organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzoyl-1,5-di­methyl-1H-1,5-benzodiazepine-2,4(3H,5H)-dione

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bService Commun Rayons-X FR2599, Université Paul Sabatier, Bâtiment 2R1, 118 route de Narbonne, Toulouse, France, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 March 2011; accepted 7 March 2011; online 12 March 2011)

The seven-membered ring of the title compound, C18H16N2O3, adopts a boat-shaped conformation (with the C atoms of the fused ring as the stern and the methine C atom as the prow). The substituent at the 3-position occupies an axial position, and the aromatic ring of the substituent is arched over the seven-membered ring in a parasol-like manner, the dihedral angle between the phenyl­ene and phenyl rings being 28.7 (1)°.

Related literature

For the crystal structure of the 3,3-dimethyl substituted deriv­ative, see: Dardouri et al. (2011[Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o783.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O3

  • Mr = 308.33

  • Monoclinic, P 21 /n

  • a = 7.7827 (1) Å

  • b = 23.7595 (4) Å

  • c = 8.6315 (2) Å

  • β = 105.614 (1)°

  • V = 1537.18 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.22 × 0.12 × 0.04 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 18802 measured reflections

  • 4592 independent reflections

  • 3089 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.01

  • 4592 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The methylene part of 1,5-dimethyl-1,5-benzodiazepine-2,4-dione is relatively acidic, and one proton can be abstracted by using potassium t-butoxide; the resulting carbanion can undergo a nucleophlilic substitution with an alkyl halide to form 3-substituted derivatives. A previous study reported the crystal structure of the 3,3-dimethyl-substituted derivative, which was synthesized by a slight variation of the synthetic route (Dardouri et al., 2011). The title compound was obtained by using benzoyl chloride as reactant. The seven-membered ring of C18H16N2O3 adopts a boat-shaped conformation (with the C atoms of the fused-ring as the stern and the methine C atom as the prow) (Scheme I, Fig. 1). The substituent at the 3-position occupies an axial position. The unfavorable the 3-position forces the phenyl ring to arch over the phenylene ring of the fused-ring in a parasol-like manner [the dihedral angle between the two rings is 28.7 (1) °]. The distance between the two centroids is 4.225 Å (Fig. 2). Severe strain is also evident from the non-linearity of the benzoyl C6H5C(O)– portion of the molecule.

Related literature top

For the crystal structure of the 3,3-dimethyl substituted derivative, see: Dardouri et al. (2011).

Experimental top

To a solution of potassium t-butoxide (0.42 g, 3.6 mmol) in DMF (15 ml) was added 1,5-dimethyl-1,5-benzodiazepine-2,4-dione (0.50 g, 2.4 mmol) and benzoyl chloride (0.33 ml, 2.88 mmol). Stirring was continued for 24 h. The reaction was monitored by thin layer chromatography. The mixture was filtered; slow evaporation of the solvent gave colorless crystals.

Refinement top

H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

Omitted from the refinement was the (6 0 6) reflection owing to bad agreement between observed and calculated structure factor.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C18H16N2O3 at the 70% probability level; hydrogen atoms are drawn as arbitrary radius.
[Figure 2] Fig. 2. Van der Waals surfaces of the carbon atoms of the aromatic rings.
3-Benzoyl-1,5-dimethyl-1H-1,5-benzodiazepine-2,4(3H,5H)-dione top
Crystal data top
C18H16N2O3F(000) = 648
Mr = 308.33Dx = 1.332 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4206 reflections
a = 7.7827 (1) Åθ = 2.6–28.3°
b = 23.7595 (4) ŵ = 0.09 mm1
c = 8.6315 (2) ÅT = 295 K
β = 105.614 (1)°Prism, colorless
V = 1537.18 (5) Å30.22 × 0.12 × 0.04 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
3089 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 30.5°, θmin = 2.6°
ϕ and ω scansh = 109
18802 measured reflectionsk = 3330
4592 independent reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.2366P]
where P = (Fo2 + 2Fc2)/3
4592 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H16N2O3V = 1537.18 (5) Å3
Mr = 308.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7827 (1) ŵ = 0.09 mm1
b = 23.7595 (4) ÅT = 295 K
c = 8.6315 (2) Å0.22 × 0.12 × 0.04 mm
β = 105.614 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
3089 reflections with I > 2σ(I)
18802 measured reflectionsRint = 0.038
4592 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
4592 reflectionsΔρmin = 0.22 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.24318 (14)0.44276 (5)0.90455 (13)0.0423 (3)
O20.83292 (13)0.51285 (4)0.61289 (12)0.0311 (2)
O31.09190 (15)0.33492 (5)0.61730 (13)0.0385 (3)
N11.01821 (15)0.38528 (5)0.92487 (13)0.0268 (3)
N20.71073 (14)0.43944 (5)0.71264 (13)0.0245 (2)
C10.85958 (18)0.35496 (6)0.85124 (15)0.0250 (3)
C20.8500 (2)0.29767 (6)0.88450 (18)0.0353 (3)
H20.95050.27930.94670.042*
C30.6934 (3)0.26792 (7)0.82626 (19)0.0428 (4)
H30.68820.23000.85120.051*
C40.5446 (2)0.29455 (7)0.73107 (19)0.0415 (4)
H40.43850.27470.69340.050*
C50.5533 (2)0.35047 (7)0.69189 (17)0.0333 (3)
H50.45360.36780.62500.040*
C60.70996 (17)0.38152 (5)0.75123 (15)0.0237 (3)
C70.5560 (2)0.47429 (7)0.7181 (2)0.0381 (4)
H7A0.59450.51220.74620.057*
H7B0.50210.45940.79720.057*
H7C0.47060.47400.61450.057*
C80.84081 (17)0.46368 (5)0.65773 (15)0.0225 (3)
C91.00564 (16)0.42783 (5)0.66442 (15)0.0231 (3)
H91.08440.45140.62040.028*
C101.10278 (18)0.41905 (6)0.84130 (16)0.0272 (3)
C111.1054 (2)0.37505 (8)1.09563 (17)0.0407 (4)
H11A1.01890.36161.14780.061*
H11B1.15670.40951.14550.061*
H11C1.19760.34741.10530.061*
C120.98410 (18)0.37241 (5)0.56927 (16)0.0246 (3)
C130.84063 (18)0.36688 (5)0.41676 (16)0.0246 (3)
C140.77679 (19)0.41305 (6)0.31835 (16)0.0290 (3)
H140.81990.44890.35030.035*
C150.6493 (2)0.40561 (7)0.17305 (18)0.0370 (4)
H150.60870.43630.10650.044*
C160.5825 (2)0.35255 (8)0.12720 (19)0.0404 (4)
H160.49570.34770.03030.048*
C170.6441 (2)0.30642 (7)0.2249 (2)0.0418 (4)
H170.59810.27080.19380.050*
C180.7740 (2)0.31344 (6)0.36851 (18)0.0335 (3)
H180.81690.28240.43300.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (5)0.0623 (8)0.0383 (6)0.0123 (5)0.0034 (5)0.0014 (5)
O20.0369 (6)0.0235 (5)0.0353 (5)0.0024 (4)0.0137 (4)0.0040 (4)
O30.0413 (6)0.0364 (6)0.0379 (6)0.0173 (5)0.0107 (5)0.0034 (4)
N10.0231 (6)0.0338 (6)0.0230 (5)0.0002 (5)0.0052 (4)0.0028 (4)
N20.0203 (5)0.0269 (6)0.0278 (6)0.0017 (4)0.0093 (4)0.0025 (4)
C10.0277 (7)0.0265 (6)0.0237 (6)0.0017 (5)0.0118 (5)0.0008 (5)
C20.0484 (9)0.0274 (7)0.0357 (8)0.0038 (6)0.0210 (7)0.0055 (6)
C30.0678 (12)0.0260 (7)0.0434 (9)0.0143 (7)0.0303 (9)0.0051 (6)
C40.0504 (10)0.0427 (9)0.0365 (8)0.0250 (8)0.0206 (8)0.0122 (7)
C50.0293 (7)0.0438 (9)0.0276 (7)0.0116 (6)0.0094 (6)0.0047 (6)
C60.0246 (7)0.0259 (6)0.0229 (6)0.0038 (5)0.0106 (5)0.0007 (5)
C70.0279 (8)0.0460 (9)0.0451 (9)0.0127 (6)0.0179 (7)0.0107 (7)
C80.0226 (6)0.0246 (6)0.0200 (6)0.0014 (5)0.0052 (5)0.0009 (5)
C90.0201 (6)0.0250 (6)0.0256 (6)0.0009 (5)0.0087 (5)0.0020 (5)
C100.0209 (6)0.0335 (7)0.0275 (6)0.0002 (5)0.0070 (5)0.0003 (5)
C110.0335 (8)0.0628 (11)0.0243 (7)0.0016 (7)0.0053 (6)0.0088 (7)
C120.0252 (6)0.0251 (6)0.0267 (6)0.0020 (5)0.0122 (5)0.0030 (5)
C130.0260 (7)0.0240 (6)0.0273 (6)0.0021 (5)0.0134 (5)0.0016 (5)
C140.0341 (8)0.0254 (7)0.0282 (7)0.0041 (6)0.0093 (6)0.0007 (5)
C150.0393 (9)0.0431 (9)0.0274 (7)0.0141 (7)0.0070 (6)0.0026 (6)
C160.0312 (8)0.0568 (10)0.0326 (8)0.0029 (7)0.0077 (6)0.0165 (7)
C170.0424 (9)0.0387 (9)0.0473 (9)0.0129 (7)0.0173 (8)0.0181 (7)
C180.0417 (8)0.0252 (7)0.0374 (8)0.0012 (6)0.0171 (7)0.0035 (6)
Geometric parameters (Å, º) top
O1—C101.2199 (17)C7—H7C0.9600
O2—C81.2271 (16)C8—C91.5280 (17)
O3—C121.2173 (16)C9—C101.5247 (18)
N1—C101.3613 (17)C9—C121.5369 (18)
N1—C11.4229 (18)C9—H90.9800
N1—C111.4675 (18)C11—H11A0.9600
N2—C81.3562 (16)C11—H11B0.9600
N2—C61.4163 (17)C11—H11C0.9600
N2—C71.4725 (17)C12—C131.4851 (19)
C1—C21.3974 (19)C13—C181.3922 (19)
C1—C61.3993 (19)C13—C141.3945 (19)
C2—C31.381 (2)C14—C151.385 (2)
C2—H20.9300C14—H140.9300
C3—C41.380 (3)C15—C161.380 (2)
C3—H30.9300C15—H150.9300
C4—C51.377 (2)C16—C171.387 (2)
C4—H40.9300C16—H160.9300
C5—C61.3986 (19)C17—C181.383 (2)
C5—H50.9300C17—H170.9300
C7—H7A0.9600C18—H180.9300
C7—H7B0.9600
C10—N1—C1123.15 (11)C8—C9—C12119.19 (11)
C10—N1—C11118.11 (12)C10—C9—H9105.8
C1—N1—C11118.41 (11)C8—C9—H9105.8
C8—N2—C6123.07 (11)C12—C9—H9105.8
C8—N2—C7117.79 (11)O1—C10—N1122.53 (13)
C6—N2—C7118.91 (11)O1—C10—C9121.87 (12)
C2—C1—C6118.98 (13)N1—C10—C9115.53 (11)
C2—C1—N1119.29 (13)N1—C11—H11A109.5
C6—C1—N1121.68 (12)N1—C11—H11B109.5
C3—C2—C1120.95 (15)H11A—C11—H11B109.5
C3—C2—H2119.5N1—C11—H11C109.5
C1—C2—H2119.5H11A—C11—H11C109.5
C4—C3—C2119.93 (14)H11B—C11—H11C109.5
C4—C3—H3120.0O3—C12—C13121.46 (12)
C2—C3—H3120.0O3—C12—C9118.61 (12)
C3—C4—C5119.98 (14)C13—C12—C9119.82 (11)
C3—C4—H4120.0C18—C13—C14119.49 (13)
C5—C4—H4120.0C18—C13—C12118.46 (12)
C4—C5—C6120.98 (15)C14—C13—C12122.00 (12)
C4—C5—H5119.5C15—C14—C13120.13 (13)
C6—C5—H5119.5C15—C14—H14119.9
C5—C6—C1119.11 (13)C13—C14—H14119.9
C5—C6—N2119.00 (12)C16—C15—C14119.93 (15)
C1—C6—N2121.85 (11)C16—C15—H15120.0
N2—C7—H7A109.5C14—C15—H15120.0
N2—C7—H7B109.5C15—C16—C17120.36 (14)
H7A—C7—H7B109.5C15—C16—H16119.8
N2—C7—H7C109.5C17—C16—H16119.8
H7A—C7—H7C109.5C18—C17—C16119.94 (14)
H7B—C7—H7C109.5C18—C17—H17120.0
O2—C8—N2122.40 (12)C16—C17—H17120.0
O2—C8—C9120.86 (11)C17—C18—C13120.12 (14)
N2—C8—C9116.62 (11)C17—C18—H18119.9
C10—C9—C8107.40 (10)C13—C18—H18119.9
C10—C9—C12111.80 (11)
C10—N1—C1—C2130.65 (14)N2—C8—C9—C1260.87 (15)
C11—N1—C1—C242.59 (18)C1—N1—C10—O1176.50 (13)
C10—N1—C1—C651.95 (18)C11—N1—C10—O13.2 (2)
C11—N1—C1—C6134.80 (14)C1—N1—C10—C96.51 (18)
C6—C1—C2—C33.0 (2)C11—N1—C10—C9179.78 (12)
N1—C1—C2—C3174.49 (13)C8—C9—C10—O1107.48 (15)
C1—C2—C3—C41.3 (2)C12—C9—C10—O1120.01 (14)
C2—C3—C4—C51.2 (2)C8—C9—C10—N169.54 (14)
C3—C4—C5—C62.0 (2)C12—C9—C10—N162.97 (15)
C4—C5—C6—C10.3 (2)C10—C9—C12—O326.52 (16)
C4—C5—C6—N2177.66 (13)C8—C9—C12—O3152.84 (12)
C2—C1—C6—C52.15 (19)C10—C9—C12—C13157.22 (11)
N1—C1—C6—C5175.25 (12)C8—C9—C12—C1330.89 (16)
C2—C1—C6—N2179.97 (12)O3—C12—C13—C1830.37 (19)
N1—C1—C6—N22.63 (19)C9—C12—C13—C18153.48 (12)
C8—N2—C6—C5131.99 (13)O3—C12—C13—C14146.95 (14)
C7—N2—C6—C542.36 (17)C9—C12—C13—C1429.20 (18)
C8—N2—C6—C150.13 (18)C18—C13—C14—C150.6 (2)
C7—N2—C6—C1135.52 (13)C12—C13—C14—C15176.69 (13)
C6—N2—C8—O2174.18 (12)C13—C14—C15—C161.4 (2)
C7—N2—C8—O20.23 (19)C14—C15—C16—C170.9 (2)
C6—N2—C8—C99.73 (17)C15—C16—C17—C180.4 (2)
C7—N2—C8—C9175.85 (12)C16—C17—C18—C131.2 (2)
O2—C8—C9—C10108.64 (13)C14—C13—C18—C170.7 (2)
N2—C8—C9—C1067.51 (14)C12—C13—C18—C17178.09 (13)
O2—C8—C9—C12122.98 (13)

Experimental details

Crystal data
Chemical formulaC18H16N2O3
Mr308.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.7827 (1), 23.7595 (4), 8.6315 (2)
β (°) 105.614 (1)
V3)1537.18 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.12 × 0.04
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18802, 4592, 3089
Rint0.038
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.01
No. of reflections4592
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o783.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds