2—O6111.47 (17)N2—C3—H3B109.0
O8—S2—O6107.82 (14)C2—C3—H3B109.0
O5—S2—O6102.71 (14)H3A—C3—H3B107.8
O11—S3—O12113.18 (17)N3—C4—C5111.7 (4)
O11—S3—O10111.37 (17)N3—C4—H4A109.3
O12—S3—O10111.43 (16)C5—C4—H4A109.3
O11—S3—O9109.67 (17)N3—C4—H4B109.3
O12—S3—O9110.01 (16)C5—C4—H4B109.3
O10—S3—O9100.44 (14)H4A—C4—H4B107.9
O15—S4—O16111.8 (2)C6—C5—C4111.5 (4)
O15—S4—O14110.90 (17)C6—C5—H5A109.3
O16—S4—O14110.85 (16)C4—C5—H5A109.3
O15—S4—O13110.46 (17)C6—C5—H5B109.3
O16—S4—O13110.17 (17)C4—C5—H5B109.3
O14—S4—O13102.30 (14)H5A—C5—H5B108.0
S1—O1—Ce1145.18 (15)N4—C6—C5113.2 (4)
S2—O5—Ce199.61 (12)N4—C6—H6A108.9
S2—O6—Ce1100.49 (12)C5—C6—H6A108.9
S2—O8—Ce1ii144.13 (15)N4—C6—H6B108.9
S3—O9—Ce1101.91 (12)C5—C6—H6B108.9
S3—O10—Ce199.48 (12)H6A—C6—H6B107.7
S4—O13—Ce199.86 (12)
O3—S1—O1—Ce196.8 (3)O13—Ce1—O9—S376.58 (13)
O4—S1—O1—Ce1142.7 (3)O14—Ce1—O9—S3108.19 (13)
O2—S1—O1—Ce122.7 (4)O10—Ce1—O9—S30.09 (11)
O8i—Ce1—O1—S1112.7 (3)O6—Ce1—O9—S3156.76 (14)
O9—Ce1—O1—S1120.1 (3)O5—Ce1—O9—S3144.11 (14)
O1w—Ce1—O1—S127.3 (3)O11—S3—O10—Ce1116.21 (16)
O13—Ce1—O1—S1167.8 (2)O12—S3—O10—Ce1116.37 (15)
O14—Ce1—O1—S158.6 (3)O9—S3—O10—Ce10.13 (15)
O10—Ce1—O1—S1176.8 (3)O1—Ce1—O10—S3100.51 (14)
O6—Ce1—O1—S148.0 (3)O8i—Ce1—O10—S3175.39 (15)
O5—Ce1—O1—S147.2 (3)O9—Ce1—O10—S30.09 (11)
O7—S2—O5—Ce1115.29 (16)O1w—Ce1—O10—S3143.65 (13)
O8—S2—O5—Ce1119.11 (13)O13—Ce1—O10—S387.88 (13)
O6—S2—O5—Ce15.10 (15)O14—Ce1—O10—S3119.49 (13)
O1—Ce1—O5—S2177.08 (15)O6—Ce1—O10—S328.99 (18)
O8i—Ce1—O5—S2140.24 (13)O5—Ce1—O10—S341.46 (16)
O9—Ce1—O5—S286.27 (13)O15—S4—O13—Ce1114.54 (17)
O1w—Ce1—O5—S294.93 (14)O16—S4—O13—Ce1121.47 (16)
O13—Ce1—O5—S226.73 (18)O14—S4—O13—Ce13.56 (15)
O14—Ce1—O5—S240.62 (15)O1—Ce1—O13—S4135.59 (15)
O10—Ce1—O5—S2121.98 (13)O8i—Ce1—O13—S481.04 (13)
O6—Ce1—O5—S23.67 (11)O9—Ce1—O13—S4149.06 (14)
O7—S2—O6—Ce1116.49 (16)O1w—Ce1—O13—S45.37 (17)
O8—S2—O6—Ce1119.76 (13)O14—Ce1—O13—S42.54 (11)
O5—S2—O6—Ce15.19 (15)O10—Ce1—O13—S4151.25 (14)
O1—Ce1—O6—S24.56 (17)O6—Ce1—O13—S471.98 (13)
O8i—Ce1—O6—S2139.44 (13)O5—Ce1—O13—S491.57 (15)
O9—Ce1—O6—S284.09 (12)O15—S4—O14—Ce1114.25 (18)
O1w—Ce1—O6—S266.35 (12)O16—S4—O14—Ce1120.97 (16)
O13—Ce1—O6—S2166.31 (13)O13—S4—O14—Ce13.54 (15)
O14—Ce1—O6—S2133.63 (14)O1—Ce1—O14—S4146.82 (12)
O10—Ce1—O6—S2109.35 (13)O8i—Ce1—O14—S491.56 (13)
O5—Ce1—O6—S23.63 (11)O9—Ce1—O14—S434.86 (17)
O7—S2—O8—Ce1ii9.8 (3)O1w—Ce1—O14—S4179.93 (15)
O5—S2—O8—Ce1ii136.0 (2)O13—Ce1—O14—S42.56 (11)
O6—S2—O8—Ce1ii113.4 (3)O10—Ce1—O14—S438.84 (16)
O11—S3—O9—Ce1117.48 (15)O6—Ce1—O14—S485.13 (13)
O12—S3—O9—Ce1117.42 (15)O5—Ce1—O14—S4123.43 (12)
O10—S3—O9—Ce10.13 (15)N1—C1—C2—C3168.6 (3)
O1—Ce1—O9—S372.92 (13)C1—C2—C3—N270.0 (5)
O8i—Ce1—O9—S35.16 (17)N3—C4—C5—C6172.7 (4)
O1w—Ce1—O9—S3142.07 (13)C4—C5—C6—N4174.8 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w2···O12iii0.842.052.854 (4)162
O2w—H2w1···O11iii0.842.242.935 (5)140
O2w—H2w2···O15iv0.842.082.902 (5)167
O3w—H3w1···O3iii0.841.902.729 (5)169
O3w—H3w2···O2w0.851.982.802 (5)163
N1—H11···O9iii0.862.042.881 (4)167
N1—H12···O3w0.861.952.806 (5)171
N1—H13···O13v0.862.193.036 (4)166
N2—H21···O16ii0.862.092.904 (5)157
N2—H22···O16iv0.862.252.978 (5)142
N2—H23···O20.862.493.180 (6)137
N2—H23···O50.862.442.989 (4)122
N3—H31···O6i0.862.042.866 (4)162
N3—H32···O40.862.372.882 (6)119
N3—H32···O2wvi0.862.373.085 (6)141
N3—H33···O10.862.333.004 (5)135
N3—H33···O100.862.433.191 (6)147
N4—H41···O6vii0.862.342.986 (4)132
N4—H41···O15vii0.862.252.951 (5)138
N4—H43···O4viii0.862.002.851 (5)173
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2; (v) x1, y+1/2, z1/2; (vi) x+1, y, z+1; (vii) x+1, y+1/2, z+1/2; (viii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula(C3H12N2)2[Ce(SO4)4(H2O)]·2H2O
Mr730.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.9459 (1), 20.4497 (3), 12.8688 (2)
β (°) 99.535 (1)
V3)2321.71 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.41
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.531, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
21238, 5296, 4663
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.14
No. of reflections5296
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 1.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w2···O12i0.842.052.854 (4)162
O2w—H2w1···O11i0.842.242.935 (5)140
O2w—H2w2···O15ii0.842.082.902 (5)167
O3w—H3w1···O3i0.841.902.729 (5)169
O3w—H3w2···O2w0.851.982.802 (5)163
N1—H11···O9i0.862.042.881 (4)167
N1—H12···O3w0.861.952.806 (5)171
N1—H13···O13iii0.862.193.036 (4)166
N2—H21···O16iv0.862.092.904 (5)157
N2—H22···O16ii0.862.252.978 (5)142
N2—H23···O20.862.493.180 (6)137
N2—H23···O50.862.442.989 (4)122
N3—H31···O6v0.862.042.866 (4)162
N3—H32···O40.862.372.882 (6)119
N3—H32···O2wvi0.862.373.085 (6)141
N3—H33···O10.862.333.004 (5)135
N3—H33···O100.862.433.191 (6)147
N4—H41···O6vii0.862.342.986 (4)132
N4—H41···O15vii0.862.252.951 (5)138
N4—H43···O4viii0.862.002.851 (5)173
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y+1/2, z1/2; (iv) x, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y, z+1; (vii) x+1, y+1/2, z+1/2; (viii) x+2, y, z+1.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan, GC University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJabeen, N., Ahmad, S., Meer, A. F., Khan, I. U. & Ng, S. W. (2010). Acta Cryst. E66, m797–m798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds