metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(3,5-Di­iodo-2-oxido­benzyl­­idene-κO)-4-methyl­benzohydrazidato-κ2N′,O](methanol-κO)(methano­lato-κO)oxidovanadium(V)

aCollege of Chemistry and Biology Engineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: liulin_ycu@126.com

(Received 17 March 2011; accepted 19 March 2011; online 26 March 2011)

In the title mol­ecule, [V(C15H10I2N2O2)(CH3O)O(CH3OH)], the VV atom is coordinated by one N and two O atoms from an N′-(3,5-diiodo-2-oxidobenzyl­idene-κO)-4-methyl­benzo­hydra­zidate (L) ligand, one oxide O atom, one methano­late [V—O = 1.761 (3) Å] and one methanol [V—O = 2.383 (4) Å] O atom in a distorted octa­hedral geometry. In the L ligand, the two benzene rings are nearly parallel, forming a dihedral angle of 2.0 (1)°. In the crystal, inter­molecular O—H⋯N hydrogen bonds link pairs of mol­ecules into centrosymmetric dimers which exhibit ππ inter­actions between the aromatic rings [centroid–centroid distance = 3.677 (5) Å].

Related literature

For background to oxidovanadium complexes, see: Chohan et al. (2010[Chohan, Z. H., Sumrra, S. H., Youssoufi, M. H. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 2739-2747.]); Chohan & Sumrra (2010[Chohan, Z. H. & Sumrra, S. H. (2010). J. Enzyme Inhib. Med. Chem. 25, 599-607.]); Sharma et al. (2010[Sharma, N., Kumari, M., Kumar, V., Chaudhry, S. C. & Kanwar, S. S. (2010). J. Coord. Chem. 63, 1940-1950.]); Tian et al. (2010[Tian, J. A., Li, D. L., Zhai, F. Y., Wang, X. H. & Li, R. (2010). Med. Chem. Res. 19, 1162-1173.]). For similar oxidovanadium(V) complexes, see: Wang (2011[Wang, F.-M. (2011). Acta Cryst. E67, m433-m434.]); Rajak et al. (2000[Rajak, K. K., Mondal, S. & Rath, S. P. (2000). Polyhedron, 19, 931-936.]); Mondal et al. (2009[Mondal, B., Drew, M. G. B. & Ghosh, T. (2009). Inorg. Chim. Acta, 362, 3303-3308.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C15H10I2N2O2)(CH3O)O(CH4O)]

  • Mr = 634.07

  • Triclinic, [P \overline 1]

  • a = 7.890 (5) Å

  • b = 10.030 (6) Å

  • c = 13.628 (8) Å

  • α = 81.857 (5)°

  • β = 84.777 (6)°

  • γ = 85.286 (5)°

  • V = 1060.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.41 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.595, Tmax = 0.685

  • 7706 measured reflections

  • 4283 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.090

  • S = 1.02

  • 4283 reflections

  • 250 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N2i 0.85 (4) 2.03 (5) 2.858 (5) 168 (8)
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been focused on the synthesis, structures, and biological properties of oxovanadium complexes (Chohan et al., 2010; Chohan & Sumrra, 2010; Sharma et al., 2010; Tian et al., 2010). The present paper reports the crystal structure of the title new oxovanadium complex (I).

In (I) (Fig. 1), [OVL(OCH3)(CH3OH)] (H2L = 3,5-diiodosalicylaldehide (4-methylbenzoyl)hydrazonic acid), the V center is coordinated by one N and two O atoms from L, one oxo O atom, and two O atoms from the methoxy [V—O 1.761 (3) Å] and methanol [V—O 2.383 (4) Å] ligands, respectively, in a distorted octahedral geometry. In the ligand L, two benzene rings are nearly parallel forming a dihedral angle of 2.0 (1)°. The deviation of the V atom from the least-squares plane defined by the three donor atoms of the hydrazone ligand and the methoxy O atom towards the oxo O atom is 0.311 (2) Å. The bond lengths and bond angles related to the V atom are normal and correspond to those observed in the related compounds (Wang, 2011; Rajak et al., 2000; Mondal et al., 2009).

In the crystal structure (Fig. 2), intermolecular O—H···N hydrogen bonds (Table 1) link two molecules into centrosymmetric dimer which exhibits π-π interaction between the aromatic rings [centroid-to-centroid distance of 3.677 (5) Å].

Related literature top

For background to oxidovanadium complexes, see: Chohan et al. (2010); Chohan & Sumrra (2010); Sharma et al. (2010); Tian et al. (2010). For similar oxidovanadium(V) complexes, see: Wang (2011); Rajak et al. (2000); Mondal et al. (2009).

Experimental top

Equimolar quantities (0.1 mmol each) of 3,5-diiodosalicylaldehyde, 4-methylbenzohydrazide, and VOSO4 were mixed and stirred in methanol for 30 min at reflux. After keeping the filtrate in air for a few days, red block crystals were formed.

Refinement top

Atom H4 was located in a difference Fourier map and refined with O—H distance restrained to 0.85 (4) Å, and Uiso(H) = 2Ueq(O). Other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing the atomic numbering and 30% probability ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing of (I) viewed approximately down the c axis and showing hydrogen-bonded (dashed lines) dimers.
[N'-(3,5-Diiodo-2-oxidobenzylidene-κO)-4-methylbenzohydrazidato- κ2N',O](methanol-κO)(methanolato- κO)oxidovanadium(V) top
Crystal data top
[V(C15H10I2N2O2)(CH3O)O(CH4O)]Z = 2
Mr = 634.07F(000) = 604
Triclinic, P1Dx = 1.986 Mg m3
a = 7.890 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.030 (6) ÅCell parameters from 2583 reflections
c = 13.628 (8) Åθ = 2.7–25.0°
α = 81.857 (5)°µ = 3.41 mm1
β = 84.777 (6)°T = 298 K
γ = 85.286 (5)°Block, red
V = 1060.5 (11) Å30.17 × 0.13 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4283 independent reflections
Radiation source: fine-focus sealed tube3146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.595, Tmax = 0.685k = 1212
7706 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.03P)2 + 1.6979P]
where P = (Fo2 + 2Fc2)/3
4283 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 1.00 e Å3
1 restraintΔρmin = 1.01 e Å3
Crystal data top
[V(C15H10I2N2O2)(CH3O)O(CH4O)]γ = 85.286 (5)°
Mr = 634.07V = 1060.5 (11) Å3
Triclinic, P1Z = 2
a = 7.890 (5) ÅMo Kα radiation
b = 10.030 (6) ŵ = 3.41 mm1
c = 13.628 (8) ÅT = 298 K
α = 81.857 (5)°0.17 × 0.13 × 0.12 mm
β = 84.777 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4283 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3146 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.685Rint = 0.026
7706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.00 e Å3
4283 reflectionsΔρmin = 1.01 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.23465 (11)0.25458 (7)0.54517 (6)0.0344 (2)
I10.54984 (5)0.39607 (4)0.86399 (3)0.06551 (15)
I20.39530 (6)0.20017 (4)0.87434 (3)0.06716 (16)
N10.2307 (5)0.0559 (4)0.5077 (3)0.0311 (9)
N20.1714 (5)0.0473 (4)0.4152 (3)0.0346 (9)
O10.1488 (5)0.2762 (3)0.4147 (2)0.0423 (8)
O20.2580 (5)0.1637 (3)0.6730 (2)0.0428 (8)
O30.4296 (4)0.2723 (3)0.5122 (3)0.0497 (9)
O40.0568 (5)0.2139 (3)0.5921 (3)0.0439 (8)
O50.1603 (4)0.4154 (3)0.5753 (3)0.0417 (8)
C10.3464 (6)0.0661 (4)0.6552 (3)0.0348 (11)
C20.4118 (6)0.1917 (5)0.7000 (4)0.0379 (11)
H20.41560.26670.66660.046*
C30.4699 (6)0.2047 (5)0.7927 (4)0.0410 (12)
C40.4695 (7)0.0928 (5)0.8431 (4)0.0459 (13)
H4A0.51290.10160.90510.055*
C50.4040 (6)0.0303 (5)0.7998 (4)0.0394 (12)
C60.3362 (6)0.0472 (5)0.7069 (3)0.0344 (11)
C70.2817 (6)0.0561 (4)0.5582 (4)0.0337 (11)
H70.27680.13530.53070.040*
C80.1344 (6)0.1705 (5)0.3713 (4)0.0353 (11)
C90.0718 (6)0.1932 (5)0.2712 (4)0.0378 (11)
C100.0142 (7)0.3222 (5)0.2310 (4)0.0489 (14)
H100.01720.39390.26710.059*
C110.0475 (7)0.3452 (6)0.1377 (4)0.0585 (16)
H110.08740.43210.11280.070*
C120.0512 (7)0.2434 (7)0.0813 (4)0.0559 (15)
C130.0081 (8)0.1157 (6)0.1213 (4)0.0622 (17)
H130.00790.04470.08420.075*
C140.0677 (8)0.0905 (6)0.2149 (4)0.0521 (14)
H140.10540.00310.24000.062*
C150.1196 (9)0.2677 (8)0.0205 (5)0.083 (2)
H15A0.02670.26220.07070.125*
H15B0.17810.35580.03010.125*
H15C0.19750.20060.02520.125*
C160.2549 (9)0.5282 (6)0.5792 (6)0.076 (2)
H16A0.30140.51990.64270.114*
H16B0.18150.60940.57020.114*
H16C0.34620.53180.52750.114*
C170.1589 (9)0.2807 (7)0.6648 (5)0.075 (2)
H17A0.10850.26160.72730.112*
H17B0.27160.24910.67240.112*
H17C0.16540.37630.64370.112*
H40.087 (10)0.134 (3)0.599 (6)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0406 (5)0.0279 (4)0.0370 (5)0.0040 (3)0.0089 (4)0.0077 (3)
I10.0621 (3)0.0531 (2)0.0724 (3)0.00130 (19)0.0126 (2)0.0238 (2)
I20.0971 (4)0.0637 (3)0.0486 (3)0.0046 (2)0.0270 (2)0.02184 (19)
N10.035 (2)0.032 (2)0.028 (2)0.0051 (16)0.0065 (17)0.0065 (16)
N20.040 (2)0.036 (2)0.030 (2)0.0071 (17)0.0084 (18)0.0070 (17)
O10.058 (2)0.0309 (17)0.040 (2)0.0039 (15)0.0132 (17)0.0030 (14)
O20.061 (2)0.0335 (18)0.036 (2)0.0048 (16)0.0160 (17)0.0096 (14)
O30.044 (2)0.049 (2)0.060 (2)0.0112 (17)0.0022 (18)0.0205 (18)
O40.042 (2)0.044 (2)0.049 (2)0.0068 (17)0.0020 (17)0.0133 (17)
O50.046 (2)0.0276 (16)0.054 (2)0.0019 (14)0.0085 (17)0.0089 (15)
C10.036 (3)0.034 (2)0.034 (3)0.008 (2)0.007 (2)0.002 (2)
C20.038 (3)0.036 (3)0.040 (3)0.008 (2)0.004 (2)0.003 (2)
C30.036 (3)0.041 (3)0.043 (3)0.007 (2)0.005 (2)0.009 (2)
C40.046 (3)0.058 (3)0.034 (3)0.010 (3)0.012 (3)0.003 (2)
C50.045 (3)0.042 (3)0.034 (3)0.008 (2)0.010 (2)0.006 (2)
C60.033 (3)0.039 (3)0.032 (3)0.009 (2)0.002 (2)0.006 (2)
C70.036 (3)0.029 (2)0.038 (3)0.005 (2)0.005 (2)0.006 (2)
C80.033 (3)0.038 (3)0.035 (3)0.008 (2)0.003 (2)0.000 (2)
C90.033 (3)0.048 (3)0.032 (3)0.010 (2)0.003 (2)0.000 (2)
C100.050 (3)0.052 (3)0.045 (3)0.010 (3)0.010 (3)0.000 (3)
C110.054 (4)0.069 (4)0.050 (4)0.011 (3)0.016 (3)0.016 (3)
C120.041 (3)0.089 (5)0.036 (3)0.009 (3)0.009 (3)0.003 (3)
C130.076 (5)0.077 (4)0.037 (3)0.009 (4)0.016 (3)0.010 (3)
C140.065 (4)0.056 (3)0.036 (3)0.003 (3)0.013 (3)0.002 (2)
C150.075 (5)0.127 (6)0.046 (4)0.008 (4)0.023 (4)0.008 (4)
C160.073 (5)0.037 (3)0.122 (6)0.015 (3)0.007 (4)0.021 (3)
C170.069 (5)0.069 (4)0.087 (5)0.008 (3)0.013 (4)0.026 (4)
Geometric parameters (Å, º) top
V1—O31.580 (4)C5—C61.402 (6)
V1—O51.761 (3)C7—H70.9300
V1—O21.865 (3)C8—C91.475 (6)
V1—O11.938 (3)C9—C141.372 (7)
V1—N12.130 (4)C9—C101.389 (7)
V1—O42.383 (4)C10—C111.385 (7)
I1—C32.100 (5)C10—H100.9300
I2—C52.097 (5)C11—C121.366 (8)
N1—C71.286 (6)C11—H110.9300
N1—N21.400 (5)C12—C131.381 (8)
N2—C81.317 (6)C12—C151.514 (8)
O1—C81.302 (5)C13—C141.383 (7)
O2—C61.319 (5)C13—H130.9300
O4—C171.426 (7)C14—H140.9300
O4—H40.85 (4)C15—H15A0.9600
O5—C161.416 (6)C15—H15B0.9600
C1—C21.400 (6)C15—H15C0.9600
C1—C61.413 (6)C16—H16A0.9600
C1—C71.447 (6)C16—H16B0.9600
C2—C31.368 (7)C16—H16C0.9600
C2—H20.9300C17—H17A0.9600
C3—C41.396 (7)C17—H17B0.9600
C4—C51.373 (7)C17—H17C0.9600
C4—H4A0.9300
O3—V1—O5102.77 (17)N1—C7—C1123.9 (4)
O3—V1—O298.49 (18)N1—C7—H7118.1
O5—V1—O299.38 (15)C1—C7—H7118.1
O3—V1—O198.80 (18)O1—C8—N2121.8 (4)
O5—V1—O196.85 (15)O1—C8—C9117.6 (4)
O2—V1—O1152.99 (14)N2—C8—C9120.7 (4)
O3—V1—N196.54 (16)C14—C9—C10117.8 (5)
O5—V1—N1159.79 (16)C14—C9—C8122.4 (5)
O2—V1—N183.42 (14)C10—C9—C8119.8 (5)
O1—V1—N174.12 (14)C11—C10—C9120.7 (5)
O3—V1—O4176.43 (15)C11—C10—H10119.7
O5—V1—O480.79 (14)C9—C10—H10119.7
O2—V1—O481.04 (15)C12—C11—C10121.7 (6)
O1—V1—O480.42 (14)C12—C11—H11119.2
N1—V1—O479.89 (13)C10—C11—H11119.2
C7—N1—N2116.4 (4)C11—C12—C13117.3 (5)
C7—N1—V1127.8 (3)C11—C12—C15121.9 (6)
N2—N1—V1115.7 (3)C13—C12—C15120.8 (6)
C8—N2—N1108.5 (4)C12—C13—C14121.8 (6)
C8—O1—V1119.9 (3)C12—C13—H13119.1
C6—O2—V1133.0 (3)C14—C13—H13119.1
C17—O4—V1123.2 (3)C9—C14—C13120.7 (5)
C17—O4—H4107 (5)C9—C14—H14119.7
V1—O4—H4119 (6)C13—C14—H14119.7
C16—O5—V1128.6 (4)C12—C15—H15A109.5
C2—C1—C6119.8 (4)C12—C15—H15B109.5
C2—C1—C7119.1 (4)H15A—C15—H15B109.5
C6—C1—C7120.9 (4)C12—C15—H15C109.5
C3—C2—C1120.4 (4)H15A—C15—H15C109.5
C3—C2—H2119.8H15B—C15—H15C109.5
C1—C2—H2119.8O5—C16—H16A109.5
C2—C3—C4120.8 (5)O5—C16—H16B109.5
C2—C3—I1120.1 (4)H16A—C16—H16B109.5
C4—C3—I1119.0 (4)O5—C16—H16C109.5
C5—C4—C3119.0 (5)H16A—C16—H16C109.5
C5—C4—H4A120.5H16B—C16—H16C109.5
C3—C4—H4A120.5O4—C17—H17A109.5
C4—C5—C6122.2 (4)O4—C17—H17B109.5
C4—C5—I2120.3 (4)H17A—C17—H17B109.5
C6—C5—I2117.5 (3)O4—C17—H17C109.5
O2—C6—C5120.1 (4)H17A—C17—H17C109.5
O2—C6—C1122.1 (4)H17B—C17—H17C109.5
C5—C6—C1117.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N2i0.85 (4)2.03 (5)2.858 (5)168 (8)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[V(C15H10I2N2O2)(CH3O)O(CH4O)]
Mr634.07
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.890 (5), 10.030 (6), 13.628 (8)
α, β, γ (°)81.857 (5), 84.777 (6), 85.286 (5)
V3)1060.5 (11)
Z2
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.595, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
7706, 4283, 3146
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.090, 1.02
No. of reflections4283
No. of parameters250
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00, 1.01

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N2i0.85 (4)2.03 (5)2.858 (5)168 (8)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported by Yichun University.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Sumrra, S. H. (2010). J. Enzyme Inhib. Med. Chem. 25, 599–607.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChohan, Z. H., Sumrra, S. H., Youssoufi, M. H. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 2739–2747.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMondal, B., Drew, M. G. B. & Ghosh, T. (2009). Inorg. Chim. Acta, 362, 3303–3308.  CrossRef CAS Google Scholar
First citationRajak, K. K., Mondal, S. & Rath, S. P. (2000). Polyhedron, 19, 931–936.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, N., Kumari, M., Kumar, V., Chaudhry, S. C. & Kanwar, S. S. (2010). J. Coord. Chem. 63, 1940–1950.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, J. A., Li, D. L., Zhai, F. Y., Wang, X. H. & Li, R. (2010). Med. Chem. Res. 19, 1162–1173.  CrossRef CAS Google Scholar
First citationWang, F.-M. (2011). Acta Cryst. E67, m433–m434.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds