organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Di­methyl 2-(1H-pyrrole-2-carboxamido)­butane­dioate

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 22 February 2011; accepted 24 February 2011; online 2 March 2011)

The title compound, C11H14N2O5, was synthesized by condensation of (RS)-2-amino­succinic acid dimethyl ester with 2-trichloro­acetyl­pyrrole at room temperature. The amide group is twisted by 7.4 (1)° from the plane of the pyrrole ring. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into chains extending along the c axis.

Related literature

For the bioactivity of pyrrole derivatives, see: Fabio et al. (2007[Fabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254-2259.]); Banwell et al. (2006[Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.]). For related structures, see: Zeng et al. (2010[Zeng, X. C., Li, K. P., Hu, F. & Zheng, L. (2010). Acta Cryst. E66, o2051.]); Li et al. (2009[Li, D. D., Tang, G. H., Zeng, X. C., Huang, G. & Xu, X. Y. (2009). Acta Cryst. E65, o1865.]); Liu et al. (2006[Liu, P.-R., Zeng, X.-C. & Xu, S.-H. (2006). Acta Cryst. E62, o1181-o1183.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O5

  • Mr = 254.24

  • Monoclinic, P 21 /c

  • a = 9.1387 (8) Å

  • b = 15.2715 (11) Å

  • c = 9.6238 (9) Å

  • β = 105.750 (9)°

  • V = 1292.69 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.48 × 0.26 × 0.21 mm

Data collection
  • Oxford Gemini S Ultra area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.952, Tmax = 0.978

  • 5286 measured reflections

  • 2534 independent reflections

  • 1563 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.163

  • S = 1.05

  • 2534 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.96 2.804 (3) 167
N2—H2A⋯O1i 0.86 1.99 2.845 (3) 176
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrrole derivatives show various biological activities, for instance, antitumor activity (Banwell et al., 2006). Some of them are known as metabotropic receptor antagonists (Fabio et al., 2007). Herewith we present the title compound (I), which is a new pyrrole derivative.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in 1-benzyl-N-methyl-1H-pyrrole-2-carboxamide (Zeng et al., 2010) and 3-(1-ethyl-1H-pyrrole-2-carboxamido) propionic acid monohydrate (Li et al., 2009). In the crystal structure, enantiomorphous molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) into chains extended along the c axis (Fig. 2).

Related literature top

For the bioactivity of pyrrole derivatives, see: Fabio et al. (2007); Banwell et al. (2006). For related structures, see: Zeng et al. (2010); Li et al. (2009); Liu et al. (2006).

Experimental top

The hydrochloric acid salt of (RS)-2-aminosuccinic acid dimethyl ester (0.99 g, 5 mmol) and 2-trichloroacetylpyrrole (1.27 g, 6 mmol) were added to acetonitrile (12 ml), followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 12 h. After the reaction mixture was filtered, the filtrate was evaporated in vacuo, and then the residue was chromatographed over silica gel using EtOAc-petroleum ether (3:7 v/v) as eluting solvent and the title compound (I) was obtained as a light yellow solid (72.3% yield). Monoclinic crystals suitable for X-ray analysis (m.p. 384 K) grew over a period of five days when the EtOH solution of I was exposed to the air at room temperature.

Refinement top

All H atoms were positioned geometrically [C—H 0.93-0.98Å, N—H 0.86 Å] and refined using a riding model, with Uiso = 1.2-1.5 Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010; data reduction: CrysAlis PRO (Oxford Diffraction, 2010; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing viewed approximately along the a axis. Dashed lines indicate hydrogen bonds.
(RS)-Dimethyl 2-(1H-pyrrole-2-carboxamido)butanedioate top
Crystal data top
C11H14N2O5Dx = 1.306 Mg m3
Mr = 254.24Melting point: 384 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1387 (8) ÅCell parameters from 1891 reflections
b = 15.2715 (11) Åθ = 3.5–29.4°
c = 9.6238 (9) ŵ = 0.10 mm1
β = 105.750 (9)°T = 293 K
V = 1292.69 (19) Å3Prism, light yellow
Z = 40.48 × 0.26 × 0.21 mm
F(000) = 536
Data collection top
Oxford Gemini S Ultra area-detector
diffractometer
2534 independent reflections
Radiation source: fine-focus sealed tube1563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 117
Tmin = 0.952, Tmax = 0.978k = 1518
5286 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.3001P]
where P = (Fo2 + 2Fc2)/3
2534 reflections(Δ/σ)max = 0.012
165 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H14N2O5V = 1292.69 (19) Å3
Mr = 254.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1387 (8) ŵ = 0.10 mm1
b = 15.2715 (11) ÅT = 293 K
c = 9.6238 (9) Å0.48 × 0.26 × 0.21 mm
β = 105.750 (9)°
Data collection top
Oxford Gemini S Ultra area-detector
diffractometer
2534 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1563 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.978Rint = 0.032
5286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
2534 reflectionsΔρmin = 0.21 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8723 (2)0.22381 (12)0.93777 (18)0.0598 (6)
N20.8981 (2)0.20231 (12)0.7148 (2)0.0454 (5)
H2A0.88700.22260.62920.055*
N10.7370 (2)0.36401 (14)0.6269 (2)0.0552 (6)
H1A0.77300.34390.55940.066*
C50.8472 (3)0.24881 (15)0.8093 (2)0.0422 (6)
C40.7615 (3)0.32843 (16)0.7622 (3)0.0429 (6)
O30.9219 (2)0.02724 (12)0.8003 (3)0.0796 (7)
O51.2703 (2)0.15643 (15)0.5747 (3)0.0843 (7)
C70.8551 (3)0.04766 (17)0.7534 (3)0.0522 (7)
C30.6833 (3)0.37952 (17)0.8361 (3)0.0546 (7)
H30.67930.37120.93070.065*
C60.9717 (3)0.11846 (15)0.7531 (3)0.0482 (7)
H61.03860.12320.85150.058*
C91.2137 (3)0.15003 (18)0.6855 (4)0.0585 (7)
C81.0705 (3)0.09670 (17)0.6529 (3)0.0546 (7)
H8A1.09690.03500.66220.065*
H8B1.01270.10720.55380.065*
O20.7223 (2)0.05805 (14)0.7203 (3)0.0953 (9)
O41.2728 (3)0.18044 (18)0.8018 (3)0.1036 (9)
C20.6111 (3)0.44624 (19)0.7425 (4)0.0681 (9)
H20.54930.49000.76310.082*
C10.6480 (4)0.4351 (2)0.6160 (4)0.0718 (9)
H10.61680.47090.53510.086*
C110.8246 (4)0.1018 (2)0.8043 (4)0.0895 (11)
H11A0.76000.08860.86520.134*
H11B0.88630.15190.84180.134*
H11C0.76330.11440.70840.134*
C101.4150 (4)0.2024 (3)0.5989 (5)0.1034 (14)
H10A1.41060.25620.64900.155*
H10B1.43440.21470.50780.155*
H10C1.49510.16630.65590.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0845 (15)0.0672 (12)0.0320 (10)0.0113 (10)0.0231 (9)0.0068 (9)
N20.0597 (14)0.0481 (12)0.0324 (11)0.0102 (9)0.0190 (10)0.0027 (9)
N10.0586 (15)0.0614 (14)0.0459 (13)0.0154 (11)0.0147 (11)0.0060 (11)
C50.0451 (14)0.0481 (14)0.0354 (13)0.0034 (11)0.0143 (11)0.0020 (11)
C40.0429 (14)0.0483 (14)0.0377 (13)0.0000 (11)0.0113 (11)0.0031 (11)
O30.0615 (14)0.0542 (12)0.1168 (19)0.0094 (10)0.0136 (13)0.0197 (12)
O50.0604 (14)0.1133 (18)0.0853 (17)0.0004 (12)0.0300 (13)0.0117 (14)
C70.0528 (17)0.0549 (16)0.0487 (16)0.0091 (13)0.0135 (13)0.0059 (12)
C30.0487 (16)0.0610 (17)0.0569 (17)0.0007 (12)0.0192 (14)0.0126 (14)
C60.0551 (16)0.0492 (15)0.0398 (14)0.0068 (12)0.0122 (12)0.0003 (11)
C90.0544 (18)0.0568 (17)0.067 (2)0.0100 (13)0.0212 (16)0.0023 (15)
C80.0487 (16)0.0591 (16)0.0548 (17)0.0081 (12)0.0122 (13)0.0084 (13)
O20.0527 (14)0.0739 (15)0.156 (3)0.0068 (11)0.0223 (15)0.0351 (14)
O40.0874 (19)0.125 (2)0.097 (2)0.0370 (15)0.0233 (15)0.0456 (16)
C20.0446 (17)0.0597 (18)0.097 (3)0.0085 (13)0.0137 (17)0.0148 (17)
C10.069 (2)0.070 (2)0.073 (2)0.0214 (16)0.0127 (17)0.0125 (17)
C110.092 (3)0.0549 (19)0.117 (3)0.0051 (17)0.020 (2)0.0205 (19)
C100.057 (2)0.122 (3)0.138 (4)0.004 (2)0.038 (2)0.029 (3)
Geometric parameters (Å, º) top
O1—C51.254 (3)C3—H30.9300
N2—C51.333 (3)C6—C81.526 (3)
N2—C61.447 (3)C6—H60.9800
N2—H2A0.8600C9—O41.197 (4)
N1—C11.343 (3)C9—C81.500 (4)
N1—C41.372 (3)C8—H8A0.9700
N1—H1A0.8600C8—H8B0.9700
C5—C41.451 (3)C2—C11.360 (4)
C4—C31.378 (3)C2—H20.9300
O3—C71.317 (3)C1—H10.9300
O3—C111.452 (4)C11—H11A0.9600
O5—C91.310 (3)C11—H11B0.9600
O5—C101.458 (4)C11—H11C0.9600
C7—O21.179 (3)C10—H10A0.9600
C7—C61.519 (4)C10—H10B0.9600
C3—C21.401 (4)C10—H10C0.9600
C5—N2—C6121.4 (2)O4—C9—C8123.6 (3)
C5—N2—H2A119.3O5—C9—C8112.7 (3)
C6—N2—H2A119.3C9—C8—C6112.4 (2)
C1—N1—C4109.5 (2)C9—C8—H8A109.1
C1—N1—H1A125.3C6—C8—H8A109.1
C4—N1—H1A125.3C9—C8—H8B109.1
O1—C5—N2120.4 (2)C6—C8—H8B109.1
O1—C5—C4120.1 (2)H8A—C8—H8B107.8
N2—C5—C4119.5 (2)C1—C2—C3107.2 (2)
N1—C4—C3107.0 (2)C1—C2—H2126.4
N1—C4—C5124.3 (2)C3—C2—H2126.4
C3—C4—C5128.7 (2)N1—C1—C2108.9 (3)
C7—O3—C11117.4 (2)N1—C1—H1125.6
C9—O5—C10116.6 (3)C2—C1—H1125.6
O2—C7—O3123.8 (3)O3—C11—H11A109.5
O2—C7—C6125.1 (2)O3—C11—H11B109.5
O3—C7—C6111.0 (2)H11A—C11—H11B109.5
C4—C3—C2107.5 (3)O3—C11—H11C109.5
C4—C3—H3126.3H11A—C11—H11C109.5
C2—C3—H3126.3H11B—C11—H11C109.5
N2—C6—C7110.6 (2)O5—C10—H10A109.5
N2—C6—C8110.2 (2)O5—C10—H10B109.5
C7—C6—C8112.5 (2)H10A—C10—H10B109.5
N2—C6—H6107.8O5—C10—H10C109.5
C7—C6—H6107.8H10A—C10—H10C109.5
C8—C6—H6107.8H10B—C10—H10C109.5
O4—C9—O5123.7 (3)
C6—N2—C5—O15.4 (4)O2—C7—C6—N23.4 (4)
C6—N2—C5—C4174.2 (2)O3—C7—C6—N2174.5 (2)
C1—N1—C4—C30.5 (3)O2—C7—C6—C8120.3 (3)
C1—N1—C4—C5177.2 (2)O3—C7—C6—C861.8 (3)
O1—C5—C4—N1175.5 (2)C10—O5—C9—O41.1 (4)
N2—C5—C4—N14.9 (4)C10—O5—C9—C8176.2 (2)
O1—C5—C4—C38.5 (4)O4—C9—C8—C626.0 (4)
N2—C5—C4—C3171.0 (2)O5—C9—C8—C6156.8 (2)
C11—O3—C7—O23.1 (5)N2—C6—C8—C973.9 (3)
C11—O3—C7—C6178.9 (3)C7—C6—C8—C9162.1 (2)
N1—C4—C3—C20.2 (3)C4—C3—C2—C10.8 (3)
C5—C4—C3—C2176.3 (2)C4—N1—C1—C21.0 (3)
C5—N2—C6—C776.9 (3)C3—C2—C1—N11.1 (4)
C5—N2—C6—C8158.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.962.804 (3)167
N2—H2A···O1i0.861.992.845 (3)176
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2O5
Mr254.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1387 (8), 15.2715 (11), 9.6238 (9)
β (°) 105.750 (9)
V3)1292.69 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.26 × 0.21
Data collection
DiffractometerOxford Gemini S Ultra area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.952, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
5286, 2534, 1563
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.05
No. of reflections2534
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis PRO (Oxford Diffraction, 2010, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.962.804 (3)167
N2—H2A···O1i0.861.992.845 (3)176
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China, for financial support (grant No. 06300581).

References

First citationBanwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627–4638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254–2259.  Web of Science CrossRef PubMed Google Scholar
First citationLi, D. D., Tang, G. H., Zeng, X. C., Huang, G. & Xu, X. Y. (2009). Acta Cryst. E65, o1865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, P.-R., Zeng, X.-C. & Xu, S.-H. (2006). Acta Cryst. E62, o1181–o1183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, X. C., Li, K. P., Hu, F. & Zheng, L. (2010). Acta Cryst. E66, o2051.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds