organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-5-methyl­cyclo­hexyl cyclo­hex­yl(phen­yl)phosphinate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 2 March 2011; accepted 22 March 2011; online 31 March 2011)

In the title mol­ecule, C22H35O2P, the two cyclo­hexyl rings exhibit chair conformations. In the crystal, mol­ecules related by translation along the b axis are linked by the weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structure of a related P-chiral compound, see: Fu & Zhao (2010[Fu, B. & Zhao, C.-Q. (2010). Acta Cryst. E66, o859.]).

[Scheme 1]

Experimental

Crystal data
  • C22H35O2P

  • Mr = 362.47

  • Monoclinic, P 21

  • a = 11.4892 (13) Å

  • b = 5.8872 (6) Å

  • c = 16.3531 (17) Å

  • β = 94.696 (1)°

  • V = 1102.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.45 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART-1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.989

  • 5833 measured reflections

  • 3646 independent reflections

  • 2125 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.119

  • S = 0.92

  • 3646 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1493 Friedel pairs

  • Flack parameter: 0.19 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O2i 0.97 2.54 3.376 (5) 145
C17—H17⋯O2i 0.98 2.47 3.346 (5) 149
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our study of phenylphosphinates (Fu & Zhao, 2010), we present here the title compound (I) prepared from substitution of O-menthyl phenylphosphoryl chloride with cyclohexyl magnesium chloride.

In (I) (Fig. 1), the configuration of phosphorus atom was determined as R. The compound is comprised of fully extended substituents: cyclohexyl, menthyoxy and phenyl, which form an irregular tetrahedron. The geometric parameters of (I) are usual. The bond angle of C17—P—C11 is 108.65 (18)°, O1—P—C11 is 105.37 (15)°, O1—P—C17 is 102.47 (15)°, O2—P—O1 is 113.94 (16)°, O2—P—C17 is 115.03 (18)° and O2—P—C11 is 110.65 (18) °.

In the crystal structure, the molecules related by translation along b axis are linked by the weak intermolecular C—H···O hydrogen bonds (Table 1) into chains.

Related literature top

For the crystal structure of a related P-chiral compound, see: Fu & Zhao (2010).

Experimental top

O-Menthyl phenylphosphoryl chloride (0.3 mmol) was added to a stirred ether solution of cyclohexyl magnesium chloride (0.6 mmol) under nitrogen and the mixture was stirred for 24 h at room temperature. After washing with water, the resulting solution was purified by preparative TLC on silica gel to afford optically pure product. The crystal suitable for X-ray diffraction was obtained from recrystallization with ethyl ether/hexane.

Refinement top

All H atoms were fixed geometrically and treated as riding, with C—H = 0.93 - 0.98 Å and with Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
2-Isopropyl-5-methylcyclohexyl cyclohexyl(phenyl)phosphinate top
Crystal data top
C22H35O2PF(000) = 396
Mr = 362.47Dx = 1.092 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1233 reflections
a = 11.4892 (13) Åθ = 2.5–26.0°
b = 5.8872 (6) ŵ = 0.14 mm1
c = 16.3531 (17) ÅT = 298 K
β = 94.696 (1)°Block, colourless
V = 1102.4 (2) Å30.45 × 0.11 × 0.08 mm
Z = 2
Data collection top
Bruker SMART-1000 CCD area-detector
diffractometer
3646 independent reflections
Radiation source: fine-focus sealed tube2125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1310
Tmin = 0.941, Tmax = 0.989k = 66
5833 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
3646 reflectionsΔρmax = 0.15 e Å3
229 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1493 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.19 (14)
Crystal data top
C22H35O2PV = 1102.4 (2) Å3
Mr = 362.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.4892 (13) ŵ = 0.14 mm1
b = 5.8872 (6) ÅT = 298 K
c = 16.3531 (17) Å0.45 × 0.11 × 0.08 mm
β = 94.696 (1)°
Data collection top
Bruker SMART-1000 CCD area-detector
diffractometer
3646 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2125 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.989Rint = 0.051
5833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.15 e Å3
S = 0.92Δρmin = 0.16 e Å3
3646 reflectionsAbsolute structure: Flack (1983), 1493 Friedel pairs
229 parametersAbsolute structure parameter: 0.19 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23767 (17)0.3099 (5)0.23127 (13)0.0631 (7)
O20.0655 (2)0.5689 (4)0.26004 (16)0.0743 (8)
P10.11424 (7)0.33939 (18)0.26861 (5)0.0574 (3)
C10.3668 (4)0.8147 (10)0.1266 (3)0.1001 (15)
H10.35030.93070.16710.120*
C20.2885 (3)0.6094 (8)0.1401 (2)0.0784 (13)
H2A0.20730.65610.13300.094*
H2B0.30080.49470.09910.094*
C30.3131 (3)0.5077 (7)0.2245 (2)0.0656 (11)
H30.29410.62040.26540.079*
C40.4397 (3)0.4344 (8)0.2429 (3)0.0788 (13)
H40.45560.31990.20170.095*
C50.5175 (4)0.6387 (9)0.2281 (3)0.1134 (18)
H5A0.50590.75350.26920.136*
H5B0.59860.59130.23510.136*
C60.4939 (4)0.7439 (10)0.1434 (3)0.118 (2)
H6A0.54360.87590.13920.141*
H6B0.51360.63510.10220.141*
C70.3404 (5)0.9182 (10)0.0410 (3)0.141 (2)
H7A0.36260.81290.00030.211*
H7B0.38371.05660.03710.211*
H7C0.25830.94980.03220.211*
C80.4657 (3)0.3225 (10)0.3271 (3)0.0899 (13)
H80.40930.19860.33050.108*
C90.5883 (4)0.2143 (10)0.3369 (4)0.138 (2)
H9A0.60150.12940.28840.207*
H9B0.59360.11450.38350.207*
H9C0.64620.33160.34500.207*
C100.4503 (4)0.4809 (11)0.4004 (3)0.1130 (18)
H10A0.50760.59980.40140.170*
H10B0.46030.39550.45050.170*
H10C0.37350.54620.39500.170*
C110.1394 (3)0.2629 (7)0.3751 (2)0.0579 (11)
C120.1898 (3)0.0589 (8)0.4006 (3)0.0777 (12)
H120.20960.04630.36170.093*
C130.2111 (4)0.0089 (9)0.4834 (3)0.0985 (16)
H130.24650.12780.49950.118*
C140.1804 (5)0.1593 (12)0.5412 (3)0.1094 (18)
H140.19330.12510.59670.131*
C150.1302 (4)0.3623 (12)0.5164 (3)0.1083 (17)
H150.11020.46660.55560.130*
C160.1088 (3)0.4143 (8)0.4334 (2)0.0821 (14)
H160.07380.55160.41760.099*
C170.0280 (3)0.1208 (6)0.2167 (2)0.0535 (9)
H170.07000.02320.22540.064*
C180.0112 (4)0.1628 (9)0.1254 (2)0.0875 (14)
H18A0.08670.16610.10290.105*
H18B0.02560.30950.11530.105*
C190.0646 (4)0.0220 (11)0.0820 (2)0.1093 (17)
H19A0.07720.01420.02410.131*
H19B0.02380.16620.08710.131*
C200.1814 (4)0.0440 (10)0.1178 (3)0.1077 (17)
H20A0.22600.09440.10770.129*
H20B0.22510.16840.09130.129*
C210.1641 (3)0.0873 (8)0.2087 (3)0.0850 (15)
H21A0.12640.23340.21830.102*
H21B0.23960.09310.23120.102*
C220.0900 (3)0.0966 (8)0.2526 (2)0.0755 (13)
H22A0.13130.24020.24780.091*
H22B0.07760.05930.31040.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0564 (13)0.0584 (18)0.0767 (15)0.0131 (15)0.0192 (11)0.0118 (15)
O20.0739 (17)0.055 (2)0.096 (2)0.0069 (16)0.0223 (14)0.0092 (15)
P10.0537 (5)0.0531 (6)0.0667 (6)0.0016 (6)0.0136 (4)0.0013 (6)
C10.118 (4)0.091 (4)0.098 (3)0.049 (4)0.050 (3)0.018 (3)
C20.081 (3)0.080 (3)0.078 (3)0.022 (3)0.025 (2)0.011 (2)
C30.064 (3)0.057 (3)0.078 (3)0.024 (2)0.021 (2)0.018 (2)
C40.053 (3)0.083 (3)0.102 (3)0.020 (2)0.016 (2)0.037 (3)
C50.079 (3)0.119 (5)0.146 (5)0.050 (3)0.031 (3)0.034 (4)
C60.106 (4)0.126 (5)0.130 (5)0.055 (3)0.060 (3)0.032 (4)
C70.193 (6)0.128 (6)0.109 (4)0.060 (5)0.062 (4)0.013 (4)
C80.063 (2)0.088 (3)0.116 (4)0.007 (3)0.013 (2)0.017 (4)
C90.083 (3)0.115 (5)0.208 (6)0.013 (3)0.039 (4)0.046 (4)
C100.110 (4)0.134 (5)0.093 (3)0.004 (3)0.004 (3)0.026 (4)
C110.051 (2)0.063 (3)0.061 (2)0.0008 (19)0.0085 (18)0.005 (2)
C120.088 (3)0.076 (3)0.068 (3)0.005 (3)0.003 (2)0.007 (2)
C130.112 (4)0.099 (4)0.080 (3)0.007 (3)0.024 (3)0.011 (3)
C140.129 (4)0.132 (6)0.065 (3)0.011 (4)0.003 (3)0.001 (4)
C150.131 (4)0.125 (6)0.072 (3)0.005 (4)0.028 (3)0.023 (4)
C160.090 (3)0.088 (4)0.071 (3)0.001 (3)0.021 (2)0.014 (3)
C170.047 (2)0.053 (2)0.062 (2)0.0024 (18)0.0107 (17)0.0018 (19)
C180.085 (3)0.116 (4)0.061 (3)0.025 (3)0.007 (2)0.000 (3)
C190.104 (4)0.156 (5)0.067 (3)0.027 (3)0.001 (3)0.023 (3)
C200.074 (3)0.140 (5)0.104 (4)0.027 (3)0.019 (3)0.012 (3)
C210.053 (2)0.096 (4)0.106 (3)0.017 (2)0.003 (2)0.003 (3)
C220.052 (2)0.101 (4)0.074 (3)0.011 (3)0.0116 (19)0.007 (3)
Geometric parameters (Å, º) top
O1—C31.461 (4)C10—H10A0.9600
O1—P11.599 (2)C10—H10B0.9600
O2—P11.465 (3)C10—H10C0.9600
P1—C171.794 (4)C11—C161.372 (5)
P1—C111.799 (4)C11—C121.382 (5)
C1—C61.523 (6)C12—C131.388 (5)
C1—C21.533 (6)C12—H120.9300
C1—C71.534 (6)C13—C141.362 (7)
C1—H10.9800C13—H130.9300
C2—C31.510 (5)C14—C151.374 (7)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.393 (6)
C3—C41.523 (5)C15—H150.9300
C3—H30.9800C16—H160.9300
C4—C51.529 (6)C17—C181.511 (4)
C4—C81.535 (6)C17—C221.528 (4)
C4—H40.9800C17—H170.9800
C5—C61.521 (6)C18—C191.530 (6)
C5—H5A0.9700C18—H18A0.9700
C5—H5B0.9700C18—H18B0.9700
C6—H6A0.9700C19—C201.513 (5)
C6—H6B0.9700C19—H19A0.9700
C7—H7A0.9600C19—H19B0.9700
C7—H7B0.9600C20—C211.506 (5)
C7—H7C0.9600C20—H20A0.9700
C8—C101.540 (6)C20—H20B0.9700
C8—C91.542 (6)C21—C221.520 (5)
C8—H80.9800C21—H21A0.9700
C9—H9A0.9600C21—H21B0.9700
C9—H9B0.9600C22—H22A0.9700
C9—H9C0.9600C22—H22B0.9700
C3—O1—P1119.5 (2)C8—C10—H10A109.5
O2—P1—O1114.04 (15)C8—C10—H10B109.5
O2—P1—C17115.11 (17)H10A—C10—H10B109.5
O1—P1—C17102.36 (14)C8—C10—H10C109.5
O2—P1—C11110.69 (17)H10A—C10—H10C109.5
O1—P1—C11105.39 (14)H10B—C10—H10C109.5
C17—P1—C11108.49 (17)C16—C11—C12118.6 (4)
C6—C1—C2108.9 (4)C16—C11—P1118.7 (3)
C6—C1—C7112.8 (4)C12—C11—P1122.7 (3)
C2—C1—C7111.7 (4)C11—C12—C13121.0 (4)
C6—C1—H1107.7C11—C12—H12119.5
C2—C1—H1107.7C13—C12—H12119.5
C7—C1—H1107.7C14—C13—C12120.2 (5)
C3—C2—C1112.1 (3)C14—C13—H13119.9
C3—C2—H2A109.2C12—C13—H13119.9
C1—C2—H2A109.2C13—C14—C15119.1 (5)
C3—C2—H2B109.2C13—C14—H14120.4
C1—C2—H2B109.2C15—C14—H14120.4
H2A—C2—H2B107.9C14—C15—C16121.0 (5)
O1—C3—C2108.5 (3)C14—C15—H15119.5
O1—C3—C4108.8 (3)C16—C15—H15119.5
C2—C3—C4113.4 (3)C11—C16—C15119.9 (4)
O1—C3—H3108.7C11—C16—H16120.0
C2—C3—H3108.7C15—C16—H16120.0
C4—C3—H3108.7C18—C17—C22110.4 (3)
C3—C4—C5107.9 (4)C18—C17—P1111.8 (3)
C3—C4—C8114.3 (3)C22—C17—P1111.0 (2)
C5—C4—C8114.0 (4)C18—C17—H17107.8
C3—C4—H4106.7C22—C17—H17107.8
C5—C4—H4106.7P1—C17—H17107.8
C8—C4—H4106.7C17—C18—C19111.3 (4)
C6—C5—C4113.7 (4)C17—C18—H18A109.4
C6—C5—H5A108.8C19—C18—H18A109.4
C4—C5—H5A108.8C17—C18—H18B109.4
C6—C5—H5B108.8C19—C18—H18B109.4
C4—C5—H5B108.8H18A—C18—H18B108.0
H5A—C5—H5B107.7C20—C19—C18111.8 (4)
C1—C6—C5111.9 (4)C20—C19—H19A109.3
C1—C6—H6A109.2C18—C19—H19A109.3
C5—C6—H6A109.2C20—C19—H19B109.3
C1—C6—H6B109.2C18—C19—H19B109.3
C5—C6—H6B109.2H19A—C19—H19B107.9
H6A—C6—H6B107.9C21—C20—C19110.3 (3)
C1—C7—H7A109.5C21—C20—H20A109.6
C1—C7—H7B109.5C19—C20—H20A109.6
H7A—C7—H7B109.5C21—C20—H20B109.6
C1—C7—H7C109.5C19—C20—H20B109.6
H7A—C7—H7C109.5H20A—C20—H20B108.1
H7B—C7—H7C109.5C20—C21—C22111.7 (4)
C4—C8—C10114.4 (4)C20—C21—H21A109.3
C4—C8—C9112.3 (4)C22—C21—H21A109.3
C10—C8—C9109.3 (4)C20—C21—H21B109.3
C4—C8—H8106.8C22—C21—H21B109.3
C10—C8—H8106.8H21A—C21—H21B108.0
C9—C8—H8106.8C17—C22—C21111.5 (3)
C8—C9—H9A109.5C17—C22—H22A109.3
C8—C9—H9B109.5C21—C22—H22A109.3
H9A—C9—H9B109.5C17—C22—H22B109.3
C8—C9—H9C109.5C21—C22—H22B109.3
H9A—C9—H9C109.5H22A—C22—H22B108.0
H9B—C9—H9C109.5
C3—O1—P1—O225.3 (3)O2—P1—C11—C12177.1 (3)
C3—O1—P1—C17150.3 (3)O1—P1—C11—C1253.3 (3)
C3—O1—P1—C1196.4 (3)C17—P1—C11—C1255.7 (3)
C6—C1—C2—C355.2 (5)C16—C11—C12—C131.2 (6)
C7—C1—C2—C3179.5 (4)P1—C11—C12—C13178.0 (3)
P1—O1—C3—C293.0 (3)C11—C12—C13—C141.3 (7)
P1—O1—C3—C4143.1 (3)C12—C13—C14—C151.2 (8)
C1—C2—C3—O1178.3 (3)C13—C14—C15—C161.0 (8)
C1—C2—C3—C457.3 (5)C12—C11—C16—C150.9 (6)
O1—C3—C4—C5175.1 (3)P1—C11—C16—C15178.2 (3)
C2—C3—C4—C554.3 (5)C14—C15—C16—C110.9 (7)
O1—C3—C4—C857.0 (4)O2—P1—C17—C1860.0 (3)
C2—C3—C4—C8177.9 (4)O1—P1—C17—C1864.3 (3)
C3—C4—C5—C653.9 (5)C11—P1—C17—C18175.4 (3)
C8—C4—C5—C6178.1 (4)O2—P1—C17—C2263.8 (3)
C2—C1—C6—C554.5 (5)O1—P1—C17—C22171.9 (3)
C7—C1—C6—C5179.2 (4)C11—P1—C17—C2260.8 (3)
C4—C5—C6—C156.4 (6)C22—C17—C18—C1954.7 (5)
C3—C4—C8—C1064.6 (5)P1—C17—C18—C19178.8 (3)
C5—C4—C8—C1060.1 (5)C17—C18—C19—C2055.9 (5)
C3—C4—C8—C9170.0 (4)C18—C19—C20—C2155.8 (6)
C5—C4—C8—C965.3 (5)C19—C20—C21—C2256.0 (5)
O2—P1—C11—C162.0 (3)C18—C17—C22—C2155.1 (4)
O1—P1—C11—C16125.8 (3)P1—C17—C22—C21179.7 (3)
C17—P1—C11—C16125.2 (3)C20—C21—C22—C1756.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.972.543.376 (5)145
C17—H17···O2i0.982.473.346 (5)149
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H35O2P
Mr362.47
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)11.4892 (13), 5.8872 (6), 16.3531 (17)
β (°) 94.696 (1)
V3)1102.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.45 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.941, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
5833, 3646, 2125
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.119, 0.92
No. of reflections3646
No. of parameters229
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16
Absolute structureFlack (1983), 1493 Friedel pairs
Absolute structure parameter0.19 (14)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.972.543.376 (5)145
C17—H17···O2i0.982.473.346 (5)149
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We acknowledge financial support by the Natural Science Foundation of China (grant No. 20772055).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, B. & Zhao, C.-Q. (2010). Acta Cryst. E66, o859.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds