organic compounds
4-Hydroxy-6-(4-methoxyphenyl)-4-phenyl-1,3-diazinane-2-thione
aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Pharmaceutical Chemistry, Sri Adichunchangiri College of Pharmacy, B.G. Nagar 571 448, Mandya, Karnataka, India, and cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 12, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com
In the title compound, C17H18N2O2S, the 1,3-diazinane-2-thione ring system is not coplanar with the benzene ring and methoxyphenyl ring system, the dihedral angle between the planes being 65.58 (13) and 89.18 (10)°, respectively. The is characterized by intermolecular O—H⋯S, N—H⋯S, N—H⋯O and C—H⋯S hydrogen bonding.
Related literature
For general background to pyrimidines, see: Cheng (1969); Scott et al. (1959); Jonak et al. (1972); Falco et al. (1961); Ram (1990); Howells et al. (1981); Pershin et al. (1972); Matolcsy (1971); Prikazchikova et al. (1975). For the synthesis, see: Paghdar et al. (2007). For a related structure, see: Yamin et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811008002/bv2177sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811008002/bv2177Isup2.hkl
A general procedure for the synthesis of 4-hydroxy-6-(4-methoxyphenyl)- 4-phenyl-3,4-dihydropyrimidine-2(1H)-thione is given in Paghdar et al., 2007. An equimolar mixture of (2E)-1,3-diphenylprop-2-en-1-one and thiourea (0.01 mol) were dissolved in minimum amount of ethanol. Potassium hydroxide solution (2.5 ml) was added slowly and the mixture stirred for 10 h until the entire mixture becomes very cloudy. Then the mixture was neutralized with 10% HCl and poured slowly into 100 ml of cold water with constant stirring. The precipitate obtained was filtered, washed and recrystallized from ethanol.
All H atoms were positioned at calculated positions with O—H = 0.88 Å, N—H = 0.86 Å, C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H and refined a riding model Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other and also refined independently fixing C14 with C—H = 0.1.036 Å and C13 with C—H = 0.96 Å & 0.99 Å respectively.
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell
CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds | |
Fig. 2. A packing view of the structure down the axis b. |
C17H18N2O2S | F(000) = 664 |
Mr = 314.39 | Dx = 1.278 Mg m−3 |
Monoclinic, P21/c | Melting point: 392 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.6016 (3) Å | Cell parameters from 3547 reflections |
b = 6.3375 (1) Å | θ = 2.4–27.0° |
c = 20.6637 (4) Å | µ = 0.21 mm−1 |
β = 97.890 (2)° | T = 295 K |
V = 1634.64 (6) Å3 | Plate, colourless |
Z = 4 | 0.18 × 0.16 × 0.16 mm |
Oxford Diffraction Xcalibur diffractometer | 3547 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2566 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 16.0839 pixels mm-1 | θmax = 27.0°, θmin = 2.4° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) | k = −8→7 |
Tmin = 0.963, Tmax = 1.000 | l = −26→26 |
18135 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3347P] where P = (Fo2 + 2Fc2)/3 |
3547 reflections | (Δ/σ)max < 0.001 |
215 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C17H18N2O2S | V = 1634.64 (6) Å3 |
Mr = 314.39 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.6016 (3) Å | µ = 0.21 mm−1 |
b = 6.3375 (1) Å | T = 295 K |
c = 20.6637 (4) Å | 0.18 × 0.16 × 0.16 mm |
β = 97.890 (2)° |
Oxford Diffraction Xcalibur diffractometer | 3547 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) | 2566 reflections with I > 2σ(I) |
Tmin = 0.963, Tmax = 1.000 | Rint = 0.039 |
18135 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.24 e Å−3 |
3547 reflections | Δρmin = −0.17 e Å−3 |
215 parameters |
Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.48694 (4) | 0.81337 (8) | 0.41473 (2) | 0.04465 (17) | |
O2 | 0.28051 (14) | 0.2485 (2) | 0.48527 (8) | 0.0550 (4) | |
O3 | 0.32640 (13) | 1.1217 (2) | 0.79728 (7) | 0.0595 (4) | |
N4 | 0.40048 (13) | 0.7486 (3) | 0.52278 (7) | 0.0431 (4) | |
H4 | 0.4430 | 0.8470 | 0.5390 | 0.052* | |
N5 | 0.32830 (12) | 0.5582 (2) | 0.43340 (7) | 0.0430 (4) | |
H5 | 0.3310 | 0.5243 | 0.3934 | 0.052* | |
C6 | 0.08485 (19) | 0.2493 (4) | 0.41656 (13) | 0.0669 (7) | |
H6 | 0.1074 | 0.1390 | 0.4448 | 0.080* | |
C7 | −0.0087 (2) | 0.2288 (5) | 0.37313 (17) | 0.0873 (9) | |
H7 | −0.0479 | 0.1044 | 0.3725 | 0.105* | |
C8 | −0.0434 (2) | 0.3852 (7) | 0.33198 (16) | 0.0943 (10) | |
H8 | −0.1061 | 0.3690 | 0.3029 | 0.113* | |
C9 | 0.0139 (2) | 0.5698 (6) | 0.33308 (15) | 0.0935 (9) | |
H9 | −0.0101 | 0.6793 | 0.3049 | 0.112* | |
C10 | 0.1081 (2) | 0.5928 (4) | 0.37639 (13) | 0.0715 (7) | |
H10 | 0.1466 | 0.7182 | 0.3770 | 0.086* | |
C11 | 0.14488 (16) | 0.4324 (3) | 0.41824 (10) | 0.0464 (5) | |
C12 | 0.24682 (15) | 0.4557 (3) | 0.46603 (9) | 0.0423 (5) | |
C13 | 0.22823 (17) | 0.5908 (4) | 0.52483 (10) | 0.0474 (5) | |
C14 | 0.33350 (16) | 0.6441 (3) | 0.56604 (9) | 0.0421 (5) | |
C15 | 0.39945 (14) | 0.7009 (3) | 0.46044 (9) | 0.0369 (4) | |
C16 | 0.32722 (15) | 0.7792 (3) | 0.62573 (9) | 0.0397 (4) | |
C17 | 0.27293 (16) | 0.9682 (3) | 0.62387 (9) | 0.0454 (5) | |
H17 | 0.2372 | 1.0162 | 0.5842 | 0.055* | |
C18 | 0.27031 (16) | 1.0888 (3) | 0.67978 (9) | 0.0456 (5) | |
H18 | 0.2329 | 1.2157 | 0.6776 | 0.055* | |
C19 | 0.32394 (16) | 1.0182 (3) | 0.73856 (9) | 0.0442 (5) | |
C20 | 0.38044 (19) | 0.8316 (4) | 0.74086 (10) | 0.0568 (6) | |
H20 | 0.4175 | 0.7849 | 0.7803 | 0.068* | |
C21 | 0.38211 (18) | 0.7138 (3) | 0.68487 (10) | 0.0521 (5) | |
H21 | 0.4208 | 0.5885 | 0.6869 | 0.063* | |
C22 | 0.2770 (3) | 1.3220 (4) | 0.79812 (12) | 0.0780 (8) | |
H22A | 0.2851 | 1.3747 | 0.8421 | 0.117* | |
H22B | 0.2022 | 1.3093 | 0.7818 | 0.117* | |
H22C | 0.3101 | 1.4179 | 0.7710 | 0.117* | |
H2 | 0.345 (2) | 0.244 (4) | 0.5073 (14) | 0.081 (9)* | |
H13A | 0.1920 (17) | 0.726 (3) | 0.5100 (10) | 0.054 (6)* | |
H13B | 0.1841 (16) | 0.512 (3) | 0.5504 (10) | 0.054 (6)* | |
H14 | 0.3700 (14) | 0.504 (3) | 0.5815 (9) | 0.045 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0494 (3) | 0.0552 (3) | 0.0309 (3) | −0.0148 (2) | 0.0107 (2) | −0.0048 (2) |
O2 | 0.0585 (10) | 0.0531 (9) | 0.0499 (9) | −0.0108 (8) | −0.0050 (8) | 0.0045 (7) |
O3 | 0.0839 (11) | 0.0644 (10) | 0.0302 (7) | 0.0027 (8) | 0.0081 (7) | −0.0087 (7) |
N4 | 0.0473 (9) | 0.0555 (10) | 0.0274 (8) | −0.0184 (8) | 0.0085 (7) | −0.0080 (7) |
N5 | 0.0476 (9) | 0.0550 (10) | 0.0273 (8) | −0.0169 (8) | 0.0091 (7) | −0.0080 (7) |
C6 | 0.0521 (14) | 0.0733 (16) | 0.0741 (17) | −0.0193 (12) | 0.0038 (12) | −0.0066 (13) |
C7 | 0.0505 (16) | 0.109 (2) | 0.099 (2) | −0.0249 (16) | −0.0020 (16) | −0.028 (2) |
C8 | 0.0495 (16) | 0.148 (3) | 0.079 (2) | −0.002 (2) | −0.0135 (14) | −0.032 (2) |
C9 | 0.0699 (19) | 0.129 (3) | 0.074 (2) | 0.0122 (19) | −0.0166 (15) | 0.0102 (19) |
C10 | 0.0617 (15) | 0.0838 (17) | 0.0648 (17) | −0.0053 (14) | −0.0065 (13) | 0.0077 (14) |
C11 | 0.0424 (11) | 0.0614 (13) | 0.0356 (10) | −0.0074 (10) | 0.0068 (9) | −0.0083 (9) |
C12 | 0.0442 (11) | 0.0490 (11) | 0.0338 (10) | −0.0113 (9) | 0.0061 (8) | −0.0011 (9) |
C13 | 0.0492 (12) | 0.0613 (14) | 0.0335 (11) | −0.0173 (11) | 0.0122 (9) | −0.0069 (10) |
C14 | 0.0493 (11) | 0.0496 (12) | 0.0278 (10) | −0.0084 (10) | 0.0072 (8) | −0.0008 (8) |
C15 | 0.0373 (10) | 0.0436 (10) | 0.0293 (9) | −0.0026 (8) | 0.0028 (8) | −0.0008 (8) |
C16 | 0.0418 (10) | 0.0504 (11) | 0.0276 (9) | −0.0110 (9) | 0.0076 (8) | −0.0007 (8) |
C17 | 0.0509 (12) | 0.0593 (13) | 0.0251 (9) | −0.0048 (10) | 0.0015 (8) | 0.0054 (9) |
C18 | 0.0528 (12) | 0.0487 (11) | 0.0362 (11) | −0.0010 (10) | 0.0093 (9) | 0.0011 (9) |
C19 | 0.0541 (12) | 0.0522 (12) | 0.0273 (9) | −0.0091 (10) | 0.0091 (9) | −0.0020 (8) |
C20 | 0.0732 (15) | 0.0646 (14) | 0.0294 (11) | 0.0062 (12) | −0.0038 (10) | 0.0006 (10) |
C21 | 0.0633 (14) | 0.0564 (13) | 0.0352 (11) | 0.0064 (11) | 0.0016 (10) | −0.0011 (9) |
C22 | 0.134 (3) | 0.0563 (15) | 0.0468 (14) | −0.0004 (15) | 0.0242 (15) | −0.0084 (11) |
S1—C15 | 1.7033 (18) | C10—H10 | 0.9300 |
O2—C12 | 1.420 (2) | C11—C12 | 1.516 (3) |
O2—H2 | 0.87 (3) | C12—C13 | 1.531 (3) |
O3—C19 | 1.376 (2) | C13—C14 | 1.513 (3) |
O3—C22 | 1.415 (3) | C13—H13A | 1.00 (2) |
N4—C15 | 1.321 (2) | C13—H13B | 0.96 (2) |
N4—C14 | 1.469 (2) | C14—C16 | 1.513 (3) |
N4—H4 | 0.8600 | C14—H14 | 1.029 (19) |
N5—C15 | 1.340 (2) | C16—C17 | 1.377 (3) |
N5—C12 | 1.456 (2) | C16—C21 | 1.382 (3) |
N5—H5 | 0.8600 | C17—C18 | 1.390 (3) |
C6—C11 | 1.383 (3) | C17—H17 | 0.9300 |
C6—C7 | 1.386 (4) | C18—C19 | 1.381 (3) |
C6—H6 | 0.9300 | C18—H18 | 0.9300 |
C7—C8 | 1.340 (4) | C19—C20 | 1.378 (3) |
C7—H7 | 0.9300 | C20—C21 | 1.379 (3) |
C8—C9 | 1.374 (5) | C20—H20 | 0.9300 |
C8—H8 | 0.9300 | C21—H21 | 0.9300 |
C9—C10 | 1.393 (4) | C22—H22A | 0.9600 |
C9—H9 | 0.9300 | C22—H22B | 0.9600 |
C10—C11 | 1.373 (3) | C22—H22C | 0.9600 |
C12—O2—H2 | 113.2 (17) | C12—C13—H13B | 108.1 (12) |
C19—O3—C22 | 118.80 (17) | H13A—C13—H13B | 109.9 (17) |
C15—N4—C14 | 124.10 (16) | N4—C14—C16 | 109.86 (15) |
C15—N4—H4 | 117.9 | N4—C14—C13 | 106.90 (16) |
C14—N4—H4 | 117.9 | C16—C14—C13 | 116.45 (17) |
C15—N5—C12 | 125.57 (15) | N4—C14—H14 | 107.9 (10) |
C15—N5—H5 | 117.2 | C16—C14—H14 | 107.9 (11) |
C12—N5—H5 | 117.2 | C13—C14—H14 | 107.6 (11) |
C11—C6—C7 | 120.6 (3) | N4—C15—N5 | 118.50 (16) |
C11—C6—H6 | 119.7 | N4—C15—S1 | 121.63 (14) |
C7—C6—H6 | 119.7 | N5—C15—S1 | 119.87 (13) |
C8—C7—C6 | 121.1 (3) | C17—C16—C21 | 118.15 (18) |
C8—C7—H7 | 119.4 | C17—C16—C14 | 123.44 (17) |
C6—C7—H7 | 119.4 | C21—C16—C14 | 118.37 (19) |
C7—C8—C9 | 119.6 (3) | C16—C17—C18 | 121.58 (18) |
C7—C8—H8 | 120.2 | C16—C17—H17 | 119.2 |
C9—C8—H8 | 120.2 | C18—C17—H17 | 119.2 |
C8—C9—C10 | 120.0 (3) | C19—C18—C17 | 119.23 (19) |
C8—C9—H9 | 120.0 | C19—C18—H18 | 120.4 |
C10—C9—H9 | 120.0 | C17—C18—H18 | 120.4 |
C11—C10—C9 | 120.7 (3) | O3—C19—C20 | 115.45 (18) |
C11—C10—H10 | 119.6 | O3—C19—C18 | 124.77 (19) |
C9—C10—H10 | 119.6 | C20—C19—C18 | 119.79 (18) |
C10—C11—C6 | 118.0 (2) | C19—C20—C21 | 120.2 (2) |
C10—C11—C12 | 121.35 (19) | C19—C20—H20 | 119.9 |
C6—C11—C12 | 120.7 (2) | C21—C20—H20 | 119.9 |
O2—C12—N5 | 109.84 (16) | C20—C21—C16 | 121.1 (2) |
O2—C12—C11 | 106.63 (16) | C20—C21—H21 | 119.5 |
N5—C12—C11 | 109.27 (15) | C16—C21—H21 | 119.5 |
O2—C12—C13 | 111.57 (17) | O3—C22—H22A | 109.5 |
N5—C12—C13 | 108.21 (15) | O3—C22—H22B | 109.5 |
C11—C12—C13 | 111.30 (16) | H22A—C22—H22B | 109.5 |
C14—C13—C12 | 110.72 (17) | O3—C22—H22C | 109.5 |
C14—C13—H13A | 108.1 (12) | H22A—C22—H22C | 109.5 |
C12—C13—H13A | 110.4 (12) | H22B—C22—H22C | 109.5 |
C14—C13—H13B | 109.6 (12) | ||
C11—C6—C7—C8 | −0.2 (4) | C12—C13—C14—N4 | 56.3 (2) |
C6—C7—C8—C9 | −0.5 (5) | C12—C13—C14—C16 | 179.46 (17) |
C7—C8—C9—C10 | 0.5 (5) | C14—N4—C15—N5 | 4.5 (3) |
C8—C9—C10—C11 | 0.1 (4) | C14—N4—C15—S1 | −174.57 (15) |
C9—C10—C11—C6 | −0.8 (4) | C12—N5—C15—N4 | 3.2 (3) |
C9—C10—C11—C12 | −179.5 (2) | C12—N5—C15—S1 | −177.72 (15) |
C7—C6—C11—C10 | 0.9 (4) | N4—C14—C16—C17 | 69.8 (2) |
C7—C6—C11—C12 | 179.6 (2) | C13—C14—C16—C17 | −51.9 (3) |
C15—N5—C12—O2 | −101.5 (2) | N4—C14—C16—C21 | −107.7 (2) |
C15—N5—C12—C11 | 141.84 (19) | C13—C14—C16—C21 | 130.6 (2) |
C15—N5—C12—C13 | 20.5 (3) | C21—C16—C17—C18 | −1.7 (3) |
C10—C11—C12—O2 | −161.1 (2) | C14—C16—C17—C18 | −179.17 (18) |
C6—C11—C12—O2 | 20.3 (2) | C16—C17—C18—C19 | 0.4 (3) |
C10—C11—C12—N5 | −42.4 (3) | C22—O3—C19—C20 | 175.4 (2) |
C6—C11—C12—N5 | 138.9 (2) | C22—O3—C19—C18 | −4.4 (3) |
C10—C11—C12—C13 | 77.0 (3) | C17—C18—C19—O3 | −179.22 (18) |
C6—C11—C12—C13 | −101.6 (2) | C17—C18—C19—C20 | 1.0 (3) |
O2—C12—C13—C14 | 70.8 (2) | O3—C19—C20—C21 | 179.17 (19) |
N5—C12—C13—C14 | −50.2 (2) | C18—C19—C20—C21 | −1.0 (3) |
C11—C12—C13—C14 | −170.27 (18) | C19—C20—C21—C16 | −0.3 (3) |
C15—N4—C14—C16 | −161.66 (18) | C17—C16—C21—C20 | 1.6 (3) |
C15—N4—C14—C13 | −34.5 (3) | C14—C16—C21—C20 | 179.26 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···S1i | 0.88 (3) | 2.51 (3) | 3.3688 (18) | 169 (2) |
C14—H14···S1i | 1.030 (19) | 2.695 (18) | 3.666 (2) | 157.0 (14) |
N4—H4···S1ii | 0.86 | 2.47 | 3.2990 (19) | 163 |
N5—H5···O3iii | 0.86 | 2.18 | 3.032 (2) | 169 |
C20—H20···S1iv | 0.93 | 2.86 | 3.772 (2) | 166 |
C6—H6···O2 | 0.93 | 2.33 | 2.671 (3) | 101 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z−1/2; (iv) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H18N2O2S |
Mr | 314.39 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 12.6016 (3), 6.3375 (1), 20.6637 (4) |
β (°) | 97.890 (2) |
V (Å3) | 1634.64 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.18 × 0.16 × 0.16 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.963, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18135, 3547, 2566 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.115, 1.08 |
No. of reflections | 3547 |
No. of parameters | 215 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.17 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···S1i | 0.88 (3) | 2.51 (3) | 3.3688 (18) | 169 (2) |
C14—H14···S1i | 1.030 (19) | 2.695 (18) | 3.666 (2) | 157.0 (14) |
N4—H4···S1ii | 0.86 | 2.47 | 3.2990 (19) | 163 |
N5—H5···O3iii | 0.86 | 2.18 | 3.032 (2) | 169 |
C20—H20···S1iv | 0.93 | 2.86 | 3.772 (2) | 166 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z−1/2; (iv) x, −y+3/2, z+1/2. |
Acknowledgements
The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.
References
Cheng, C. C. (1969). Prog. Med. Chem. 6, 67–134. CrossRef CAS PubMed Google Scholar
Falco, E. A., Roth, B. & Hitchings, G. H. (1961). J. Org. Chem. 26, 1143–1146. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Howells, R. E., Tinsley, J., Devaney, E. & Smith, G. (1981). Acta Trop. 38, 289–304. CAS PubMed Web of Science Google Scholar
Jonak, J. P., Zakrzewski, S. F. & Mead, L. H. (1972). J. Med. Chem. 15, 662–664. CrossRef CAS PubMed Web of Science Google Scholar
Matolcsy, G. (1971). World. Rev. Pest. Control, 10, 50–59. CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Paghdar, D. J., Akbari, J. D., Tala, S. D., Dhaduk, M. F. & Joshi, H. S. (2007). Indian J. Heterocycl. Chem. 17, 113–116. CAS Google Scholar
Pershin, G. N., Sherbakova, L. I., Zykova, T. N. & Sokolova, V. N. (1972). Farmakol. Toksikol. (Moscow), 35, 466–471. CAS Google Scholar
Prikazchikova, L. P., Khutova, B. M., Vladimirtsev, I. F., Boldyrev, I. V. & Zhuravskaya, N. I. (1975). Fiziol. Akt. Veshchestva, 7, 84–87. CAS Google Scholar
Ram, V. J. (1990). Arch. Pharm. 323, 895–899. CrossRef CAS Google Scholar
Scott, M. D. B., Ulbrient, T. L. V., Rogers, M. L., Chu, E. & Rose, C. (1959). Cancer Res. 19, 15–19. PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Yamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, o55–o57. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidines, being an integral part of DNA and RNA, exhibit diverse pharmacological properties as effective bactericide, fungicide, viricide, insecticide, and medicinal agents (Cheng, 1969; Scott et al., 1959). Certain pyrimidines and annulated pyrimidine derivatives are also known to display anticancer, antimalarial, antileishmanial and antifilarial activities (Jonak et al., 1972; Falco et al. 1961; Ram, 1990; Howells et al., 1981). Pyrimidines and thio-pyrimidines play an essential role in several biological processes and have a considerable chemical and pharmacological importance. In particular, the pyrimidine nucleus can be found in a broad variety of antibacterial and antitumor agents as well as in agrochemical and veterinary products (Pershin et al., 1972; Matolcsy, 1971; Prikazchikova et al., 1975).
The asymmetric unit of the 4-hydroxy-6-(4-methoxyphenyl)-4-phenyl tetrahydropyrimidine-2(1H)-thione contains one molecule (Fig. 1). The thio-tetrahydropyrimidine ring system is not coplanar with the benzene ring and methoxyphenyl ring system; the dihedral angle between the two planes 65.58 (13)° and 89.18 (10)° respectively. The crystal structure shows intermolecular O2—H2···S1, N4—H4···S1, N5—H5···O3, C14—H14···S1 & C20—H20···S1 and C6—H6···S1 intramolecular hydrogen bonds. Bond distances and bond angles within the aromatic rings are in agreement with those observed in a related structure (Yamin et al., 2005).