organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexane-1,6-diaminium bis­­[3,4,5,6-tetra­chloro-2-(meth­­oxy­carbon­yl)benzoate]

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 13 February 2011; accepted 6 March 2011; online 15 March 2011)

In the anion of the title salt, C6H18N22+·2C9H3Cl4O4, the meth­oxy­carbonyl and carboxyl groups are aligned at dihedral angles of 71.0 (3) and 100.9 (3)°, respectively, with the aromatic ring. The asymmetric unit contains half a cation and one anion. In the crystal, inter­molecular N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds link the components into a three-dimensional network.

Related literature

For related structures, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o200.]); Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C6H18N22+·2C9H3Cl4O4

  • Mr = 752.05

  • Monoclinic, C 2/c

  • a = 31.236 (3) Å

  • b = 5.8911 (4) Å

  • c = 18.3762 (18) Å

  • β = 107.118 (1)°

  • V = 3231.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 298 K

  • 0.37 × 0.28 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 0.897

  • 7618 measured reflections

  • 2829 independent reflections

  • 1817 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.154

  • S = 1.04

  • 2829 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.89 1.90 2.770 (5) 165
N1—H1B⋯O3i 0.89 1.87 2.757 (5) 171
C9—H9B⋯Cl4ii 0.96 2.75 3.677 (9) 161
C10—H10B⋯O2 0.97 2.58 3.208 (7) 122
Symmetry codes: (i) x, y-1, z; (ii) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the present work, the reaction of 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoic acid and hexane-1,6-diamine in methanol is expected to yield 4,5,6,7-tetrachloro-2-[6-(4,5,6,7- tetrachloro-1,3-dioxoisoindolin-2-yl)hexyl]isoindoline-1,3-dione. However, the product is hexane-1,6-diaminium 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate (Scheme I, Fig. 1), this may be the reason of a shorter time and cooler temperature in the reaction. The asymmetric unit of the title compound (I) contains half a hexane-1,6-diaminium cation and one 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate anion (Fig. 1). In the anion of the title salt, the methoxycarbonyl and carboxyl groups are aligned at dihedral angles of 71.0 (3) and 100.9 (3) °, respectively, with the aromatic ring. The bond lengths and angles are in agreement with those in ethylammonium 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate methanol solvate (Li, 2011) and in ethane-1,2-diammonium bis(2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate) methanol solvate (Liang, 2008). In the crystal structure, intermolecular N—H···O, C—H···Cl and C—H···O hydrogen bonds link the components of the structure into three-dimensional network (Fig. 2 and Table 1).

Related literature top

For related structures, see: Li (2011); Liang (2008).

Experimental top

A mixture of 4,5,6,7-tetrachloroisobenzofuran-1,3-dione (2.86 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. And then hexane-1,6-diamine (0.58 g, 0.005 mol) was added to the above solution, being mixed round for 20 min at room temperature. And then the solution was kept at room temperature for 6 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.96–0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, N, methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along b axis. Hydrogen bonds are indicated by dashed lines.
Hexane-1,6-diaminium bis[3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate] top
Crystal data top
C6H18N22+·2C9H3Cl4O4F(000) = 1528
Mr = 752.05Dx = 1.546 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 31.236 (3) ÅCell parameters from 2053 reflections
b = 5.8911 (4) Åθ = 2.7–26.1°
c = 18.3762 (18) ŵ = 0.74 mm1
β = 107.118 (1)°T = 298 K
V = 3231.7 (5) Å3Block, colorless
Z = 40.37 × 0.28 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2829 independent reflections
Radiation source: fine-focus sealed tube1817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 3629
Tmin = 0.770, Tmax = 0.897k = 67
7618 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0489P)2 + 12.9951P]
where P = (Fo2 + 2Fc2)/3
2829 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C6H18N22+·2C9H3Cl4O4V = 3231.7 (5) Å3
Mr = 752.05Z = 4
Monoclinic, C2/cMo Kα radiation
a = 31.236 (3) ŵ = 0.74 mm1
b = 5.8911 (4) ÅT = 298 K
c = 18.3762 (18) Å0.37 × 0.28 × 0.15 mm
β = 107.118 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2829 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1817 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.897Rint = 0.037
7618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0489P)2 + 12.9951P]
where P = (Fo2 + 2Fc2)/3
2829 reflectionsΔρmax = 0.51 e Å3
192 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16469 (4)0.8320 (3)0.02548 (7)0.0738 (5)
Cl20.10240 (5)0.4349 (3)0.04960 (8)0.0845 (5)
Cl30.03378 (5)0.2434 (2)0.02771 (10)0.0912 (6)
Cl40.02472 (5)0.4714 (3)0.17526 (10)0.0918 (6)
N10.21033 (11)0.4754 (6)0.26915 (19)0.0485 (9)
H1A0.20120.61310.25120.073*
H1B0.19180.37150.24170.073*
H1C0.23790.45100.26620.073*
O10.06089 (14)0.9497 (7)0.2473 (2)0.0906 (13)
O20.12386 (14)0.7821 (10)0.3033 (2)0.1124 (18)
O30.14859 (11)1.1892 (6)0.1748 (2)0.0769 (12)
O40.19786 (10)0.9160 (5)0.21430 (17)0.0537 (8)
C10.09506 (15)0.8248 (9)0.2481 (3)0.0558 (12)
C20.16017 (13)0.9909 (7)0.1788 (2)0.0400 (10)
C30.09403 (13)0.7360 (7)0.1712 (2)0.0432 (10)
C40.12605 (12)0.8139 (6)0.1380 (2)0.0373 (9)
C50.12705 (13)0.7243 (7)0.0688 (2)0.0458 (10)
C60.09835 (14)0.5502 (7)0.0339 (3)0.0511 (12)
C70.06762 (15)0.4685 (8)0.0678 (3)0.0559 (13)
C80.06449 (14)0.5651 (8)0.1346 (3)0.0542 (12)
C90.0599 (3)1.0419 (13)0.3203 (3)0.122 (3)
H9A0.06050.91970.35520.184*
H9B0.03301.12900.31340.184*
H9C0.08551.13770.34050.184*
C100.21042 (15)0.4596 (8)0.3498 (3)0.0531 (12)
H10A0.22530.32100.37220.064*
H10B0.17980.45470.35230.064*
C110.23434 (15)0.6622 (8)0.3940 (2)0.0498 (11)
H11A0.26450.66930.38940.060*
H11B0.21880.79970.37180.060*
C120.23681 (14)0.6522 (8)0.4771 (2)0.0517 (11)
H12A0.25070.51020.49830.062*
H12B0.20660.65410.48160.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0691 (9)0.0891 (11)0.0710 (8)0.0250 (7)0.0329 (7)0.0234 (7)
Cl20.0825 (10)0.0811 (11)0.0783 (9)0.0055 (8)0.0057 (8)0.0407 (8)
Cl30.0688 (9)0.0500 (8)0.1278 (13)0.0243 (7)0.0131 (9)0.0073 (8)
Cl40.0664 (9)0.0909 (12)0.1210 (13)0.0240 (8)0.0322 (9)0.0288 (10)
N10.044 (2)0.033 (2)0.060 (2)0.0003 (16)0.0021 (17)0.0084 (17)
O10.112 (3)0.090 (3)0.067 (2)0.053 (3)0.021 (2)0.007 (2)
O20.094 (3)0.181 (5)0.058 (2)0.071 (3)0.016 (2)0.010 (3)
O30.063 (2)0.035 (2)0.105 (3)0.0031 (16)0.019 (2)0.0100 (18)
O40.0404 (17)0.0431 (18)0.0658 (19)0.0031 (14)0.0025 (15)0.0026 (15)
C10.041 (3)0.066 (3)0.061 (3)0.012 (2)0.015 (2)0.018 (3)
C20.038 (2)0.035 (3)0.043 (2)0.0057 (19)0.0049 (18)0.0034 (19)
C30.034 (2)0.037 (2)0.054 (3)0.0065 (19)0.0067 (19)0.010 (2)
C40.031 (2)0.027 (2)0.047 (2)0.0021 (16)0.0018 (17)0.0004 (18)
C50.037 (2)0.041 (3)0.055 (3)0.0035 (19)0.007 (2)0.008 (2)
C60.041 (2)0.036 (3)0.065 (3)0.002 (2)0.002 (2)0.011 (2)
C70.040 (3)0.036 (3)0.075 (3)0.004 (2)0.008 (2)0.003 (2)
C80.035 (2)0.045 (3)0.076 (3)0.003 (2)0.007 (2)0.019 (3)
C90.171 (7)0.127 (6)0.072 (4)0.084 (6)0.042 (4)0.010 (4)
C100.048 (3)0.046 (3)0.063 (3)0.001 (2)0.012 (2)0.003 (2)
C110.049 (3)0.042 (3)0.053 (3)0.002 (2)0.007 (2)0.007 (2)
C120.045 (3)0.052 (3)0.057 (3)0.001 (2)0.014 (2)0.007 (2)
Geometric parameters (Å, º) top
Cl1—C51.723 (5)C4—C51.386 (6)
Cl2—C61.716 (5)C5—C61.389 (6)
Cl3—C71.721 (4)C6—C71.376 (7)
Cl4—C81.719 (5)C7—C81.382 (7)
N1—C101.484 (5)C9—H9A0.9600
N1—H1A0.8900C9—H9B0.9600
N1—H1B0.8900C9—H9C0.9600
N1—H1C0.8900C10—C111.511 (6)
O1—C11.293 (5)C10—H10A0.9700
O1—C91.456 (7)C10—H10B0.9700
O2—C11.168 (5)C11—C121.507 (6)
O3—C21.218 (5)C11—H11A0.9700
O4—C21.247 (5)C11—H11B0.9700
C1—C31.499 (6)C12—C12i1.519 (9)
C2—C41.521 (5)C12—H12A0.9700
C3—C41.394 (6)C12—H12B0.9700
C3—C81.397 (6)
C10—N1—H1A109.5C7—C8—C3121.0 (4)
C10—N1—H1B109.5C7—C8—Cl4120.2 (4)
H1A—N1—H1B109.5C3—C8—Cl4118.8 (4)
C10—N1—H1C109.5O1—C9—H9A109.5
H1A—N1—H1C109.5O1—C9—H9B109.5
H1B—N1—H1C109.5H9A—C9—H9B109.5
C1—O1—C9116.3 (4)O1—C9—H9C109.5
O2—C1—O1123.7 (5)H9A—C9—H9C109.5
O2—C1—C3122.7 (4)H9B—C9—H9C109.5
O1—C1—C3113.6 (4)N1—C10—C11110.0 (4)
O3—C2—O4126.1 (4)N1—C10—H10A109.7
O3—C2—C4118.3 (4)C11—C10—H10A109.7
O4—C2—C4115.6 (4)N1—C10—H10B109.7
C4—C3—C8119.0 (4)C11—C10—H10B109.7
C4—C3—C1118.6 (4)H10A—C10—H10B108.2
C8—C3—C1122.2 (4)C12—C11—C10112.5 (4)
C5—C4—C3119.3 (4)C12—C11—H11A109.1
C5—C4—C2120.8 (4)C10—C11—H11A109.1
C3—C4—C2120.0 (4)C12—C11—H11B109.1
C4—C5—C6121.3 (4)C10—C11—H11B109.1
C4—C5—Cl1119.1 (3)H11A—C11—H11B107.8
C6—C5—Cl1119.6 (3)C11—C12—C12i113.0 (5)
C7—C6—C5119.4 (4)C11—C12—H12A109.0
C7—C6—Cl2120.7 (3)C12i—C12—H12A109.0
C5—C6—Cl2119.9 (4)C11—C12—H12B109.0
C6—C7—C8120.0 (4)C12i—C12—H12B109.0
C6—C7—Cl3119.9 (4)H12A—C12—H12B107.8
C8—C7—Cl3120.1 (4)
C9—O1—C1—O21.0 (9)C4—C5—C6—C71.5 (6)
C9—O1—C1—C3179.9 (5)Cl1—C5—C6—C7178.4 (3)
O2—C1—C3—C468.0 (7)C4—C5—C6—Cl2177.0 (3)
O1—C1—C3—C4112.9 (5)Cl1—C5—C6—Cl23.1 (5)
O2—C1—C3—C8106.7 (6)C5—C6—C7—C82.3 (6)
O1—C1—C3—C872.4 (6)Cl2—C6—C7—C8179.3 (3)
C8—C3—C4—C51.6 (6)C5—C6—C7—Cl3176.7 (3)
C1—C3—C4—C5176.5 (4)Cl2—C6—C7—Cl31.7 (5)
C8—C3—C4—C2176.8 (4)C6—C7—C8—C34.1 (7)
C1—C3—C4—C21.8 (5)Cl3—C7—C8—C3174.9 (3)
O3—C2—C4—C5101.7 (5)C6—C7—C8—Cl4177.5 (3)
O4—C2—C4—C579.0 (5)Cl3—C7—C8—Cl43.6 (5)
O3—C2—C4—C379.9 (5)C4—C3—C8—C72.1 (6)
O4—C2—C4—C399.4 (4)C1—C3—C8—C7172.6 (4)
C3—C4—C5—C63.4 (6)C4—C3—C8—Cl4179.4 (3)
C2—C4—C5—C6174.9 (4)C1—C3—C8—Cl45.9 (6)
C3—C4—C5—Cl1176.5 (3)N1—C10—C11—C12178.2 (4)
C2—C4—C5—Cl15.2 (5)C10—C11—C12—C12i176.6 (5)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.891.902.770 (5)165
N1—H1B···O3ii0.891.872.757 (5)171
C9—H9B···Cl4iii0.962.753.677 (9)161
C10—H10B···O20.972.583.208 (7)122
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H18N22+·2C9H3Cl4O4
Mr752.05
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)31.236 (3), 5.8911 (4), 18.3762 (18)
β (°) 107.118 (1)
V3)3231.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.37 × 0.28 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.770, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
7618, 2829, 1817
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.154, 1.04
No. of reflections2829
No. of parameters192
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0489P)2 + 12.9951P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.891.902.770 (5)165
N1—H1B···O3i0.891.872.757 (5)171
C9—H9B···Cl4ii0.962.753.677 (9)161
C10—H10B···O20.972.583.208 (7)122
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1/2.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o200.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds