metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[silver(I)-μ-1,4-bis­­[(imidazol-1-yl)meth­yl]benzene-κ2N3:N3′-silver(I)-μ-1,4-bis­­[(imidazol-1-yl)meth­yl]benzene-κ2N3:N3′] 4,4′-diazenediyldibenzoate] dihydrate]

aCollege of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: qiaoqianccut@yahoo.com.cn

(Received 13 February 2011; accepted 8 March 2011; online 23 March 2011)

In the title compound, [Ag2(C14H14N4)2](C14H8N2O4)·2H2O, each of the two unique Ag+ ions is two-coordinated by two N atoms from two different 1,4-bis­[(imidazol-1-yl)meth­yl]benzene ligands in an almost linear fashion [N—Ag—N = 170.34 (10) and 160.25 (10)°]. The 4,4′-diazenediyldibenzoate anions do not coordinate to Ag. O—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For a related structure, see: Xu et al. (2005[Xu, Y.-Q., Yuan, D.-Q., Zhou, Y.-F., Wu, M.-Y. & Hong, M.-C. (2005). Acta Cryst. E61, o1294-o1296.]). For applications of coordination polymers, see: Chen et al. (2008[Chen, Z.-F., Zhang, Z.-L., Tan, Y.-H., Tang, Y.-Z., Fun, H.-K., Zhou, Z.-Y., Abrahams, B. F. & Liang, H. (2008). CrystEngComm, 10, 217-231.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C14H14N4)2](C14H8N2O4)·2H2O

  • Mr = 996.58

  • Triclinic, [P \overline 1]

  • a = 9.4944 (6) Å

  • b = 9.7810 (7) Å

  • c = 24.4049 (9) Å

  • α = 84.111 (4)°

  • β = 88.765 (4)°

  • γ = 63.245 (7)°

  • V = 2012.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.21 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.42, Tmax = 0.74

  • 13525 measured reflections

  • 8145 independent reflections

  • 5125 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.02

  • 8145 reflections

  • 541 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW12⋯O2Wi 0.85 2.11 2.879 (5) 151
O1W—HW11⋯O3i 0.85 2.02 2.828 (4) 159
O2W—HW21⋯O4 0.85 1.93 2.758 (4) 163
O2W—HW22⋯O4ii 0.85 2.18 2.909 (6) 144
Symmetry codes: (i) x, y+1, z; (ii) -x+3, -y-1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers are of considerable interest because of their potential application in the areas of catalysis, separation, sorption, sensors, and in electronic and magnetic devices (Chen et al., 2008). So far, the rigid rod-like spacer is well known in the construction of coordination polymers. However, the coordination polymers with the flexible N-donor ligands such as 1,4-bis(imidazole-1-ylmethyl)benzene (1,4-bix) and dicatrboxylic acids such as 4,4'-diazenediyldibenzoic acid (H2L) have not been well explored (Xu et al., 2005). Here, 1,4-bix assembles with silver and H2L to yield a coordination polymer [Ag2(1,4-bix)].L.2H2O, (I).

As shown in Fig. 1, there are two Ag(I) atoms, one 1,4-bix ligand, one L anion, and two free water molecules in the asymmetric unit. Each Ag atom ( Ag1 or Ag2) is two-coordinated by two nitrogen atoms from two different 1,4-bix ligands in a linear sphere. The Ag atoms are bridged by the 1,4-bix ligands to generate a chain structure. Notably, the L anion did not coordinate to the Ag center, but acted as a counter-anion. The O-H···O hydrogen bonds further stabilize the chain structure (Table 1).

Related literature top

For a related structure, see: Xu et al. (2005). For applications of coordination polymers, see: Chen et al. (2008).

Experimental top

A mixture of AgNO3.2H2O (0.5 mmol), H2L (0.5 mmol), 1,4-bix (0.5 mmol), and H2O (12 ml) was adjusted to pH = 5-6 by addition of aqueous NaOH solution, and heated at 140 oC for 3 days. After the mixture was slowly cooled to room temperature, crystals of (I) were yielded (27% yield).

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(C). H atoms bonded to water molecules were located in difference Fourier maps and refined isotropically with distance restraints of O—H = 0.85±0.01 and H···H = 1.35 ±0.01 Å with Uiso = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) x-2, 1+y, 1+z.
Poly[[[silver(I)-µ-1,4-bis[(imidazol-1-yl)methyl]benzene- κ2N3:N3'-silver(I)-µ-1,4-bis[(imidazol-1- yl)methyl]benzene-κ2N3:N3'] 4,4'-diazenediyldibenzoate] dihydrate] top
Crystal data top
[Ag2(C14H14N4)2](C14H8N2O4)·2H2OZ = 2
Mr = 996.58F(000) = 1008
Triclinic, P1Dx = 1.645 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4944 (6) ÅCell parameters from 8145 reflections
b = 9.7810 (7) Åθ = 4.2–26.4°
c = 24.4049 (9) ŵ = 1.04 mm1
α = 84.111 (4)°T = 293 K
β = 88.765 (4)°Block, pale yellow
γ = 63.245 (7)°0.30 × 0.24 × 0.21 mm
V = 2012.3 (2) Å3
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
8145 independent reflections
Radiation source: fine-focus sealed tube5125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.0 pixels mm-1θmax = 26.4°, θmin = 4.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1212
Tmin = 0.42, Tmax = 0.74l = 2430
13525 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0528P)2]
where P = (Fo2 + 2Fc2)/3
8145 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 1.38 e Å3
6 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Ag2(C14H14N4)2](C14H8N2O4)·2H2Oγ = 63.245 (7)°
Mr = 996.58V = 2012.3 (2) Å3
Triclinic, P1Z = 2
a = 9.4944 (6) ÅMo Kα radiation
b = 9.7810 (7) ŵ = 1.04 mm1
c = 24.4049 (9) ÅT = 293 K
α = 84.111 (4)°0.30 × 0.24 × 0.21 mm
β = 88.765 (4)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
8145 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
5125 reflections with I > 2σ(I)
Tmin = 0.42, Tmax = 0.74Rint = 0.018
13525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 1.38 e Å3
8145 reflectionsΔρmin = 1.04 e Å3
541 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4668 (4)0.6968 (4)0.36130 (15)0.0563 (9)
H10.40770.80250.36220.068*
C20.5853 (4)0.6290 (4)0.32737 (14)0.0556 (9)
H20.62280.67820.30060.067*
C30.5543 (3)0.4537 (4)0.38025 (12)0.0423 (7)
H30.56840.35820.39670.051*
C40.7804 (4)0.3517 (4)0.31781 (13)0.0587 (10)
H4A0.80240.25450.33900.070*
H4B0.87000.37210.32280.070*
C50.7643 (3)0.3364 (4)0.25806 (12)0.0427 (7)
C60.7031 (4)0.2437 (4)0.24143 (14)0.0556 (9)
H60.66440.19410.26760.067*
C70.6983 (4)0.2230 (4)0.18644 (14)0.0574 (9)
H70.65680.15930.17610.069*
C80.7542 (3)0.2957 (4)0.14689 (12)0.0414 (7)
C90.8099 (4)0.3932 (4)0.16302 (13)0.0482 (8)
H90.84290.44730.13660.058*
C100.8176 (4)0.4119 (4)0.21810 (13)0.0511 (8)
H100.85900.47580.22840.061*
C110.7589 (3)0.2668 (4)0.08728 (13)0.0521 (8)
H11A0.68760.22340.08090.062*
H11B0.72330.36380.06420.062*
C121.0059 (4)0.1906 (4)0.03344 (13)0.0504 (8)
H120.97320.28420.01180.060*
C131.0080 (4)0.0133 (4)0.09413 (14)0.0551 (9)
H130.97940.04010.12230.066*
C141.1443 (4)0.0405 (4)0.06767 (14)0.0553 (9)
H141.22680.13920.07430.066*
C151.4332 (4)0.1450 (5)0.14000 (15)0.0609 (9)
H151.35150.24450.14110.073*
C161.5447 (4)0.0934 (5)0.17812 (14)0.0605 (10)
H161.55390.14930.21000.073*
C171.5860 (4)0.0903 (4)0.11316 (13)0.0504 (8)
H171.63190.18590.09240.061*
C181.7908 (4)0.1566 (5)0.18476 (13)0.0586 (9)
H18A1.83640.25580.16280.070*
H18B1.86310.11200.18250.070*
C191.7766 (3)0.1816 (4)0.24384 (12)0.0422 (7)
C201.7362 (4)0.2936 (4)0.25662 (13)0.0580 (9)
H201.70870.34810.22860.070*
C211.7358 (4)0.3263 (4)0.31030 (14)0.0569 (9)
H211.70890.40300.31780.068*
C221.7748 (3)0.2467 (4)0.35278 (11)0.0390 (7)
C231.8106 (3)0.1309 (4)0.34061 (12)0.0444 (7)
H231.83380.07360.36890.053*
C241.8123 (4)0.0996 (4)0.28692 (13)0.0478 (8)
H241.83780.02190.27940.057*
C251.7813 (3)0.2857 (4)0.41137 (13)0.0505 (8)
H25A1.72610.34750.41420.061*
H25B1.72720.19130.43560.061*
C262.1755 (4)0.5495 (4)0.44614 (14)0.0535 (9)
H262.26320.64460.44670.064*
C272.0211 (3)0.3084 (4)0.46087 (12)0.0421 (7)
H271.98060.20440.47330.050*
C282.0419 (4)0.5236 (4)0.41991 (14)0.0531 (8)
H282.02030.59660.39900.064*
C291.2536 (4)0.4939 (4)0.08366 (14)0.0568 (9)
C301.1939 (4)0.4119 (4)0.13444 (12)0.0427 (7)
C311.0345 (4)0.3561 (4)0.14751 (13)0.0478 (8)
H310.96560.36690.12380.057*
C320.9781 (4)0.2866 (4)0.19416 (13)0.0481 (8)
H320.87130.24820.20150.058*
C331.0808 (4)0.2725 (4)0.23113 (12)0.0426 (7)
C341.2384 (4)0.3263 (4)0.21846 (13)0.0498 (8)
H341.30740.31690.24250.060*
C351.2940 (4)0.3936 (4)0.17063 (13)0.0492 (8)
H351.39980.42720.16240.059*
C360.8488 (3)0.1055 (3)0.34361 (12)0.0383 (7)
C370.6912 (4)0.0543 (4)0.35628 (13)0.0471 (8)
H370.62330.06660.33260.057*
C380.6354 (3)0.0141 (4)0.40339 (13)0.0469 (8)
H380.52930.04820.41120.056*
C390.7335 (3)0.0341 (3)0.44001 (11)0.0372 (7)
C400.8927 (3)0.0219 (3)0.42703 (12)0.0388 (7)
H400.96140.01290.45130.047*
C410.9501 (3)0.0888 (3)0.38049 (12)0.0399 (7)
H411.05640.12370.37290.048*
C420.6712 (4)0.1177 (4)0.49038 (12)0.0425 (7)
N10.4465 (3)0.5863 (3)0.39436 (11)0.0491 (7)
N20.6407 (3)0.4737 (3)0.33959 (9)0.0410 (6)
N30.9191 (3)0.1608 (3)0.07206 (10)0.0421 (6)
N41.1436 (3)0.0707 (3)0.02991 (11)0.0522 (7)
N51.4586 (3)0.0284 (4)0.09930 (11)0.0538 (7)
N61.6413 (3)0.0567 (3)0.16084 (10)0.0457 (6)
N71.9436 (3)0.3701 (3)0.42960 (9)0.0371 (6)
N82.1618 (3)0.4131 (3)0.47186 (11)0.0487 (7)
N91.0353 (3)0.2065 (3)0.28132 (11)0.0480 (6)
N100.8960 (3)0.1731 (3)0.29367 (10)0.0462 (6)
O10.5368 (3)0.2259 (3)0.48619 (10)0.0694 (7)
O20.7631 (3)0.0773 (3)0.53134 (9)0.0601 (6)
O31.1669 (3)0.5339 (4)0.06016 (11)0.0797 (8)
O41.3891 (3)0.5200 (5)0.06974 (12)0.1081 (12)
Ag11.31507 (3)0.04951 (4)0.029913 (12)0.07450 (13)
Ag20.31551 (3)0.61261 (4)0.467482 (11)0.06951 (13)
O1W1.1940 (4)0.3750 (4)0.04740 (11)0.1012 (11)
HW111.16400.40020.01540.152*
HW121.29380.32500.04440.152*
O2W1.5129 (4)0.7010 (4)0.01539 (14)0.1170 (13)
HW211.45710.63780.00690.176*
HW221.52180.64540.04300.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (2)0.035 (2)0.067 (2)0.0095 (16)0.0096 (17)0.0138 (17)
C20.059 (2)0.045 (2)0.055 (2)0.0180 (17)0.0104 (17)0.0005 (17)
C30.0488 (18)0.044 (2)0.0353 (16)0.0203 (15)0.0054 (14)0.0105 (14)
C40.0437 (18)0.061 (2)0.0429 (18)0.0025 (16)0.0034 (15)0.0107 (16)
C50.0359 (15)0.044 (2)0.0364 (16)0.0069 (14)0.0091 (13)0.0113 (14)
C60.063 (2)0.059 (2)0.047 (2)0.0310 (19)0.0211 (16)0.0049 (17)
C70.065 (2)0.064 (3)0.057 (2)0.039 (2)0.0157 (17)0.0183 (18)
C80.0323 (15)0.0435 (19)0.0416 (17)0.0099 (14)0.0073 (13)0.0112 (14)
C90.0570 (19)0.047 (2)0.0417 (18)0.0242 (17)0.0168 (14)0.0076 (15)
C100.055 (2)0.053 (2)0.052 (2)0.0281 (17)0.0137 (16)0.0189 (16)
C110.0397 (17)0.066 (2)0.0403 (17)0.0130 (16)0.0051 (14)0.0167 (16)
C120.060 (2)0.044 (2)0.0385 (18)0.0164 (17)0.0111 (15)0.0044 (15)
C130.070 (2)0.042 (2)0.050 (2)0.0228 (18)0.0162 (17)0.0037 (16)
C140.060 (2)0.040 (2)0.052 (2)0.0091 (17)0.0122 (17)0.0110 (17)
C150.051 (2)0.060 (3)0.058 (2)0.0127 (18)0.0076 (17)0.0095 (19)
C160.060 (2)0.062 (3)0.047 (2)0.018 (2)0.0122 (17)0.0001 (18)
C170.061 (2)0.053 (2)0.0388 (18)0.0260 (18)0.0083 (15)0.0118 (15)
C180.0446 (18)0.079 (3)0.0432 (19)0.0175 (18)0.0087 (15)0.0206 (18)
C190.0333 (15)0.051 (2)0.0381 (17)0.0142 (14)0.0067 (12)0.0112 (14)
C200.075 (2)0.069 (3)0.0405 (19)0.043 (2)0.0129 (17)0.0024 (17)
C210.072 (2)0.066 (3)0.050 (2)0.046 (2)0.0057 (17)0.0077 (18)
C220.0274 (14)0.048 (2)0.0346 (16)0.0111 (14)0.0048 (12)0.0051 (14)
C230.0445 (16)0.044 (2)0.0421 (17)0.0176 (15)0.0170 (13)0.0060 (14)
C240.0489 (18)0.046 (2)0.052 (2)0.0229 (16)0.0177 (15)0.0197 (16)
C250.0345 (16)0.071 (2)0.0423 (18)0.0184 (16)0.0033 (13)0.0147 (16)
C260.0498 (19)0.043 (2)0.055 (2)0.0075 (16)0.0040 (16)0.0145 (17)
C270.0478 (17)0.0378 (19)0.0358 (16)0.0148 (15)0.0070 (14)0.0066 (13)
C280.060 (2)0.041 (2)0.056 (2)0.0209 (18)0.0010 (17)0.0017 (16)
C290.052 (2)0.051 (2)0.0461 (19)0.0036 (17)0.0021 (17)0.0108 (16)
C300.0503 (18)0.0351 (18)0.0403 (17)0.0169 (15)0.0087 (14)0.0068 (13)
C310.0526 (18)0.049 (2)0.0475 (19)0.0265 (16)0.0005 (15)0.0109 (15)
C320.0440 (17)0.053 (2)0.0499 (19)0.0228 (16)0.0066 (14)0.0128 (16)
C330.0501 (18)0.0424 (19)0.0410 (17)0.0242 (15)0.0110 (14)0.0145 (14)
C340.0504 (18)0.057 (2)0.051 (2)0.0306 (17)0.0056 (15)0.0148 (16)
C350.0447 (17)0.052 (2)0.0503 (19)0.0201 (16)0.0106 (15)0.0124 (16)
C360.0428 (16)0.0327 (17)0.0388 (16)0.0159 (14)0.0017 (13)0.0068 (13)
C370.0406 (16)0.054 (2)0.0496 (19)0.0217 (15)0.0027 (14)0.0165 (16)
C380.0336 (15)0.047 (2)0.056 (2)0.0125 (14)0.0039 (14)0.0179 (16)
C390.0412 (16)0.0313 (17)0.0349 (15)0.0129 (13)0.0001 (13)0.0014 (12)
C400.0410 (16)0.0396 (18)0.0363 (16)0.0190 (14)0.0026 (13)0.0017 (13)
C410.0373 (15)0.0380 (18)0.0424 (17)0.0153 (14)0.0019 (13)0.0034 (14)
C420.0453 (18)0.0394 (19)0.0408 (17)0.0168 (15)0.0003 (14)0.0064 (14)
N10.0461 (15)0.0501 (18)0.0486 (16)0.0171 (13)0.0141 (12)0.0197 (14)
N20.0394 (13)0.0397 (17)0.0318 (13)0.0066 (11)0.0055 (11)0.0073 (11)
N30.0463 (14)0.0432 (17)0.0330 (13)0.0152 (13)0.0063 (11)0.0126 (12)
N40.0558 (17)0.0525 (19)0.0431 (16)0.0188 (14)0.0153 (12)0.0131 (14)
N50.0540 (17)0.061 (2)0.0483 (17)0.0254 (15)0.0162 (13)0.0189 (15)
N60.0418 (14)0.0571 (19)0.0367 (14)0.0191 (13)0.0087 (11)0.0156 (12)
N70.0356 (12)0.0409 (16)0.0318 (13)0.0140 (12)0.0016 (10)0.0070 (11)
N80.0416 (14)0.058 (2)0.0449 (15)0.0192 (14)0.0105 (12)0.0169 (14)
N90.0501 (15)0.0552 (18)0.0448 (15)0.0270 (14)0.0108 (12)0.0181 (13)
N100.0485 (15)0.0496 (17)0.0436 (15)0.0228 (13)0.0087 (12)0.0168 (12)
O10.0503 (14)0.0697 (18)0.0605 (15)0.0017 (13)0.0033 (12)0.0273 (13)
O20.0551 (13)0.0705 (17)0.0395 (12)0.0129 (12)0.0039 (11)0.0142 (11)
O30.0803 (18)0.098 (2)0.0607 (16)0.0336 (17)0.0136 (14)0.0435 (15)
O40.0660 (18)0.172 (4)0.079 (2)0.037 (2)0.0278 (15)0.069 (2)
Ag10.0708 (2)0.1030 (3)0.05629 (19)0.04152 (19)0.03180 (14)0.03127 (17)
Ag20.06397 (19)0.0992 (3)0.05733 (19)0.04227 (18)0.03016 (14)0.03882 (16)
O1W0.162 (3)0.130 (3)0.0544 (17)0.101 (3)0.0134 (18)0.0196 (17)
O2W0.077 (2)0.135 (3)0.101 (2)0.0014 (19)0.0064 (18)0.070 (2)
Geometric parameters (Å, º) top
C1—C21.339 (5)C22—C251.510 (4)
C1—N11.364 (4)C23—C241.378 (4)
C1—H10.9300C23—H230.9300
C2—N21.367 (4)C24—H240.9300
C2—H20.9300C25—N71.467 (4)
C3—N11.315 (4)C25—H25A0.9700
C3—N21.328 (4)C25—H25B0.9700
C3—H30.9300C26—C281.338 (5)
C4—N21.463 (4)C26—N81.366 (4)
C4—C51.499 (4)C26—H260.9300
C4—H4A0.9700C27—N81.309 (4)
C4—H4B0.9700C27—N71.330 (4)
C5—C61.373 (5)C27—H270.9300
C5—C101.385 (5)C28—N71.363 (4)
C6—C71.382 (5)C28—H280.9300
C6—H60.9300C29—O31.232 (4)
C7—C81.377 (5)C29—O41.241 (4)
C7—H70.9300C29—C301.505 (4)
C8—C91.372 (5)C30—C351.393 (4)
C8—C111.506 (4)C30—C311.400 (4)
C9—C101.383 (4)C31—C321.360 (4)
C9—H90.9300C31—H310.9300
C10—H100.9300C32—C331.403 (4)
C11—N31.470 (4)C32—H320.9300
C11—H11A0.9700C33—C341.385 (4)
C11—H11B0.9700C33—N91.411 (4)
C12—N41.314 (4)C34—C351.376 (4)
C12—N31.334 (4)C34—H340.9300
C12—H120.9300C35—H350.9300
C13—C141.338 (5)C36—C371.387 (4)
C13—N31.359 (4)C36—C411.403 (4)
C13—H130.9300C36—N101.414 (4)
C14—N41.349 (4)C37—C381.365 (4)
C14—H140.9300C37—H370.9300
C15—C161.347 (5)C38—C391.393 (4)
C15—N51.370 (5)C38—H380.9300
C15—H150.9300C39—C401.398 (4)
C16—N61.361 (4)C39—C421.506 (4)
C16—H160.9300C40—C411.349 (4)
C17—N51.313 (4)C40—H400.9300
C17—N61.337 (4)C41—H410.9300
C17—H170.9300C42—O11.236 (4)
C18—N61.464 (4)C42—O21.250 (3)
C18—C191.506 (4)N1—Ag22.123 (3)
C18—H18A0.9700N4—Ag12.117 (3)
C18—H18B0.9700N5—Ag12.118 (3)
C19—C201.377 (5)N8—Ag2i2.132 (3)
C19—C241.386 (5)N9—N101.249 (3)
C20—C211.381 (5)Ag2—N8ii2.132 (3)
C20—H200.9300O1W—HW110.8487
C21—C221.377 (4)O1W—HW120.8495
C21—H210.9300O2W—HW210.8495
C22—C231.381 (4)O2W—HW220.8489
C2—C1—N1109.1 (3)N7—C25—H25B109.1
C2—C1—H1125.4C22—C25—H25B109.1
N1—C1—H1125.4H25A—C25—H25B107.8
C1—C2—N2106.9 (3)C28—C26—N8108.8 (3)
C1—C2—H2126.5C28—C26—H26125.6
N2—C2—H2126.5N8—C26—H26125.6
N1—C3—N2111.4 (3)N8—C27—N7111.3 (3)
N1—C3—H3124.3N8—C27—H27124.4
N2—C3—H3124.3N7—C27—H27124.4
N2—C4—C5114.0 (2)C26—C28—N7107.0 (3)
N2—C4—H4A108.8C26—C28—H28126.5
C5—C4—H4A108.8N7—C28—H28126.5
N2—C4—H4B108.8O3—C29—O4125.1 (3)
C5—C4—H4B108.8O3—C29—C30117.9 (3)
H4A—C4—H4B107.7O4—C29—C30117.0 (3)
C6—C5—C10118.2 (3)C35—C30—C31118.0 (3)
C6—C5—C4121.6 (3)C35—C30—C29121.9 (3)
C10—C5—C4120.1 (3)C31—C30—C29120.1 (3)
C5—C6—C7121.0 (3)C32—C31—C30121.5 (3)
C5—C6—H6119.5C32—C31—H31119.3
C7—C6—H6119.5C30—C31—H31119.3
C8—C7—C6120.7 (3)C31—C32—C33120.1 (3)
C8—C7—H7119.7C31—C32—H32119.9
C6—C7—H7119.7C33—C32—H32119.9
C9—C8—C7118.6 (3)C34—C33—C32118.9 (3)
C9—C8—C11120.1 (3)C34—C33—N9116.5 (3)
C7—C8—C11121.3 (3)C32—C33—N9124.6 (3)
C8—C9—C10120.8 (3)C35—C34—C33120.7 (3)
C8—C9—H9119.6C35—C34—H34119.7
C10—C9—H9119.6C33—C34—H34119.7
C9—C10—C5120.6 (3)C34—C35—C30120.8 (3)
C9—C10—H10119.7C34—C35—H35119.6
C5—C10—H10119.7C30—C35—H35119.6
N3—C11—C8111.3 (2)C37—C36—C41119.0 (3)
N3—C11—H11A109.4C37—C36—N10116.4 (2)
C8—C11—H11A109.4C41—C36—N10124.6 (3)
N3—C11—H11B109.4C38—C37—C36120.2 (3)
C8—C11—H11B109.4C38—C37—H37119.9
H11A—C11—H11B108.0C36—C37—H37119.9
N4—C12—N3111.3 (3)C37—C38—C39121.6 (3)
N4—C12—H12124.4C37—C38—H38119.2
N3—C12—H12124.4C39—C38—H38119.2
C14—C13—N3107.0 (3)C38—C39—C40117.1 (3)
C14—C13—H13126.5C38—C39—C42122.0 (3)
N3—C13—H13126.5C40—C39—C42120.9 (2)
C13—C14—N4109.5 (3)C41—C40—C39122.3 (3)
C13—C14—H14125.3C41—C40—H40118.9
N4—C14—H14125.3C39—C40—H40118.9
C16—C15—N5109.5 (3)C40—C41—C36119.8 (3)
C16—C15—H15125.2C40—C41—H41120.1
N5—C15—H15125.2C36—C41—H41120.1
C15—C16—N6106.5 (3)O1—C42—O2126.0 (3)
C15—C16—H16126.7O1—C42—C39116.6 (3)
N6—C16—H16126.7O2—C42—C39117.2 (3)
N5—C17—N6111.5 (3)C3—N1—C1105.9 (3)
N5—C17—H17124.2C3—N1—Ag2124.4 (2)
N6—C17—H17124.2C1—N1—Ag2127.9 (2)
N6—C18—C19114.3 (3)C3—N2—C2106.7 (3)
N6—C18—H18A108.7C3—N2—C4125.6 (3)
C19—C18—H18A108.7C2—N2—C4127.3 (3)
N6—C18—H18B108.7C12—N3—C13106.3 (3)
C19—C18—H18B108.7C12—N3—C11126.6 (3)
H18A—C18—H18B107.6C13—N3—C11127.1 (3)
C20—C19—C24117.7 (3)C12—N4—C14105.9 (3)
C20—C19—C18120.8 (3)C12—N4—Ag1126.4 (2)
C24—C19—C18121.4 (3)C14—N4—Ag1127.3 (2)
C19—C20—C21121.3 (3)C17—N5—C15105.4 (3)
C19—C20—H20119.4C17—N5—Ag1130.1 (3)
C21—C20—H20119.4C15—N5—Ag1124.5 (2)
C22—C21—C20120.7 (3)C17—N6—C16107.0 (3)
C22—C21—H21119.6C17—N6—C18125.5 (3)
C20—C21—H21119.6C16—N6—C18126.9 (3)
C21—C22—C23118.5 (3)C27—N7—C28106.8 (3)
C21—C22—C25121.3 (3)C27—N7—C25125.2 (3)
C23—C22—C25120.2 (3)C28—N7—C25128.0 (3)
C24—C23—C22120.6 (3)C27—N8—C26106.1 (3)
C24—C23—H23119.7C27—N8—Ag2i126.6 (2)
C22—C23—H23119.7C26—N8—Ag2i125.8 (2)
C23—C24—C19121.2 (3)N10—N9—C33114.3 (2)
C23—C24—H24119.4N9—N10—C36114.8 (2)
C19—C24—H24119.4N4—Ag1—N5170.34 (10)
N7—C25—C22112.5 (2)N1—Ag2—N8ii160.25 (10)
N7—C25—H25A109.1HW11—O1W—HW12105.1
C22—C25—H25A109.1HW21—O2W—HW22104.9
Symmetry codes: (i) x+2, y1, z1; (ii) x2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2Wiii0.852.112.879 (5)151
O1W—HW11···O3iii0.852.022.828 (4)159
O2W—HW21···O40.851.932.758 (4)163
O2W—HW22···O4iv0.852.182.909 (6)144
Symmetry codes: (iii) x, y+1, z; (iv) x+3, y1, z.

Experimental details

Crystal data
Chemical formula[Ag2(C14H14N4)2](C14H8N2O4)·2H2O
Mr996.58
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4944 (6), 9.7810 (7), 24.4049 (9)
α, β, γ (°)84.111 (4), 88.765 (4), 63.245 (7)
V3)2012.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.30 × 0.24 × 0.21
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.42, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
13525, 8145, 5125
Rint0.018
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.02
No. of reflections8145
No. of parameters541
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.38, 1.04

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2Wi0.852.112.879 (5)151
O1W—HW11···O3i0.852.022.828 (4)159
O2W—HW21···O40.851.932.758 (4)163
O2W—HW22···O4ii0.852.182.909 (6)144
Symmetry codes: (i) x, y+1, z; (ii) x+3, y1, z.
 

Acknowledgements

The author thanks Changchun University of Technology for support.

References

First citationChen, Z.-F., Zhang, Z.-L., Tan, Y.-H., Tang, Y.-Z., Fun, H.-K., Zhou, Z.-Y., Abrahams, B. F. & Liang, H. (2008). CrystEngComm, 10, 217–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-Q., Yuan, D.-Q., Zhou, Y.-F., Wu, M.-Y. & Hong, M.-C. (2005). Acta Cryst. E61, o1294–o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds