organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-3-(3-methyl­phen­yl)-7-phenyl-1,2,4-triazolo[4,3-c]pyrimidine

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 21 March 2011; accepted 22 March 2011; online 26 March 2011)

The title compound, C19H16N4, is one of the few known 3,7-diaryl-1,2,4-triazolo[4,3-c]pyrimidines. The triazolopyrimidine unit is essentially planar (r.m.s. deviation = 0.048 Å). The phenyl ring and the heterocyclic core subtend a dihedral angle of only 15.09 (6)°, whereas the m-tolyl ring is twisted by 71.80 (6)° out of the plane of the triazole ring. Two C—H⋯N hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.7045 (8) Å] stabilize the crystal packing.

Related literature

For the synthesis of higher conjugated and annulated heterocyclic π-systems, see: Detert & Schollmeyer (1999[Detert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999—1004.]); Sugiono & Detert (2001[Sugiono, E. & Detert, H. (2001). Synthesis, pp. 893-896.]). The acyl­ation of tetra­zoles with chloro­azines and thermal ring transformation leads to triazolo annulated azines, see: Huisgen, Sauer & Seidel (1960[Huisgen, R., Sauer, J. & Seidel, M. (1960). Chem. Ber. 93, 2885-2891.]); Huisgen, Sturm & Markgraf (1960[Huisgen, R., Sturm, H. J. & Markgraf, J. H. (1960). Chem. Ber. 93, 2106-2124.]); Huisgen et al. (1961[Huisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555-1562.]); Glang et al. (2008[Glang, S., Schmitt, V. & Detert, H. (2008). Proc. 36th German Topical Meeting Liq. Cryst. Otto-von-Guericke Universität, Magdeburg,12-14 March , pp. 125-128. ]). Whereas a broad variety of triazolopyrimidines are known, only two further [1,2,4]triazolo[4,3-c]pyrimidines with a 3,7-diaryl substitution have been reported so far, see: Seada et al. (1992[Seada, M., Abdel-Halim, A. M., Ibrahim, S. S. & Abdel-Megid, M. (1992). Asian J. Chem. 4, 544-552.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N4

  • Mr = 300.36

  • Triclinic, [P \overline 1]

  • a = 6.4270 (4) Å

  • b = 11.1706 (6) Å

  • c = 11.3672 (7) Å

  • α = 79.963 (5)°

  • β = 74.894 (5)°

  • γ = 81.877 (5)°

  • V = 771.88 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 193 K

  • 0.45 × 0.40 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3207 measured reflections

  • 2924 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.088

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.03

  • 2924 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N8i 0.95 2.53 3.4597 (17) 166
C23—H23⋯N8i 0.95 2.61 3.5374 (19) 167
Symmetry code: (i) -x, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was synthesized as part of a larger project focusing on the synthesis of higher conjugated and annulated heterocyclic π-systems see Detert & Schollmeyer (1999), Sugiono & Detert (2001). The acylation of tetrazoles followed by thermal ring transformation is a highly efficient route for the synthesis of 1,3,4-oxadiazoles and triazoles (Huisgen, Sauer & Seidel 1960; Huisgen, Sturm & Markgraf, 1960) and can also be applied to 2-chloroazines to yield triazolo-annulated azines. In the crystals of the title compound, the phenyl ring is only slightly turned out of the plane of the heterocyclic core [dihedral angle of 15.09 (6)°], the angle between the mean planes of the core and the m-tolyl ring amounts to 71.80 (6)°. Two molecules of the title compound form a dimer connected via hydrogen bonds C6—H6···N8 (2.53 Å) and C23—H23···N8 (2.61 Å). In the crystal, the dimers are connected via π-π-interactions between the rings with a distance of the triazoles (C1—N2, C7—N9) of 3.5404 (8) Å and of the pyrimidines (N2—C7) of 3.7045 (8) Å.

Related literature top

For the synthesis of higher conjugated and annulated heterocyclic π-systems, see: Detert & Schollmeyer (1999); Sugiono & Detert (2001). The acylation of tetrazoles with chloroazines and thermal ring transformation leads to triazolo annulated azines, see: Huisgen, Sauer & Seidel (1960); Huisgen, Sturm & Markgraf (1960); Huisgen et al. (1961); Glang et al. (2008). Whereas a broad variety of triazolopyrimidines are known, only two further [1,2,4]triazolo[4,3-c]pyrimidines with a 3,7-diaryl substitution have been reported so far, see: Seada et al. (1992).

Experimental top

The title compound was prepared by adding 2,4,6-collidine (0.54 g, 4.5 mmol) to a solution of 4-chloro-2-methyl-6-phenylpyrimidine (0.61 g, 3 mmol) and 5-(3-methyl- phenyl)tetrazole in xylenes (60 ml) and heating until gas was evolved (363 K). Stirring and heating was continued for 6 h, the solvent removed in vacuo and the residue purified by chromatography (SiO2 /toluene/ethyl acetate = 1 / 1, Rf = 0.28). The title compound was isolated as a yellowish powder with m.p. = 412–413 K. Crystals were obtained by slow evaporation of a solution of the title compound in chloroform/hexanes. All spectrocopic data were in accordance with the assumed structure, but an unique proton-proton coupling over 6 bonds from the pyrimidine-H across the heterocycle to the methyl group was observed.

Refinement top

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the packing diagram showing the hydrogen bonds and the π-π-interactions. View along a axis.
5-Methyl-3-(3-methylphenyl)-7-phenyl-1,2,4-triazolo[4,3-c]pyrimidine top
Crystal data top
C19H16N4Z = 2
Mr = 300.36F(000) = 316
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Melting point: 412 K
a = 6.4270 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.1706 (6) ÅCell parameters from 25 reflections
c = 11.3672 (7) Åθ = 61–70°
α = 79.963 (5)°µ = 0.63 mm1
β = 74.894 (5)°T = 193 K
γ = 81.877 (5)°Plate, yellow
V = 771.88 (8) Å30.45 × 0.40 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.088
Radiation source: rotating anodeθmax = 69.9°, θmin = 4.0°
Graphite monochromatorh = 70
ω/2θ scansk = 1313
3207 measured reflectionsl = 1313
2924 independent reflections3 standard reflections every 60 min
2573 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.1681P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2924 reflectionsΔρmax = 0.25 e Å3
211 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0261 (19)
Crystal data top
C19H16N4γ = 81.877 (5)°
Mr = 300.36V = 771.88 (8) Å3
Triclinic, P1Z = 2
a = 6.4270 (4) ÅCu Kα radiation
b = 11.1706 (6) ŵ = 0.63 mm1
c = 11.3672 (7) ÅT = 193 K
α = 79.963 (5)°0.45 × 0.40 × 0.25 mm
β = 74.894 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.088
3207 measured reflections3 standard reflections every 60 min
2924 independent reflections intensity decay: 2%
2573 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
2924 reflectionsΔρmin = 0.21 e Å3
211 parameters
Special details top

Experimental. 1H-NMR (CDCl3): 8.06 (d, 1 H), 8.03 (d 1 H), 7.90 (s, 1H, H-5 pyrimidin), 7.45 (m, 7 H), 2.47 (S, 3 H, CH3), 2.43 (3, 3 H, CH3); 13C-NMR (CDCl3): 151.4, 149.2, 147.1, 146.3, 138.3, 136.1, 131.5, 131.4, 129.9, 128.9, 128.2, 128.0, 127.9, 103.0, 23.6, 21.4; MS (FD): 300.1 (100%, M+), 600.3 (8% M2+), 900.3 (M3+). UV-vis: λmax =393nm (CH2Cl2), fluorescence: λmax =503nm (CH2Cl2).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4291 (2)0.07105 (12)0.69733 (11)0.0279 (3)
N20.35695 (17)0.15861 (10)0.60994 (9)0.0269 (3)
C30.3949 (2)0.27979 (12)0.56152 (12)0.0295 (3)
N40.30230 (19)0.33877 (10)0.47760 (10)0.0322 (3)
C50.1646 (2)0.28265 (12)0.43301 (12)0.0291 (3)
C60.1357 (2)0.16223 (12)0.46841 (12)0.0300 (3)
H60.04680.12390.43430.036*
C70.2419 (2)0.09577 (12)0.55754 (12)0.0275 (3)
N80.24802 (18)0.02029 (10)0.60599 (10)0.0317 (3)
N90.36567 (18)0.03428 (10)0.69480 (10)0.0318 (3)
C100.5391 (2)0.09494 (12)0.78900 (12)0.0284 (3)
C110.4254 (2)0.16174 (12)0.88241 (12)0.0315 (3)
H110.27920.19310.88490.038*
C120.5209 (2)0.18358 (12)0.97209 (12)0.0334 (3)
C130.7358 (2)0.13693 (13)0.96559 (13)0.0371 (3)
H130.80510.15161.02520.045*
C140.8494 (2)0.06977 (15)0.87386 (14)0.0404 (4)
H140.99560.03840.87130.049*
C150.7522 (2)0.04762 (14)0.78542 (13)0.0355 (3)
H150.83050.00060.72300.043*
C160.3970 (3)0.25436 (16)1.07371 (15)0.0502 (4)
H16A0.43220.33921.05290.075*
H16B0.43660.21761.15070.075*
H16C0.24130.25251.08380.075*
C170.5494 (3)0.33769 (13)0.60606 (13)0.0379 (3)
H17A0.57960.41610.55430.057*
H17B0.68450.28380.60180.057*
H17C0.48550.35130.69150.057*
C180.0596 (2)0.36189 (12)0.34111 (12)0.0316 (3)
C190.1311 (3)0.47490 (14)0.28749 (15)0.0450 (4)
H190.24400.50280.31210.054*
C200.0393 (3)0.54751 (16)0.19826 (17)0.0555 (5)
H200.09080.62430.16150.067*
C210.1258 (3)0.50869 (16)0.16287 (16)0.0522 (4)
H210.18850.55840.10170.063*
C220.2000 (3)0.39726 (16)0.21656 (16)0.0476 (4)
H220.31490.37070.19260.057*
C230.1088 (2)0.32384 (14)0.30495 (14)0.0383 (3)
H230.16100.24720.34120.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0275 (6)0.0296 (6)0.0261 (6)0.0006 (5)0.0059 (5)0.0052 (5)
N20.0276 (5)0.0283 (6)0.0264 (5)0.0024 (4)0.0077 (4)0.0067 (4)
C30.0327 (7)0.0293 (7)0.0279 (6)0.0057 (5)0.0075 (5)0.0054 (5)
N40.0381 (6)0.0315 (6)0.0301 (6)0.0064 (5)0.0125 (5)0.0040 (5)
C50.0292 (6)0.0320 (7)0.0275 (6)0.0024 (5)0.0072 (5)0.0084 (5)
C60.0306 (7)0.0320 (7)0.0307 (7)0.0019 (5)0.0106 (5)0.0096 (5)
C70.0264 (6)0.0292 (6)0.0290 (6)0.0031 (5)0.0064 (5)0.0099 (5)
N80.0349 (6)0.0293 (6)0.0344 (6)0.0021 (4)0.0137 (5)0.0067 (5)
N90.0337 (6)0.0311 (6)0.0329 (6)0.0014 (4)0.0121 (5)0.0059 (5)
C100.0305 (7)0.0288 (7)0.0265 (6)0.0035 (5)0.0088 (5)0.0022 (5)
C110.0319 (7)0.0317 (7)0.0317 (7)0.0031 (5)0.0124 (5)0.0046 (5)
C120.0431 (8)0.0293 (7)0.0297 (7)0.0017 (6)0.0144 (6)0.0046 (5)
C130.0426 (8)0.0393 (8)0.0344 (7)0.0020 (6)0.0209 (6)0.0029 (6)
C140.0307 (7)0.0510 (9)0.0410 (8)0.0011 (6)0.0143 (6)0.0061 (7)
C150.0311 (7)0.0423 (8)0.0320 (7)0.0010 (6)0.0062 (5)0.0088 (6)
C160.0641 (11)0.0504 (9)0.0417 (9)0.0153 (8)0.0249 (8)0.0206 (7)
C170.0474 (8)0.0352 (7)0.0368 (7)0.0144 (6)0.0187 (6)0.0008 (6)
C180.0355 (7)0.0321 (7)0.0285 (7)0.0013 (5)0.0104 (5)0.0081 (5)
C190.0572 (10)0.0350 (8)0.0494 (9)0.0071 (7)0.0261 (8)0.0021 (7)
C200.0750 (12)0.0369 (9)0.0590 (11)0.0055 (8)0.0320 (9)0.0051 (8)
C210.0667 (11)0.0456 (9)0.0472 (9)0.0101 (8)0.0299 (8)0.0028 (7)
C220.0493 (9)0.0526 (10)0.0486 (9)0.0026 (7)0.0275 (7)0.0101 (7)
C230.0395 (8)0.0395 (8)0.0395 (8)0.0025 (6)0.0162 (6)0.0065 (6)
Geometric parameters (Å, º) top
C1—N91.3057 (17)C18—C231.3939 (19)
C1—N21.3899 (16)C19—C201.387 (2)
C1—C101.4802 (17)C20—C211.375 (2)
N2—C71.3846 (15)C21—C221.379 (3)
N2—C31.3995 (17)C22—C231.382 (2)
C3—N41.2901 (17)C6—H60.9500
C3—C171.4890 (18)C11—H110.9500
N4—C51.3909 (16)C13—H130.9500
C5—C61.3598 (19)C14—H140.9500
C5—C181.4854 (18)C15—H150.9500
C6—C71.4136 (18)C16—H16A0.9800
C7—N81.3167 (17)C16—H16B0.9800
N8—N91.3873 (15)C16—H16C0.9800
C10—C151.3896 (19)C17—H17A0.9800
C10—C111.3914 (18)C17—H17B0.9800
C11—C121.3894 (18)C17—H17C0.9800
C12—C131.393 (2)C19—H190.9500
C12—C161.502 (2)C20—H200.9500
C13—C141.380 (2)C21—H210.9500
C14—C151.385 (2)C22—H220.9500
C18—C191.388 (2)C23—H230.9500
N9—C1—N2109.46 (11)C21—C22—C23120.60 (15)
N9—C1—C10124.55 (12)C22—C23—C18120.25 (14)
N2—C1—C10125.66 (11)C5—C6—H6121.00
C7—N2—C1104.30 (10)C7—C6—H6121.00
C7—N2—C3120.16 (11)C10—C11—H11119.00
C1—N2—C3135.10 (11)C12—C11—H11119.00
N4—C3—N2120.52 (12)C12—C13—H13119.00
N4—C3—C17120.83 (12)C14—C13—H13120.00
N2—C3—C17118.63 (11)C13—C14—H14120.00
C3—N4—C5120.57 (12)C15—C14—H14120.00
C6—C5—N4121.74 (12)C10—C15—H15120.00
C6—C5—C18122.78 (12)C14—C15—H15120.00
N4—C5—C18115.43 (11)C12—C16—H16A109.00
C5—C6—C7117.99 (12)C12—C16—H16B109.00
N8—C7—N2110.52 (11)C12—C16—H16C109.00
N8—C7—C6131.23 (12)H16A—C16—H16B109.00
N2—C7—C6118.22 (12)H16A—C16—H16C109.00
C7—N8—N9106.71 (10)H16B—C16—H16C109.00
C1—N9—N8108.99 (11)C3—C17—H17A109.00
C15—C10—C11119.64 (12)C3—C17—H17B109.00
C15—C10—C1120.71 (12)C3—C17—H17C109.00
C11—C10—C1119.62 (11)H17A—C17—H17B110.00
C12—C11—C10121.45 (12)H17A—C17—H17C109.00
C11—C12—C13117.93 (13)H17B—C17—H17C109.00
C11—C12—C16121.36 (13)C18—C19—H19120.00
C13—C12—C16120.71 (13)C20—C19—H19120.00
C14—C13—C12121.05 (13)C19—C20—H20120.00
C13—C14—C15120.59 (13)C21—C20—H20120.00
C14—C15—C10119.32 (13)C20—C21—H21120.00
C19—C18—C23118.62 (13)C22—C21—H21120.00
C19—C18—C5120.26 (12)C21—C22—H22120.00
C23—C18—C5121.10 (13)C23—C22—H22120.00
C20—C19—C18120.64 (14)C18—C23—H23120.00
C21—C20—C19120.20 (16)C22—C23—H23120.00
C20—C21—C22119.68 (15)
N9—C1—N2—C71.13 (13)N2—C1—C10—C15115.37 (15)
C10—C1—N2—C7172.48 (12)N9—C1—C10—C11105.68 (15)
N9—C1—N2—C3170.93 (13)N2—C1—C10—C1167.00 (17)
C10—C1—N2—C315.5 (2)C15—C10—C11—C120.7 (2)
C7—N2—C3—N48.25 (18)C1—C10—C11—C12178.35 (12)
C1—N2—C3—N4179.34 (13)C10—C11—C12—C130.3 (2)
C7—N2—C3—C17169.90 (12)C10—C11—C12—C16179.23 (13)
C1—N2—C3—C171.2 (2)C11—C12—C13—C140.8 (2)
N2—C3—N4—C50.57 (19)C16—C12—C13—C14178.73 (15)
C17—C3—N4—C5177.53 (12)C12—C13—C14—C150.3 (2)
C3—N4—C5—C65.2 (2)C13—C14—C15—C100.7 (2)
C3—N4—C5—C18177.12 (12)C11—C10—C15—C141.2 (2)
N4—C5—C6—C73.13 (19)C1—C10—C15—C14178.84 (13)
C18—C5—C6—C7179.37 (11)C6—C5—C18—C19165.26 (14)
C1—N2—C7—N81.59 (14)N4—C5—C18—C1912.39 (19)
C3—N2—C7—N8171.93 (11)C6—C5—C18—C2313.4 (2)
C1—N2—C7—C6176.47 (11)N4—C5—C18—C23168.96 (12)
C3—N2—C7—C610.01 (17)C23—C18—C19—C201.1 (2)
C5—C6—C7—N8178.04 (13)C5—C18—C19—C20177.61 (15)
C5—C6—C7—N24.38 (18)C18—C19—C20—C210.7 (3)
N2—C7—N8—N91.43 (14)C19—C20—C21—C220.1 (3)
C6—C7—N8—N9176.29 (13)C20—C21—C22—C230.5 (3)
N2—C1—N9—N80.31 (14)C21—C22—C23—C180.1 (2)
C10—C1—N9—N8173.38 (11)C19—C18—C23—C220.7 (2)
C7—N8—N9—C10.69 (14)C5—C18—C23—C22178.02 (13)
N9—C1—C10—C1571.96 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N8i0.952.533.4597 (17)166
C23—H23···N8i0.952.613.5374 (19)167
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H16N4
Mr300.36
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)6.4270 (4), 11.1706 (6), 11.3672 (7)
α, β, γ (°)79.963 (5), 74.894 (5), 81.877 (5)
V3)771.88 (8)
Z2
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.45 × 0.40 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3207, 2924, 2573
Rint0.088
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.03
No. of reflections2924
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N8i0.952.533.4597 (17)166
C23—H23···N8i0.952.613.5374 (19)167
Symmetry code: (i) x, y, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDetert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999—1004.  Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGlang, S., Schmitt, V. & Detert, H. (2008). Proc. 36th German Topical Meeting Liq. Cryst. Otto-von-Guericke Universität, Magdeburg,12–14 March , pp. 125–128.  Google Scholar
First citationHuisgen, R., Sauer, J. & Seidel, M. (1960). Chem. Ber. 93, 2885–2891.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R., Sturm, H. J. & Markgraf, J. H. (1960). Chem. Ber. 93, 2106–2124.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555–1562.  CrossRef CAS Web of Science Google Scholar
First citationSeada, M., Abdel-Halim, A. M., Ibrahim, S. S. & Abdel-Megid, M. (1992). Asian J. Chem. 4, 544–552.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugiono, E. & Detert, H. (2001). Synthesis, pp. 893–896.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds