organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl-2,3-di­hydro-1,2-benzo­thia­zole-1,1,3-trione

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: iukhan@gcu.edu.pk, akkurt@erciyes.edu.tr

(Received 9 March 2011; accepted 10 March 2011; online 15 March 2011)

In the title mol­ecule, C9H9NO3S, the bond lengths and angles fall within normal ranges. All nine ring atoms almost lie in a common plane (r.m.s. deviation 0.021 Å). In the crystal, symmetry-related mol­ecules are linked via C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related literature on benzisothia­zolone-1,1-dioxide derivatives, see: Hu et al. (2004[Hu, Y., Chen, Z. C., Le, Z. G. & Zheng, Q. G. (2004). J. Chem. Res. 4, 276-278.]); Kap-Sun & Nicholas (1998[Kap-Sun, Y. & Nicholas, A. M. (1998). Tetrahedron Lett. 39, 5309-5312.]); Liang et al. (2006[Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902-7910.]); Masashi et al. (1999[Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885-14900.]); Nagasawa et al. (1995[Nagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem. 38, 1865-1871.]). For related structures, see: Hu et al. (2006[Hu, Z.-Q., Si, G.-D., Zhou, K., Yu, G.-P. & Xu, L.-Z. (2006). Acta Cryst. E62, o427-o428.]); Xu et al. (2005[Xu, L.-Z., Huang, Y.-W., Yu, G.-P., Zhang, P.-Y. & Yang, Y.-X. (2005). Acta Cryst. E61, o2123-o2124.]); Wen et al. (2006[Wen, H.-L., Zuo, J.-H., Ding, L., Lai, B.-W. & Liu, C.-B. (2006). Acta Cryst. E62, o5061-o5062.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9NO3S

  • Mr = 211.24

  • Monoclinic, P 21 /n

  • a = 10.4559 (5) Å

  • b = 7.5484 (5) Å

  • c = 12.9408 (7) Å

  • β = 105.863 (2)°

  • V = 982.46 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.19 × 0.18 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 9319 measured reflections

  • 2429 independent reflections

  • 1822 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.144

  • S = 1.08

  • 2429 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.37 3.265 (2) 162
C3—H3⋯O2ii 0.93 2.53 3.295 (3) 140
C8—H8A⋯O3iii 0.97 2.45 3.139 (3) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzisothiazolone-1,1-dioxide is part of a class of heterocycles which has been investigated in pharmaceutical research (Kap-Sun & Nicholas, 1998). 1,2-Benzisothiazole-3-one 1,1-dioxide (saccharin) has been widely incorporated into a variety of biologically active compounds. It has been identified as an important molecular component in various classes of 5-Htla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). In particular, N-substituted derivatives, e.g with N-hydroxy and N-alkyl substituents, have shown important biological activity (Nagasawa et al., 1995). Among N-alkyl derivatives, various synthetic routes have been reported for the synthesis of the title compound involving ionic liquids and free radical mechanisms (Hu et al., 2004; Masashi et al., 1999).

In the molecule of the title compound (Fig. 1), all the bond lengths and bond angles agree with the corresponding values in similar structures containing benzisothiazole group (Hu et al., 2006; Xu et al., 2005; Wen et al., 2006).

Atoms C1–C7, S1, O1 and N1 of the title molecule are essentially coplanar, with a maximum deviation of 0.020 (1) Å for S1. The packing of the molecules is stabilized by intermolecular C—H···O intermolecular hydrogen bonds (Table 1, Fig. 2).

Related literature top

For related literature on benzisothiazolone-1,1-dioxide derivatives, see: Hu et al. (2004); Kap-Sun & Nicholas (1998); Liang et al. (2006); Masashi et al. (1999); Nagasawa et al. (1995). For related structures, see: Hu et al. (2006); Xu et al. (2005); Wen et al. (2006).

Experimental top

Sodium sacharrin (0.5 g, 2.439 mmol) was taken in round bottom flask and 20 ml DMF was added to it. It was kept for stirring at room temperature for 5 minutes then ethyl iodide (0.195 ml, 2.439 mmol) was added to the solution. Then reaction mixture was kept under reflux for 3 h at 333 K and after 3 h the TLC confirmed the completion of reaction. The product was obtained in ice-water, filtered and dried. Dried precipitates were dissolved in methanol for crystallization (yield: 93%).

Refinement top

In the last cycles of the refinement, 3 reflections (1 0 1), (-1 0 1) and (-2 2 2) were eliminated due to being poorly measured in the vicinity of the beam stop. All H atoms were positioned geometrically with C—H = 0.93 - 0.97 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing and hydrogen bonding interactions of the title compound down the b axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-Ethyl-2,3-dihydro-1,2-benzothiazole-1,1,3-trione top
Crystal data top
C9H9NO3SF(000) = 440
Mr = 211.24Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3812 reflections
a = 10.4559 (5) Åθ = 2.7–28.3°
b = 7.5484 (5) ŵ = 0.31 mm1
c = 12.9408 (7) ÅT = 296 K
β = 105.863 (2)°Plate, colourless
V = 982.46 (10) Å30.19 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1822 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.081
Graphite monochromatorθmax = 28.3°, θmin = 3.2°
ϕ and ω scansh = 1313
9319 measured reflectionsk = 1010
2429 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.0563P]
where P = (Fo2 + 2Fc2)/3
2429 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C9H9NO3SV = 982.46 (10) Å3
Mr = 211.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4559 (5) ŵ = 0.31 mm1
b = 7.5484 (5) ÅT = 296 K
c = 12.9408 (7) Å0.19 × 0.18 × 0.09 mm
β = 105.863 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1822 reflections with I > 2σ(I)
9319 measured reflectionsRint = 0.081
2429 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
2429 reflectionsΔρmin = 0.35 e Å3
129 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45672 (5)0.21780 (7)0.19351 (3)0.0544 (2)
O10.27985 (14)0.1334 (2)0.09326 (10)0.0684 (5)
O20.50046 (15)0.0632 (2)0.25648 (10)0.0770 (6)
O30.42257 (17)0.3675 (2)0.24709 (11)0.0771 (6)
N10.33045 (15)0.1647 (2)0.08810 (12)0.0540 (5)
C10.55956 (17)0.2745 (2)0.11296 (13)0.0442 (5)
C20.68739 (19)0.3429 (3)0.14490 (15)0.0568 (6)
C30.74791 (19)0.3782 (3)0.06576 (17)0.0620 (6)
C40.68513 (19)0.3479 (3)0.04052 (16)0.0591 (7)
C50.55651 (19)0.2815 (2)0.07236 (14)0.0515 (6)
C60.49424 (17)0.2447 (2)0.00599 (13)0.0417 (5)
C70.35743 (17)0.1749 (2)0.00979 (13)0.0473 (5)
C80.2068 (2)0.0906 (3)0.10313 (19)0.0704 (8)
C90.0967 (3)0.2234 (3)0.0851 (3)0.0977 (13)
H20.730100.363900.216900.0680*
H30.833800.423800.084500.0740*
H40.729500.372200.092100.0710*
H50.513700.262400.144500.0620*
H8A0.224200.044500.175600.0840*
H8B0.178400.007500.053800.0840*
H9A0.123200.319400.135000.1470*
H9B0.018700.167900.095600.1470*
H9C0.077800.268100.013000.1470*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0641 (3)0.0629 (4)0.0381 (3)0.0102 (2)0.0174 (2)0.0029 (2)
O10.0600 (8)0.0833 (10)0.0532 (8)0.0087 (7)0.0010 (6)0.0090 (7)
O20.0932 (11)0.0822 (10)0.0543 (8)0.0116 (9)0.0179 (7)0.0255 (7)
O30.0937 (11)0.0869 (10)0.0586 (8)0.0168 (9)0.0343 (8)0.0156 (8)
N10.0505 (8)0.0625 (9)0.0515 (8)0.0006 (7)0.0181 (7)0.0040 (7)
C10.0481 (9)0.0458 (9)0.0371 (8)0.0107 (7)0.0092 (7)0.0022 (6)
C20.0524 (10)0.0596 (11)0.0503 (10)0.0075 (8)0.0001 (8)0.0070 (8)
C30.0456 (9)0.0604 (11)0.0789 (13)0.0027 (8)0.0150 (9)0.0019 (10)
C40.0577 (11)0.0601 (11)0.0665 (12)0.0051 (9)0.0287 (9)0.0037 (9)
C50.0611 (11)0.0547 (10)0.0406 (8)0.0067 (8)0.0172 (8)0.0013 (7)
C60.0464 (8)0.0406 (8)0.0372 (8)0.0068 (7)0.0098 (6)0.0015 (6)
C70.0484 (9)0.0475 (9)0.0439 (9)0.0047 (7)0.0092 (7)0.0008 (7)
C80.0610 (12)0.0704 (14)0.0886 (14)0.0035 (10)0.0356 (11)0.0074 (11)
C90.0638 (14)0.0892 (18)0.149 (3)0.0057 (13)0.0440 (17)0.0024 (17)
Geometric parameters (Å, º) top
S1—O21.4252 (15)C5—C61.375 (3)
S1—O31.4214 (16)C6—C71.485 (3)
S1—N11.6673 (16)C8—C91.496 (4)
S1—C11.7432 (18)C2—H20.9300
O1—C71.202 (2)C3—H30.9300
N1—C71.373 (2)C4—H40.9300
N1—C81.470 (3)C5—H50.9300
C1—C21.386 (3)C8—H8A0.9700
C1—C61.384 (2)C8—H8B0.9700
C2—C31.369 (3)C9—H9A0.9600
C3—C41.372 (3)C9—H9B0.9600
C4—C51.388 (3)C9—H9C0.9600
O2—S1—O3117.14 (8)N1—C7—C6109.03 (14)
O2—S1—N1109.24 (8)N1—C8—C9113.06 (19)
O2—S1—C1112.89 (9)C1—C2—H2121.00
O3—S1—N1109.99 (9)C3—C2—H2122.00
O3—S1—C1112.01 (9)C2—C3—H3119.00
N1—S1—C192.85 (8)C4—C3—H3119.00
S1—N1—C7115.14 (13)C3—C4—H4119.00
S1—N1—C8120.78 (13)C5—C4—H4119.00
C7—N1—C8123.60 (16)C4—C5—H5121.00
S1—C1—C2127.97 (13)C6—C5—H5121.00
S1—C1—C6109.98 (13)N1—C8—H8A109.00
C2—C1—C6122.05 (16)N1—C8—H8B109.00
C1—C2—C3117.03 (17)C9—C8—H8A109.00
C2—C3—C4121.7 (2)C9—C8—H8B109.00
C3—C4—C5121.14 (19)H8A—C8—H8B108.00
C4—C5—C6118.02 (17)C8—C9—H9A109.00
C1—C6—C5120.07 (17)C8—C9—H9B109.00
C1—C6—C7112.86 (15)C8—C9—H9C109.00
C5—C6—C7127.07 (15)H9A—C9—H9B110.00
O1—C7—N1123.80 (17)H9A—C9—H9C109.00
O1—C7—C6127.17 (16)H9B—C9—H9C110.00
O2—S1—N1—C7111.89 (13)C7—N1—C8—C985.9 (3)
O2—S1—N1—C860.49 (17)C2—C1—C6—C7178.70 (16)
O3—S1—N1—C7118.24 (13)S1—C1—C6—C5179.56 (13)
O3—S1—N1—C869.38 (17)S1—C1—C2—C3179.53 (16)
C1—S1—N1—C73.57 (13)C6—C1—C2—C30.8 (3)
C1—S1—N1—C8175.95 (15)S1—C1—C6—C70.24 (17)
O2—S1—C1—C270.93 (19)C2—C1—C6—C50.6 (3)
O2—S1—C1—C6110.22 (13)C1—C2—C3—C40.2 (3)
O3—S1—C1—C263.88 (19)C2—C3—C4—C50.7 (3)
O3—S1—C1—C6114.97 (13)C3—C4—C5—C60.8 (3)
N1—S1—C1—C2176.79 (18)C4—C5—C6—C7179.41 (17)
N1—S1—C1—C62.06 (13)C4—C5—C6—C10.2 (2)
S1—N1—C7—O1176.40 (14)C5—C6—C7—N1177.04 (16)
C8—N1—C7—O14.3 (3)C1—C6—C7—O1178.07 (17)
S1—N1—C7—C63.89 (17)C1—C6—C7—N12.23 (19)
C8—N1—C7—C6176.03 (16)C5—C6—C7—O12.7 (3)
S1—N1—C8—C9102.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.373.265 (2)162
C3—H3···O2ii0.932.533.295 (3)140
C8—H8A···O3iii0.972.453.139 (3)128
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9NO3S
Mr211.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.4559 (5), 7.5484 (5), 12.9408 (7)
β (°) 105.863 (2)
V3)982.46 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.19 × 0.18 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9319, 2429, 1822
Rint0.081
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.144, 1.08
No. of reflections2429
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.373.265 (2)162
C3—H3···O2ii0.932.533.295 (3)140
C8—H8A···O3iii0.972.453.139 (3)128
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHu, Y., Chen, Z. C., Le, Z. G. & Zheng, Q. G. (2004). J. Chem. Res. 4, 276–278.  CrossRef Google Scholar
First citationHu, Z.-Q., Si, G.-D., Zhou, K., Yu, G.-P. & Xu, L.-Z. (2006). Acta Cryst. E62, o427–o428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKap-Sun, Y. & Nicholas, A. M. (1998). Tetrahedron Lett. 39, 5309–5312.  Google Scholar
First citationLiang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.  Google Scholar
First citationMasashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.  Google Scholar
First citationNagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem. 38, 1865–1871.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, H.-L., Zuo, J.-H., Ding, L., Lai, B.-W. & Liu, C.-B. (2006). Acta Cryst. E62, o5061–o5062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, L.-Z., Huang, Y.-W., Yu, G.-P., Zhang, P.-Y. & Yang, Y.-X. (2005). Acta Cryst. E61, o2123–o2124.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds