organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-2,4,6-tri­iodo­isophthalic acid–4,4′-bi­pyridine N,N′-dioxide–water (1/1/1)

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 February 2011; accepted 25 February 2011; online 5 March 2011)

The aromatic rings of the N,N′-dioxide molecule in the title compound, C8H4NI3O4·C10H8N2O2·H2O, are twisted by 14.0 (2)°. The –CO2H substituents of the 5-amino-2,4,6-triiodo­isophthalic acid are twisted by 83.0 (2) and 86.5 (2)° out of the plane of the aromatic ring. In the crystal, the three components are linked by O—H⋯O hydrogen bonds into a three-dimensional network. An N—H⋯O inter­action also occurs. One of the amino H atom is not involved in hydrogen bonding.

Related literature

For the structure of the monohydrated carb­oxy­lic acid, see: Beck & Sheldrick (2008[Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.]). For the 4,4′-bipyridinium 5-amino-2,4,6-triiodo­isophthalate co-crystal of carb­oxy­lic acid, see: Zhang et al. (2010[Zhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, o3165.]).

[Scheme 1]

Experimental

Crystal data
  • C8H4NI3O4·C10H8N2O2·H2O

  • Mr = 765.02

  • Monoclinic, P 21 /n

  • a = 7.5000 (2) Å

  • b = 17.0808 (4) Å

  • c = 16.523 (3) Å

  • β = 94.349 (2)°

  • V = 2110.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.49 mm−1

  • T = 100 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.467, Tmax = 0.807

  • 10861 measured reflections

  • 4660 independent reflections

  • 4112 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.04

  • 4660 reflections

  • 304 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.84 (3) 1.64 (3) 2.478 (4) 174 (6)
O3—H3⋯O6ii 0.84 (3) 1.63 (3) 2.465 (4) 170 (7)
O1W—H1w1⋯O2 0.84 (3) 2.30 (3) 3.073 (4) 154 (4)
O1W—H1w2⋯O5iii 0.84 (3) 2.12 (3) 2.945 (4) 167 (5)
N1—H11⋯O1wiv 0.88 (3) 2.20 (3) 2.906 (5) 138 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The attempt at synthesizing the 4,4'-bipyridine adduct of cadmium 5-amino-2,4,6-triiodoisophthalate gave instead a co-crystal having a monoprotonated 4,4'-bipyridinium 5-amino-2,4,6-triiodoisophthalate as one component and a carboxylic acid as the other (Zhang et al., 2010). Replacing the metal ion by a zinc ion, and with 4,4'-bipyridine N,N'-dioxide in place of 4,4'-bipyridine, gave instead the title monohydrated neutral co-crystal, C10H8N2O2.C8H4NI2O4.H2O (Scheme I, Fig. 1). In the N-heterocycle, the rings are twisted by 14.0 (2) °. In the carboxylic acid, the –CO2H substituents are nearly perpendicular to the aromatic ring. The three components are linked by O–H···O hydrogen bonds into a layer structure (Table 1).

Related literature top

For the structure of the monohydrated carboxylic acid, see: Beck & Sheldrick (2008). For the 4,4'-bipyridinium 5-amino-2,4,6-triiodoisophthalate co-crystal of carboxylic acid, see: Zhang et al. (2010).

Experimental top

Zinc nitrate hexahydrate (58 mg, 0.2 mmol), 5-amino-2,4,6-triiodoisophthalic acid (59 mg, 0.1 mmol), 4,4'-bipyridine N,N'-dioxide (56 mg, 0.1 mmol), sodium hydroxide (4 mg, 0.1 mmol) and water (6 ml) were heated ain a 16-ml, Teflon-lined Parr bomb. The bomb was heated at 343 K for 3 days. Greenish-yellow crystals were isolated from the cool mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H = 0.88±0.01, O–H = 0.84±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H8N2O2.C8H4NI3O4.H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
5-Amino-2,4,6-triiodoisophthalic acid–4,4'-bipyridine N,N'-dioxide–water (1/1/1) top
Crystal data top
C8H4NI3O4·C10H8N2O2·H2OF(000) = 1432
Mr = 765.02Dx = 2.408 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5995 reflections
a = 7.5000 (2) Åθ = 2.4–29.2°
b = 17.0808 (4) ŵ = 4.49 mm1
c = 16.523 (3) ÅT = 100 K
β = 94.349 (2)°Prism, yellow
V = 2110.6 (4) Å30.20 × 0.05 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4660 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4112 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1621
Tmin = 0.467, Tmax = 0.807l = 2121
10861 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0304P)2]
where P = (Fo2 + 2Fc2)/3
4660 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.73 e Å3
6 restraintsΔρmin = 0.97 e Å3
Crystal data top
C8H4NI3O4·C10H8N2O2·H2OV = 2110.6 (4) Å3
Mr = 765.02Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5000 (2) ŵ = 4.49 mm1
b = 17.0808 (4) ÅT = 100 K
c = 16.523 (3) Å0.20 × 0.05 × 0.05 mm
β = 94.349 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4660 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4112 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.807Rint = 0.032
10861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0296 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.73 e Å3
4660 reflectionsΔρmin = 0.97 e Å3
304 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.32943 (3)0.507910 (15)0.632563 (14)0.01280 (8)
I20.05617 (3)0.779896 (16)0.826265 (14)0.01348 (8)
I30.05801 (3)0.802046 (16)0.463723 (14)0.01291 (8)
O10.0967 (4)0.57411 (17)0.81306 (15)0.0145 (6)
O20.3866 (4)0.60594 (16)0.82653 (15)0.0139 (6)
O30.1102 (4)0.59971 (17)0.45040 (15)0.0140 (6)
O40.3967 (4)0.63963 (17)0.46318 (15)0.0158 (6)
O50.3523 (4)0.98110 (17)0.57244 (15)0.0171 (6)
O60.8488 (4)0.46621 (17)0.67957 (15)0.0165 (6)
O1W0.6478 (5)0.49085 (19)0.91589 (18)0.0215 (7)
N10.0344 (5)0.8521 (2)0.64989 (18)0.0164 (8)
N20.4406 (4)0.9148 (2)0.59092 (18)0.0134 (7)
N30.8019 (4)0.5409 (2)0.66729 (18)0.0126 (7)
C10.2386 (5)0.6091 (2)0.7914 (2)0.0111 (8)
C20.2034 (5)0.6574 (2)0.7142 (2)0.0112 (8)
C30.1342 (5)0.7325 (2)0.7169 (2)0.0099 (8)
C40.0991 (5)0.7782 (2)0.6459 (2)0.0109 (8)
C50.1361 (5)0.7429 (2)0.5724 (2)0.0105 (8)
C60.2090 (5)0.6682 (2)0.5683 (2)0.0105 (8)
C70.2412 (5)0.6246 (2)0.6397 (2)0.0098 (8)
C80.2487 (5)0.6338 (2)0.4873 (2)0.0119 (8)
C90.4693 (5)0.8909 (3)0.6689 (2)0.0145 (9)
H90.43140.92250.71160.017*
C100.5527 (6)0.8211 (2)0.6861 (2)0.0149 (9)
H100.57460.80570.74120.018*
C110.6067 (5)0.7718 (2)0.6253 (2)0.0117 (8)
C120.5799 (5)0.8009 (2)0.5456 (2)0.0129 (8)
H12A0.62000.77120.50190.016*
C130.4974 (5)0.8712 (2)0.5301 (2)0.0144 (8)
H130.47980.88940.47570.017*
C140.7350 (5)0.5812 (2)0.7277 (2)0.0123 (8)
H140.72750.55700.77910.015*
C150.6778 (5)0.6564 (2)0.7165 (2)0.0130 (8)
H150.63330.68410.76060.016*
C160.6833 (5)0.6936 (2)0.6412 (2)0.0133 (8)
C170.7574 (5)0.6498 (2)0.5799 (2)0.0127 (8)
H170.76610.67260.52790.015*
C180.8169 (5)0.5751 (2)0.5935 (2)0.0130 (8)
H180.86880.54690.55160.016*
H10.121 (7)0.543 (2)0.852 (2)0.038 (16)*
H30.130 (8)0.582 (3)0.4044 (17)0.06 (2)*
H1W10.563 (5)0.523 (2)0.907 (3)0.031 (15)*
H1W20.694 (6)0.505 (3)0.9614 (14)0.026 (14)*
H110.016 (6)0.877 (2)0.6082 (18)0.023 (13)*
H120.008 (6)0.870 (3)0.6942 (16)0.029 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01590 (14)0.00943 (15)0.01275 (13)0.00111 (10)0.00109 (10)0.00108 (10)
I20.01938 (15)0.01238 (15)0.00890 (12)0.00079 (11)0.00256 (10)0.00099 (10)
I30.01642 (14)0.01286 (15)0.00930 (12)0.00009 (11)0.00009 (10)0.00293 (10)
O10.0152 (15)0.0146 (16)0.0137 (13)0.0024 (12)0.0007 (11)0.0074 (12)
O20.0138 (15)0.0163 (16)0.0112 (12)0.0002 (12)0.0024 (11)0.0021 (12)
O30.0166 (15)0.0146 (16)0.0105 (13)0.0011 (12)0.0015 (11)0.0046 (12)
O40.0153 (15)0.0192 (17)0.0135 (13)0.0012 (13)0.0053 (11)0.0015 (12)
O50.0252 (17)0.0114 (16)0.0140 (13)0.0066 (13)0.0029 (12)0.0030 (12)
O60.0256 (17)0.0105 (15)0.0131 (13)0.0048 (13)0.0001 (12)0.0012 (12)
O1W0.0281 (19)0.0166 (18)0.0185 (15)0.0011 (15)0.0061 (14)0.0044 (13)
N10.025 (2)0.014 (2)0.0102 (16)0.0045 (16)0.0026 (15)0.0014 (15)
N20.0162 (18)0.0109 (19)0.0130 (15)0.0011 (14)0.0001 (13)0.0032 (14)
N30.0123 (17)0.0139 (19)0.0117 (15)0.0012 (14)0.0007 (13)0.0001 (14)
C10.020 (2)0.009 (2)0.0052 (16)0.0004 (17)0.0029 (15)0.0027 (15)
C20.0104 (19)0.012 (2)0.0104 (17)0.0018 (16)0.0024 (14)0.0001 (15)
C30.0112 (19)0.011 (2)0.0080 (16)0.0031 (16)0.0021 (14)0.0052 (15)
C40.0080 (19)0.011 (2)0.0134 (18)0.0018 (16)0.0006 (14)0.0013 (15)
C50.013 (2)0.013 (2)0.0055 (16)0.0021 (16)0.0017 (14)0.0029 (15)
C60.0103 (19)0.011 (2)0.0102 (17)0.0017 (16)0.0004 (14)0.0003 (15)
C70.0083 (19)0.008 (2)0.0134 (17)0.0020 (15)0.0000 (14)0.0006 (15)
C80.018 (2)0.008 (2)0.0098 (17)0.0039 (17)0.0009 (15)0.0059 (15)
C90.016 (2)0.016 (2)0.0114 (17)0.0011 (17)0.0027 (15)0.0044 (16)
C100.021 (2)0.015 (2)0.0082 (17)0.0017 (18)0.0001 (15)0.0001 (16)
C110.0058 (18)0.015 (2)0.0142 (18)0.0047 (16)0.0001 (14)0.0012 (16)
C120.013 (2)0.013 (2)0.0125 (18)0.0043 (17)0.0006 (15)0.0046 (16)
C130.016 (2)0.015 (2)0.0121 (17)0.0024 (18)0.0012 (15)0.0024 (16)
C140.0111 (19)0.017 (2)0.0082 (17)0.0022 (17)0.0008 (14)0.0036 (16)
C150.013 (2)0.013 (2)0.0124 (17)0.0029 (17)0.0011 (15)0.0031 (16)
C160.010 (2)0.017 (2)0.0131 (18)0.0032 (17)0.0002 (15)0.0033 (16)
C170.0102 (19)0.017 (2)0.0106 (17)0.0027 (17)0.0017 (14)0.0011 (16)
C180.0089 (19)0.019 (2)0.0117 (17)0.0011 (17)0.0028 (14)0.0029 (16)
Geometric parameters (Å, º) top
I1—C72.106 (4)C3—C41.417 (5)
I2—C32.103 (4)C4—C51.402 (5)
I3—C52.104 (4)C5—C61.392 (6)
O1—C11.294 (5)C6—C71.400 (5)
O1—H10.84 (3)C6—C81.512 (5)
O2—C11.214 (4)C9—C101.365 (6)
O3—C81.302 (5)C9—H90.9500
O3—H30.84 (3)C10—C111.394 (6)
O4—C81.212 (5)C10—H100.9500
O5—N21.335 (4)C11—C121.407 (5)
O6—N31.335 (4)C11—C161.469 (6)
O1W—H1W10.84 (3)C12—C131.366 (6)
O1W—H1W20.84 (3)C12—H12A0.9500
N1—C41.356 (5)C13—H130.9500
N1—H110.88 (3)C14—C151.362 (6)
N1—H120.88 (3)C14—H140.9500
N2—C131.347 (5)C15—C161.402 (5)
N2—C91.354 (5)C15—H150.9500
N3—C141.341 (5)C16—C171.408 (5)
N3—C181.364 (5)C17—C181.365 (6)
C1—C21.525 (5)C17—H170.9500
C2—C31.386 (5)C18—H180.9500
C2—C71.401 (5)
C1—O1—H1111 (4)O4—C8—O3126.9 (3)
C8—O3—H3113 (4)O4—C8—C6120.4 (4)
H1W1—O1W—H1W2103 (5)O3—C8—C6112.6 (3)
C4—N1—H11124 (3)N2—C9—C10120.0 (4)
C4—N1—H12122 (3)N2—C9—H9120.0
H11—N1—H12108 (4)C10—C9—H9120.0
O5—N2—C13118.6 (3)C9—C10—C11122.0 (4)
O5—N2—C9121.0 (3)C9—C10—H10119.0
C13—N2—C9120.4 (4)C11—C10—H10119.0
O6—N3—C14119.2 (3)C10—C11—C12115.6 (4)
O6—N3—C18120.4 (3)C10—C11—C16123.4 (3)
C14—N3—C18120.4 (4)C12—C11—C16121.0 (3)
O2—C1—O1126.0 (3)C13—C12—C11121.2 (4)
O2—C1—C2121.2 (3)C13—C12—H12A119.4
O1—C1—C2112.8 (3)C11—C12—H12A119.4
C3—C2—C7120.0 (3)N2—C13—C12120.7 (4)
C3—C2—C1121.0 (3)N2—C13—H13119.7
C7—C2—C1119.0 (4)C12—C13—H13119.7
C2—C3—C4121.9 (3)N3—C14—C15121.0 (4)
C2—C3—I2120.9 (3)N3—C14—H14119.5
C4—C3—I2117.0 (3)C15—C14—H14119.5
N1—C4—C5122.5 (3)C14—C15—C16121.2 (4)
N1—C4—C3121.1 (3)C14—C15—H15119.4
C5—C4—C3116.4 (4)C16—C15—H15119.4
C6—C5—C4122.7 (3)C15—C16—C17116.0 (4)
C6—C5—I3119.0 (2)C15—C16—C11122.2 (4)
C4—C5—I3118.2 (3)C17—C16—C11121.7 (3)
C5—C6—C7119.4 (3)C18—C17—C16121.4 (4)
C5—C6—C8120.2 (3)C18—C17—H17119.3
C7—C6—C8120.4 (3)C16—C17—H17119.3
C6—C7—C2119.6 (4)N3—C18—C17119.9 (3)
C6—C7—I1119.4 (3)N3—C18—H18120.0
C2—C7—I1120.9 (3)C17—C18—H18120.0
O2—C1—C2—C397.1 (5)C5—C6—C8—O494.5 (5)
O1—C1—C2—C382.9 (5)C7—C6—C8—O487.0 (5)
O2—C1—C2—C783.2 (5)C5—C6—C8—O385.4 (5)
O1—C1—C2—C796.8 (4)C7—C6—C8—O393.1 (4)
C7—C2—C3—C40.2 (6)O5—N2—C9—C10177.0 (4)
C1—C2—C3—C4179.5 (4)C13—N2—C9—C101.5 (6)
C7—C2—C3—I2174.9 (3)N2—C9—C10—C111.6 (6)
C1—C2—C3—I24.8 (5)C9—C10—C11—C123.9 (6)
C2—C3—C4—N1178.8 (4)C9—C10—C11—C16174.8 (4)
I2—C3—C4—N16.3 (5)C10—C11—C12—C133.4 (6)
C2—C3—C4—C50.8 (6)C16—C11—C12—C13175.4 (4)
I2—C3—C4—C5174.1 (3)O5—N2—C13—C12176.5 (3)
N1—C4—C5—C6177.4 (4)C9—N2—C13—C122.0 (6)
C3—C4—C5—C62.1 (6)C11—C12—C13—N20.6 (6)
N1—C4—C5—I37.7 (5)O6—N3—C14—C15176.9 (3)
C3—C4—C5—I3172.7 (3)C18—N3—C14—C151.2 (6)
C4—C5—C6—C72.5 (6)N3—C14—C15—C161.3 (6)
I3—C5—C6—C7172.3 (3)C14—C15—C16—C172.4 (6)
C4—C5—C6—C8179.0 (4)C14—C15—C16—C11174.0 (4)
I3—C5—C6—C86.2 (5)C10—C11—C16—C1512.1 (6)
C5—C6—C7—C21.4 (6)C12—C11—C16—C15166.5 (4)
C8—C6—C7—C2179.9 (4)C10—C11—C16—C17171.6 (4)
C5—C6—C7—I1174.5 (3)C12—C11—C16—C179.7 (6)
C8—C6—C7—I14.0 (5)C15—C16—C17—C181.1 (6)
C3—C2—C7—C60.1 (6)C11—C16—C17—C18175.4 (4)
C1—C2—C7—C6179.8 (3)O6—N3—C18—C17175.6 (3)
C3—C2—C7—I1175.7 (3)C14—N3—C18—C172.5 (6)
C1—C2—C7—I14.0 (5)C16—C17—C18—N31.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.84 (3)1.64 (3)2.478 (4)174 (6)
O3—H3···O6ii0.84 (3)1.63 (3)2.465 (4)170 (7)
O1W—H1w1···O20.84 (3)2.30 (3)3.073 (4)154 (4)
O1W—H1w2···O5iii0.84 (3)2.12 (3)2.945 (4)167 (5)
N1—H11···O1wiv0.88 (3)2.20 (3)2.906 (5)138 (4)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H4NI3O4·C10H8N2O2·H2O
Mr765.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.5000 (2), 17.0808 (4), 16.523 (3)
β (°) 94.349 (2)
V3)2110.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.49
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.467, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
10861, 4660, 4112
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.04
No. of reflections4660
No. of parameters304
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.97

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.84 (3)1.64 (3)2.478 (4)174 (6)
O3—H3···O6ii0.84 (3)1.63 (3)2.465 (4)170 (7)
O1W—H1w1···O20.84 (3)2.30 (3)3.073 (4)154 (4)
O1W—H1w2···O5iii0.84 (3)2.12 (3)2.945 (4)167 (5)
N1—H11···O1wiv0.88 (3)2.20 (3)2.906 (5)138 (4)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, o3165.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds