organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-(naphthalen-1-yl)-4-phenyl­pyridine-3-carbo­nitrile

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 15 December 2010; accepted 20 January 2011; online 12 March 2011)

In the title compound, C22H15N3, the naphthyl ring system makes dihedral angles of 67.40 (2) and 59.80 (3)° with the pyridyl and phenyl rings, respectively. In the crystal, the mol­ecules are connected via inter­molecular N—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For the synthetic procedure, see: Mantri et al. (2008[Mantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449-4455.]). For related structures, see: Mkhalid et al. (2006[Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489-491.]). For general background, see: Moreau et al. (1999[Moreau, J. L. & Huber, G. (1999). Brain. Res. Rev. 31, 65-82.]).

[Scheme 1]

Experimental

Crystal data
  • C22H15N3

  • Mr = 321.37

  • Monoclinic, C 2/c

  • a = 11.799 (2) Å

  • b = 17.284 (3) Å

  • c = 17.492 (4) Å

  • β = 98.26 (3)°

  • V = 3530.2 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.979, Tmax = 0.993

  • 3367 measured reflections

  • 3240 independent reflections

  • 1717 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.180

  • S = 1.01

  • 3240 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.34 3.180 (4) 165
N2—H2B⋯N3ii 0.86 2.34 3.138 (4) 154
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994)[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 EXPRESS[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), contains an amino group, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate which can be used for many fields such as medicine. (Mantri, et al., 2008). Herein we report its crystal structure. The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. The bond lengths and angles are within normal ranges. The torsion angle between the naphthyl (C12—C21) and phenyl planes (C1 to C6) is 67.40 (2)° and 59.80 (3)°, respectively. In the crystal of the title compound, (I) was connected together via N—H···N intermolecular hydrogen bonds to form a three dimensional network, which seems to be very effective in the stabilization of the crystal structure.

Related literature top

For the synthetic procedure, see: Mantri et al. (2008). For related structures, see: Mkhalid et al. (2006). For general background, see: Moreau et al. (1999).

Experimental top

The title compound, (I) was prepared by the literature method (Mantri, et al., 2008). Malononitrile (20 mmol) was dissolved in EtOH (40 ml), added benzalaldehyde (20 mmol) followed by 2 drops of piperidine, the reaction mixture was refluxed for 1 h. The precipitate formed upon cooling the reaction mixture to room temperature. The crude product was filtered, and it was pure enough to carry out the further reactions. To a solution of previously synthesized benzylidene malononitrile (3 mmol, 1 equiv) in toluene was added 1-(naphthalen-1-yl)ethanone (3 mmol, 1 equiv) and ammonium acetate (4.5 mmol, 1.5 equiv). The mixture was heated in a microwave at 120° for 1 h. The reaction mixture was purified by column chromatography using dichloromethane-methanol solvent system. Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in methanol (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.86 Å for N—H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). N—H···N hydrogen bonds are shown by dashed lines.
2-Amino-6-(naphthalen-1-yl)-4-phenylpyridine-3-carbonitrile top
Crystal data top
C22H15N3F(000) = 1344
Mr = 321.37Dx = 1.209 Mg m3
Monoclinic, C2/cMelting point: 438 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 11.799 (2) ÅCell parameters from 25 reflections
b = 17.284 (3) Åθ = 9–12°
c = 17.492 (4) ŵ = 0.07 mm1
β = 98.26 (3)°T = 293 K
V = 3530.2 (12) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1717 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.979, Tmax = 0.993l = 2120
3367 measured reflections3 standard reflections every 200 reflections
3240 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.050P)2 + 3.8P]
where P = (Fo2 + 2Fc2)/3
3240 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C22H15N3V = 3530.2 (12) Å3
Mr = 321.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.799 (2) ŵ = 0.07 mm1
b = 17.284 (3) ÅT = 293 K
c = 17.492 (4) Å0.30 × 0.20 × 0.10 mm
β = 98.26 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1717 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.030
Tmin = 0.979, Tmax = 0.9933 standard reflections every 200 reflections
3367 measured reflections intensity decay: 1%
3240 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.180H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
3240 reflectionsΔρmin = 0.13 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3542 (2)0.1427 (2)0.69970 (17)0.1156 (13)
C10.0883 (3)0.0618 (2)0.4510 (2)0.1035 (13)
H1B0.11910.01690.47490.124*
N20.4951 (2)0.08860 (18)0.64401 (14)0.1002 (10)
H2A0.53730.09420.68800.120*
H2B0.52310.06820.60600.120*
C20.0113 (4)0.0532 (3)0.3842 (3)0.1361 (17)
H2C0.00900.00490.36300.163*
N30.3832 (3)0.0285 (2)0.45458 (14)0.1147 (13)
C30.0341 (4)0.1219 (4)0.3506 (3)0.1341 (17)
H3A0.08540.11980.30500.161*
C40.0050 (5)0.1915 (4)0.3830 (3)0.1376 (17)
H4A0.03560.23670.35960.165*
C50.0720 (4)0.1953 (3)0.4525 (3)0.1277 (16)
H5A0.08820.24280.47650.153*
C60.1229 (3)0.1301 (3)0.4846 (2)0.0905 (11)
C70.2017 (3)0.1324 (2)0.55800 (18)0.0783 (9)
C80.1731 (3)0.1668 (2)0.6244 (2)0.0958 (12)
H8A0.10270.19170.62140.115*
C90.2443 (3)0.1661 (3)0.6957 (2)0.1076 (13)
C100.3872 (3)0.1114 (2)0.63484 (18)0.0819 (10)
C110.3122 (3)0.10289 (18)0.56551 (16)0.0704 (8)
C120.2128 (3)0.1874 (3)0.7756 (3)0.1025 (13)
C130.1864 (3)0.2620 (3)0.7827 (2)0.0940 (12)
C140.1949 (4)0.3212 (3)0.7187 (2)0.1173 (15)
H14A0.21170.30650.67040.141*
C150.1767 (4)0.3959 (3)0.7358 (3)0.115
H15A0.18690.43390.69990.138*
C160.1480 (4)0.4143 (3)0.7956 (3)0.114
H16A0.13900.46730.80200.137*
C170.1279 (3)0.3736 (2)0.8516 (2)0.092
H17A0.09580.39580.89180.110*
C180.1548 (3)0.2920 (2)0.8532 (2)0.0879 (11)
C190.1452 (3)0.2408 (3)0.9156 (3)0.1128 (14)
H19A0.11990.25790.96070.135*
C200.1769 (4)0.1602 (3)0.9057 (3)0.1198 (14)
H20A0.17590.12320.94420.144*
C210.2098 (4)0.1426 (3)0.8311 (3)0.1124 (14)
H21A0.23130.09160.82370.135*
C220.3531 (3)0.0621 (2)0.50320 (16)0.0783 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0609 (18)0.192 (3)0.099 (2)0.014 (2)0.0263 (16)0.087 (2)
C10.109 (3)0.111 (3)0.077 (2)0.000 (2)0.035 (2)0.003 (2)
N20.0698 (19)0.171 (3)0.0560 (16)0.0290 (19)0.0046 (13)0.0224 (17)
C20.162 (5)0.141 (4)0.092 (3)0.015 (4)0.026 (3)0.030 (3)
N30.134 (3)0.167 (3)0.0374 (15)0.083 (2)0.0051 (16)0.0141 (17)
C30.124 (4)0.165 (5)0.099 (3)0.035 (4)0.032 (3)0.007 (4)
C40.121 (4)0.136 (5)0.151 (5)0.008 (3)0.002 (4)0.031 (4)
C50.103 (3)0.123 (4)0.150 (4)0.016 (3)0.004 (3)0.015 (3)
C60.067 (2)0.117 (3)0.084 (2)0.024 (2)0.0001 (18)0.036 (2)
C70.060 (2)0.102 (3)0.072 (2)0.0134 (18)0.0038 (16)0.0270 (18)
C80.074 (2)0.117 (3)0.094 (3)0.028 (2)0.005 (2)0.040 (2)
C90.084 (3)0.140 (4)0.101 (3)0.011 (2)0.023 (2)0.042 (3)
C100.069 (2)0.114 (3)0.0649 (19)0.007 (2)0.0169 (15)0.0229 (19)
C110.075 (2)0.081 (2)0.0555 (17)0.0086 (17)0.0104 (14)0.0132 (15)
C120.080 (3)0.119 (4)0.105 (3)0.004 (3)0.006 (2)0.028 (3)
C130.067 (2)0.119 (3)0.092 (3)0.002 (2)0.0036 (19)0.042 (3)
C140.112 (3)0.154 (4)0.077 (3)0.022 (3)0.016 (2)0.032 (3)
C150.1150.1150.1150.0000.0160.000
C160.1140.1140.1140.0000.0160.000
C170.0920.0920.0920.0000.0130.000
C180.0534 (19)0.123 (3)0.081 (2)0.0281 (19)0.0125 (17)0.038 (2)
C190.083 (3)0.151 (4)0.107 (3)0.019 (3)0.020 (2)0.023 (3)
C200.114 (3)0.131 (4)0.114 (4)0.032 (3)0.016 (3)0.014 (3)
C210.095 (3)0.133 (4)0.113 (4)0.024 (3)0.026 (3)0.028 (3)
C220.082 (2)0.120 (3)0.0287 (14)0.030 (2)0.0034 (14)0.0008 (17)
Geometric parameters (Å, º) top
N1—C91.351 (4)C9—C121.542 (5)
N1—C101.363 (4)C10—C111.403 (4)
C1—C61.356 (5)C11—C221.439 (4)
C1—C21.382 (5)C12—C211.247 (5)
C1—H1B0.9300C12—C131.337 (5)
N2—C101.320 (4)C13—C181.435 (5)
N2—H2A0.8600C13—C141.532 (6)
N2—H2B0.8600C14—C151.349 (5)
C2—C31.397 (6)C14—H14A0.9300
C2—H2C0.9300C15—C161.189 (5)
N3—C221.128 (4)C15—H15A0.9300
C3—C41.353 (6)C16—C171.255 (5)
C3—H3A0.9300C16—H16A0.9300
C4—C51.410 (6)C17—C181.444 (5)
C4—H4A0.9300C17—H17A0.9300
C5—C61.359 (5)C18—C191.422 (5)
C5—H5A0.9300C19—C201.459 (6)
C6—C71.473 (5)C19—H19A0.9300
C7—C111.389 (4)C20—C211.446 (6)
C7—C81.389 (4)C20—H20A0.9300
C8—C91.399 (5)C21—H21A0.9300
C8—H8A0.9300
C9—N1—C10117.5 (3)C7—C11—C10120.7 (3)
C6—C1—C2125.6 (4)C7—C11—C22121.4 (3)
C6—C1—H1B117.2C10—C11—C22117.9 (3)
C2—C1—H1B117.2C21—C12—C13119.6 (5)
C10—N2—H2A120.0C21—C12—C9126.5 (5)
C10—N2—H2B120.0C13—C12—C9113.9 (5)
H2A—N2—H2B120.0C12—C13—C18121.4 (5)
C1—C2—C3115.4 (4)C12—C13—C14122.4 (4)
C1—C2—H2C122.3C18—C13—C14116.1 (4)
C3—C2—H2C122.3C15—C14—C13116.6 (4)
C4—C3—C2121.4 (4)C15—C14—H14A121.7
C4—C3—H3A119.3C13—C14—H14A121.7
C2—C3—H3A119.3C16—C15—C14121.8 (5)
C3—C4—C5119.7 (5)C16—C15—H15A119.1
C3—C4—H4A120.2C14—C15—H15A119.1
C5—C4—H4A120.2C15—C16—C17130.1 (5)
C6—C5—C4120.7 (5)C15—C16—H16A114.9
C6—C5—H5A119.7C17—C16—H16A114.9
C4—C5—H5A119.7C16—C17—C18119.9 (4)
C1—C6—C5117.0 (4)C16—C17—H17A120.1
C1—C6—C7121.0 (4)C18—C17—H17A120.1
C5—C6—C7121.6 (4)C19—C18—C13119.6 (4)
C11—C7—C8114.5 (3)C19—C18—C17125.5 (4)
C11—C7—C6122.6 (3)C13—C18—C17114.7 (4)
C8—C7—C6122.8 (3)C18—C19—C20116.9 (4)
C7—C8—C9123.7 (3)C18—C19—H19A121.5
C7—C8—H8A118.2C20—C19—H19A121.5
C9—C8—H8A118.2C21—C20—C19114.6 (4)
N1—C9—C8119.9 (3)C21—C20—H20A122.7
N1—C9—C12112.2 (4)C19—C20—H20A122.7
C8—C9—C12127.9 (3)C12—C21—C20127.8 (5)
N2—C10—N1113.8 (3)C12—C21—H21A116.1
N2—C10—C11123.5 (3)C20—C21—H21A116.1
N1—C10—C11122.8 (3)N3—C22—C11178.1 (4)
C6—C1—C2—C30.8 (7)N1—C9—C12—C2164.7 (6)
C1—C2—C3—C41.1 (8)C8—C9—C12—C21113.5 (6)
C2—C3—C4—C50.5 (9)N1—C9—C12—C13115.7 (4)
C3—C4—C5—C64.2 (8)C8—C9—C12—C1366.2 (6)
C2—C1—C6—C54.3 (7)C21—C12—C13—C180.2 (6)
C2—C1—C6—C7177.2 (4)C9—C12—C13—C18179.9 (3)
C4—C5—C6—C15.9 (7)C21—C12—C13—C14176.4 (4)
C4—C5—C6—C7178.7 (4)C9—C12—C13—C143.9 (5)
C1—C6—C7—C1162.2 (5)C12—C13—C14—C15173.7 (4)
C5—C6—C7—C11125.2 (4)C18—C13—C14—C152.7 (5)
C1—C6—C7—C8120.2 (4)C13—C14—C15—C164.9 (7)
C5—C6—C7—C852.3 (6)C14—C15—C16—C171.0 (8)
C11—C7—C8—C95.7 (6)C15—C16—C17—C188.9 (8)
C6—C7—C8—C9176.6 (4)C12—C13—C18—C193.5 (5)
C10—N1—C9—C87.9 (6)C14—C13—C18—C19179.9 (3)
C10—N1—C9—C12170.4 (4)C12—C13—C18—C17179.6 (3)
C7—C8—C9—N111.3 (7)C14—C13—C18—C174.0 (4)
C7—C8—C9—C12166.7 (4)C16—C17—C18—C19174.6 (4)
C9—N1—C10—N2178.7 (4)C16—C17—C18—C139.6 (5)
C9—N1—C10—C110.1 (6)C13—C18—C19—C204.4 (5)
C8—C7—C11—C102.5 (5)C17—C18—C19—C20179.9 (3)
C6—C7—C11—C10175.2 (4)C18—C19—C20—C212.5 (5)
C8—C7—C11—C22176.9 (3)C13—C12—C21—C202.0 (7)
C6—C7—C11—C225.4 (5)C9—C12—C21—C20177.7 (4)
N2—C10—C11—C7176.0 (3)C19—C20—C21—C120.8 (7)
N1—C10—C11—C75.5 (6)C7—C11—C22—N368 (11)
N2—C10—C11—C224.7 (5)C10—C11—C22—N3111 (11)
N1—C10—C11—C22173.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.343.180 (4)165
N2—H2B···N3ii0.862.343.138 (4)154
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H15N3
Mr321.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.799 (2), 17.284 (3), 17.492 (4)
β (°) 98.26 (3)
V3)3530.2 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.979, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
3367, 3240, 1717
Rint0.030
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.180, 1.01
No. of reflections3240
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.343.180 (4)165
N2—H2B···N3ii0.862.343.138 (4)154
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreau, J. L. & Huber, G. (1999). Brain. Res. Rev. 31, 65–82.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds