organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl­amino-3-(2,4,6-tri­methyl­phen­yl)propan-2-ol

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 February 2011; accepted 28 February 2011; online 5 March 2011)

The methyl­amino­propyl chain in the title compound, C13H21NO, adopts an extended zigzag conformation and the N atom shows a trigonal coordination. The N atom acts as hydrogen-bond acceptor to the hy­droxy group of an adjacent mol­ecule, generating a helical chain running along the b axis. The amino H atom is not involved in hydrogen bonding.

Related literature

For background to the synthesis: see: Yadigarov et al. (2010[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2010). Russ. J. Org. Chem. 45, 1856-1858.]). For the structure of 1-(piperidin-1-yl)-3-(2,4,6-trimethyl­phen­yl)propan-2-ol, see: Maharramov et al. (2011[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o739.]).

[Scheme 1]

Experimental

Crystal data
  • C13H21NO

  • Mr = 207.31

  • Monoclinic, P 21 /c

  • a = 14.408 (1) Å

  • b = 5.8150 (4) Å

  • c = 14.4503 (10) Å

  • β = 91.371 (1)°

  • V = 1210.34 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • 9964 measured reflections

  • 2775 independent reflections

  • 2384 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.04

  • 2775 reflections

  • 148 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.87 (1) 1.93 (1) 2.789 (1) 173 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent study reported the reaction of 1-chloro-3-(2,4,6-trimethylphenyl)propan-2-one and primary amines. The chlorine atom in the α-chloro ketone is not replaced directly by the amino RNH– group; the intermediate product undergoes a Favorskii rearrangement that furnishes a compound having two methylene groups between the aromatic system and the amido unit (Yadigarov et al., 2010). A recent study used cyclic secondary amine as the amino reactant in the synthesis of a compound having a formulation similar to that of tolperisone (a piperidine derivative that is commercially used as a muscle relaxant) (Maharramov et al. 2011). The present study uses the methylamine to yield the C13H21NO molecule (Scheme I). The methylaminopropyl chain of C13H27NO adopts an extended zigzag conformation and the N atom shows trigonal coordination (Fig. 1). The N atom acts as hydrogen-bond acceptor to the hydroxy group of an adjacent molecule to generate a helical chain running along the b-axis of the monoclinic unit cell.

Related literature top

For background to the synthesis: see: Yadigarov et al. (2010). For the structure of 1-(piperidin-1-yl)-3-(2,4,6-trimethylphenyl)propan-2-ol, see: Maharramov et al. (2011).

Experimental top

1-Chloro-3-(2,4,6-trimethylphenyl)propan-2-one (1 mol) and piperidine (1 mmol) were stirred in water for 18 h at 53 K. The water was decanted and the oil was distilled in vacuum. The distillate was a liquid; the liquid crystallized after 6 months; yield 70%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 1.00 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation.

The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 and N–H 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C13H21NO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1-Methylamino-3-(2,4,6-trimethylphenyl)propan-2-ol top
Crystal data top
C13H21NOF(000) = 456
Mr = 207.31Dx = 1.138 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4648 reflections
a = 14.408 (1) Åθ = 2.8–28.3°
b = 5.8150 (4) ŵ = 0.07 mm1
c = 14.4503 (10) ÅT = 100 K
β = 91.371 (1)°Block, colorless
V = 1210.34 (14) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2384 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1818
9964 measured reflectionsk = 77
2775 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3427P]
where P = (Fo2 + 2Fc2)/3
2775 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H21NOV = 1210.34 (14) Å3
Mr = 207.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.408 (1) ŵ = 0.07 mm1
b = 5.8150 (4) ÅT = 100 K
c = 14.4503 (10) Å0.30 × 0.20 × 0.20 mm
β = 91.371 (1)°
Data collection top
Bruker APEXII
diffractometer
2384 reflections with I > 2σ(I)
9964 measured reflectionsRint = 0.019
2775 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
2775 reflectionsΔρmin = 0.15 e Å3
148 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40834 (5)0.62853 (13)0.68021 (5)0.02485 (19)
H10.4176 (12)0.690 (3)0.7345 (8)0.054 (5)*
N10.54856 (6)0.29883 (16)0.64351 (6)0.0236 (2)
H20.5558 (9)0.4495 (15)0.6437 (9)0.032 (4)*
C10.60577 (8)0.1994 (2)0.57080 (8)0.0292 (3)
H1A0.67150.22780.58560.044*
H1B0.58930.27090.51120.044*
H1C0.59470.03340.56710.044*
C20.44967 (7)0.25622 (18)0.62563 (7)0.0240 (2)
H2A0.43690.08980.63200.029*
H2B0.43320.30180.56130.029*
C30.39001 (7)0.38978 (18)0.69225 (7)0.0222 (2)
H30.40730.34460.75720.027*
C40.28756 (7)0.3311 (2)0.67318 (8)0.0265 (2)
H4A0.27250.36600.60750.032*
H4B0.27920.16360.68200.032*
C50.21865 (7)0.45598 (19)0.73277 (7)0.0233 (2)
C60.19897 (7)0.37481 (19)0.82164 (7)0.0246 (2)
C70.13219 (7)0.4868 (2)0.87371 (7)0.0260 (2)
H70.11900.43020.93370.031*
C80.08455 (7)0.6778 (2)0.84056 (8)0.0261 (2)
C90.10519 (8)0.75788 (19)0.75269 (8)0.0266 (2)
H90.07340.88910.72890.032*
C100.17130 (7)0.65081 (19)0.69854 (7)0.0246 (2)
C110.18859 (9)0.7448 (2)0.60308 (8)0.0316 (3)
H11A0.15540.89070.59490.047*
H11B0.16640.63440.55640.047*
H11C0.25530.77040.59600.047*
C120.01217 (8)0.7968 (2)0.89726 (9)0.0340 (3)
H12A0.01110.72770.95910.051*
H12B0.04890.77950.86680.051*
H12C0.02740.96060.90280.051*
C130.24826 (8)0.1699 (2)0.86386 (8)0.0303 (3)
H13A0.21440.11660.91790.045*
H13B0.31150.21390.88310.045*
H13C0.25090.04590.81800.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0301 (4)0.0223 (4)0.0221 (4)0.0012 (3)0.0007 (3)0.0008 (3)
N10.0252 (5)0.0231 (5)0.0225 (4)0.0006 (4)0.0033 (3)0.0003 (3)
C10.0308 (6)0.0302 (6)0.0268 (5)0.0043 (5)0.0060 (4)0.0012 (4)
C20.0263 (5)0.0241 (5)0.0217 (5)0.0004 (4)0.0004 (4)0.0024 (4)
C30.0242 (5)0.0218 (5)0.0206 (5)0.0002 (4)0.0000 (4)0.0008 (4)
C40.0254 (5)0.0274 (5)0.0267 (5)0.0013 (4)0.0003 (4)0.0061 (4)
C50.0199 (5)0.0254 (5)0.0245 (5)0.0033 (4)0.0018 (4)0.0045 (4)
C60.0211 (5)0.0252 (5)0.0273 (5)0.0039 (4)0.0028 (4)0.0009 (4)
C70.0222 (5)0.0323 (6)0.0235 (5)0.0045 (4)0.0001 (4)0.0000 (4)
C80.0197 (5)0.0316 (6)0.0270 (5)0.0020 (4)0.0011 (4)0.0060 (4)
C90.0237 (5)0.0278 (5)0.0282 (5)0.0013 (4)0.0045 (4)0.0011 (4)
C100.0236 (5)0.0280 (5)0.0221 (5)0.0029 (4)0.0033 (4)0.0027 (4)
C110.0339 (6)0.0369 (6)0.0240 (5)0.0013 (5)0.0023 (4)0.0015 (5)
C120.0267 (6)0.0412 (7)0.0342 (6)0.0045 (5)0.0030 (5)0.0061 (5)
C130.0285 (6)0.0284 (6)0.0339 (6)0.0016 (4)0.0003 (5)0.0047 (5)
Geometric parameters (Å, º) top
O1—C31.4247 (13)C6—C71.3966 (15)
O1—H10.870 (9)C6—C131.5087 (16)
N1—C21.4632 (14)C7—C81.3854 (16)
N1—C11.4693 (14)C7—H70.9500
N1—H20.882 (9)C8—C91.3912 (16)
C1—H1A0.9800C8—C121.5094 (15)
C1—H1B0.9800C9—C101.3939 (15)
C1—H1C0.9800C9—H90.9500
C2—C31.5193 (14)C10—C111.5100 (15)
C2—H2A0.9900C11—H11A0.9800
C2—H2B0.9900C11—H11B0.9800
C3—C41.5334 (14)C11—H11C0.9800
C3—H31.0000C12—H12A0.9800
C4—C51.5149 (15)C12—H12B0.9800
C4—H4A0.9900C12—H12C0.9800
C4—H4B0.9900C13—H13A0.9800
C5—C61.4036 (15)C13—H13B0.9800
C5—C101.4062 (15)C13—H13C0.9800
C3—O1—H1108.4 (11)C7—C6—C13118.31 (10)
C2—N1—C1111.57 (9)C5—C6—C13122.15 (10)
C2—N1—H2106.4 (9)C8—C7—C6121.98 (10)
C1—N1—H2109.0 (9)C8—C7—H7119.0
N1—C1—H1A109.5C6—C7—H7119.0
N1—C1—H1B109.5C7—C8—C9117.96 (10)
H1A—C1—H1B109.5C7—C8—C12121.53 (10)
N1—C1—H1C109.5C9—C8—C12120.51 (11)
H1A—C1—H1C109.5C8—C9—C10121.79 (10)
H1B—C1—H1C109.5C8—C9—H9119.1
N1—C2—C3111.40 (8)C10—C9—H9119.1
N1—C2—H2A109.3C9—C10—C5119.65 (10)
C3—C2—H2A109.3C9—C10—C11118.75 (10)
N1—C2—H2B109.3C5—C10—C11121.59 (10)
C3—C2—H2B109.3C10—C11—H11A109.5
H2A—C2—H2B108.0C10—C11—H11B109.5
O1—C3—C2108.14 (8)H11A—C11—H11B109.5
O1—C3—C4112.04 (9)C10—C11—H11C109.5
C2—C3—C4109.23 (8)H11A—C11—H11C109.5
O1—C3—H3109.1H11B—C11—H11C109.5
C2—C3—H3109.1C8—C12—H12A109.5
C4—C3—H3109.1C8—C12—H12B109.5
C5—C4—C3115.63 (9)H12A—C12—H12B109.5
C5—C4—H4A108.4C8—C12—H12C109.5
C3—C4—H4A108.4H12A—C12—H12C109.5
C5—C4—H4B108.4H12B—C12—H12C109.5
C3—C4—H4B108.4C6—C13—H13A109.5
H4A—C4—H4B107.4C6—C13—H13B109.5
C6—C5—C10119.07 (10)H13A—C13—H13B109.5
C6—C5—C4120.56 (10)C6—C13—H13C109.5
C10—C5—C4120.34 (10)H13A—C13—H13C109.5
C7—C6—C5119.54 (10)H13B—C13—H13C109.5
C1—N1—C2—C3171.17 (9)C13—C6—C7—C8179.21 (10)
N1—C2—C3—O160.20 (11)C6—C7—C8—C90.18 (16)
N1—C2—C3—C4177.63 (9)C6—C7—C8—C12179.70 (10)
O1—C3—C4—C558.72 (12)C7—C8—C9—C100.23 (16)
C2—C3—C4—C5178.53 (9)C12—C8—C9—C10179.64 (10)
C3—C4—C5—C682.99 (12)C8—C9—C10—C50.23 (16)
C3—C4—C5—C1099.05 (12)C8—C9—C10—C11178.81 (10)
C10—C5—C6—C70.81 (15)C6—C5—C10—C90.75 (15)
C4—C5—C6—C7177.18 (9)C4—C5—C10—C9177.24 (9)
C10—C5—C6—C13178.73 (10)C6—C5—C10—C11179.29 (10)
C4—C5—C6—C133.28 (15)C4—C5—C10—C111.30 (15)
C5—C6—C7—C80.35 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.87 (1)1.93 (1)2.789 (1)173 (2)
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H21NO
Mr207.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.408 (1), 5.8150 (4), 14.4503 (10)
β (°) 91.371 (1)
V3)1210.34 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9964, 2775, 2384
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.04
No. of reflections2775
No. of parameters148
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.87 (1)1.925 (9)2.789 (1)173 (2)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank Baku State University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2010). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds