metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ3-2,4,6-tri-4-pyridyl-1,3,5-triazine)copper(I)] nitrate monohydrate]

aBiochemical Section of Key Laboratory of Functional Polymer Materials, Ministry of Education of China, Chemical School of Nankai University, 300071 Tianjin, People's Republic of China, and bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: changlianze@gmail.com

(Received 19 March 2011; accepted 28 March 2011; online 31 March 2011)

In the title compound, {[Cu(C18H12N6)]NO3·H2O}n, the CuI ion is coordinated by three N atoms [Cu—N 1.962 (3)–2.019 (3) Å] from three 2,4,6-tri-4-pyridyl-1,3,5-triazine (L) ligands. Each L ligand bridges three CuI atoms, generating a positively charged three-dimensional polymeric network with voids propagated along the b axis. These voids are filled with NO3 anions with a shortest Cu⋯O distance of 2.645 (3) Å and water mol­ecules, which are linked into negatively charged helical chains via inter­molecular O—H⋯O hydrogen bonds.

Related literature

For metal complexes with 2,4,6-tri­(4-pyrid­yl)-1,3,5-triazine ligands, see: Abrahams et al. (1999[Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475-1477.]); Dybtsev et al. (2004[Dybtsev, D. N., Chun, H. & Kim, K. (2004). Chem. Commun. pp. 1594-1595.]); Barrios et al. (2007[Barrios, L. A., Ribas, J. & Aromi, G. (2007). Inorg. Chem. 46, 7154-7162.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H12N6)]NO3·H2O

  • Mr = 455.90

  • Monoclinic, P 21 /c

  • a = 9.917 (2) Å

  • b = 8.7409 (17) Å

  • c = 22.499 (6) Å

  • β = 107.43 (3)°

  • V = 1860.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku SCX-mini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.736, Tmax = 1.000

  • 18394 measured reflections

  • 4262 independent reflections

  • 2717 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.125

  • S = 1.09

  • 4262 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4W—H4WA⋯O2 0.91 2.23 3.057 (7) 151
O4W—H4WB⋯O2i 0.92 2.23 3.082 (7) 155
Symmetry code: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As an interesting polydentate nitrogen donor ligand, 2,4,6-tris(4-pyridyl)-1,3,5-triazine(L) has attracted increasing attention in the synthesis of novel transition metal complexes with novel topology and properties (Abrahams et al. 1999; Dybtsev et al. 2004; Barrios et al. 2007). Our interest in 2,4,6-tris(4-pyridyl)-1,3,5-triazine transition metal complexes prompts us to report here the crystal structure of the title compound (1).

In 1 (Fig. 1), each CuI ion is coordinated by three N atoms [Cu—N 1.962 (3)–2.019 (3) Å] from three ligands L, and each ligand L bridge three CuI centers generating positively charged three-dimensional polymeric network with the voids propagated along axis b. These voids are filled with NO3- anions with the shortest Cu···O distance of 2.645 (3) Å and crystalline water molecules, which are linked into negatively charged helical chains via intermolecular O—H···O hydrogen bonds.

Related literature top

For metal complexes with 2,4,6-tris(4-pyridyl)-1,3,5-triazine ligands, see: Abrahams et al. (1999); Dybtsev et al. (2004); Barrios et al. (2007).

Experimental top

In a typical synthesis, a mixture of Cu(NO3)2.6H2O (1 mmol), 2,4,6-tris(4-pyridyl)-1,3,5-triazine (1 mmol) and methanol (10 ml), was added to a 20 ml Teflon-lined reactor under autogenous pressure at 140 °C for 3 days.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located on a difference map, and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A content of the asymmetric unit of 1 showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level. The O—H···O hydrogen bond is shown by the dashed green line, and the shortest Cu···O distance is shown by the dotted red line.
Poly[[(µ3-2,4,6-tri-4-pyridyl-1,3,5-triazine)copper(I)] nitrate monohydrate] top
Crystal data top
[Cu(C18H12N6)]NO3·H2OF(000) = 928
Mr = 455.90Dx = 1.627 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14882 reflections
a = 9.917 (2) Åθ = 3.0–27.7°
b = 8.7409 (17) ŵ = 1.22 mm1
c = 22.499 (6) ÅT = 293 K
β = 107.43 (3)°Block, red
V = 1860.7 (7) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku SCX-mini
diffractometer
4262 independent reflections
Radiation source: fine-focus sealed tube2717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.736, Tmax = 1.000k = 1111
18394 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0335P)2 + 2.1056P]
where P = (Fo2 + 2Fc2)/3
4262 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu(C18H12N6)]NO3·H2OV = 1860.7 (7) Å3
Mr = 455.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.917 (2) ŵ = 1.22 mm1
b = 8.7409 (17) ÅT = 293 K
c = 22.499 (6) Å0.10 × 0.10 × 0.10 mm
β = 107.43 (3)°
Data collection top
Rigaku SCX-mini
diffractometer
4262 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2717 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 1.000Rint = 0.097
18394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.36 e Å3
4262 reflectionsΔρmin = 0.35 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1691 (5)0.5154 (5)0.27731 (19)0.0411 (12)
H10.25840.55370.25690.049*
C20.1040 (4)0.5629 (5)0.33689 (19)0.0380 (11)
H20.14870.63180.35630.046*
C30.0293 (4)0.5073 (5)0.36812 (18)0.0296 (9)
C40.0904 (4)0.4047 (5)0.33735 (18)0.0344 (10)
H40.17950.36420.35680.041*
C50.0177 (4)0.3635 (5)0.27772 (19)0.0383 (11)
H50.06000.29450.25730.046*
C60.5691 (4)0.2273 (5)0.55716 (19)0.0379 (11)
H60.59810.14740.53660.046*
C70.4531 (4)0.3104 (5)0.52532 (18)0.0321 (10)
H70.40530.28720.48400.039*
C80.4077 (4)0.4293 (5)0.55511 (18)0.0276 (9)
C90.4827 (4)0.4592 (5)0.61641 (19)0.0398 (11)
H90.45570.53810.63820.048*
C100.5983 (4)0.3696 (5)0.64455 (19)0.0407 (11)
H100.64820.39040.68580.049*
C110.0496 (4)0.9682 (5)0.6342 (2)0.0388 (11)
H110.09941.01110.67220.047*
C120.1191 (4)0.8664 (5)0.60714 (18)0.0354 (10)
H120.21240.83930.62710.042*
C130.0474 (4)0.8050 (5)0.54967 (17)0.0270 (9)
C140.0906 (4)0.8507 (5)0.52211 (18)0.0310 (10)
H140.14080.81430.48290.037*
C150.1526 (4)0.9498 (5)0.55297 (19)0.0360 (10)
H150.24620.97750.53420.043*
C160.1021 (4)0.5523 (5)0.43321 (17)0.0281 (9)
C170.2806 (4)0.5165 (5)0.52141 (18)0.0276 (9)
C180.1122 (4)0.6898 (5)0.51893 (18)0.0278 (9)
Cu10.19856 (5)0.38069 (7)0.15691 (2)0.03757 (18)
N10.1108 (4)0.4169 (4)0.24703 (15)0.0364 (9)
N20.6432 (3)0.2554 (4)0.61653 (15)0.0321 (8)
N30.0852 (3)1.0091 (4)0.60904 (15)0.0329 (8)
N40.0422 (3)0.6577 (4)0.45964 (15)0.0313 (8)
N50.2221 (3)0.4792 (4)0.46175 (14)0.0290 (8)
N60.2306 (3)0.6215 (4)0.55228 (14)0.0308 (8)
N70.4795 (5)0.6084 (6)0.1312 (2)0.0619 (12)
O10.3565 (4)0.6301 (5)0.13251 (19)0.0806 (12)
O20.5122 (4)0.6217 (6)0.18018 (19)0.1031 (17)
O30.5691 (4)0.5721 (6)0.0832 (2)0.0948 (15)
O4W0.3407 (5)0.8630 (5)0.2697 (2)0.1142 (17)
H4WA0.41600.81710.24170.142*
H4WB0.36530.95800.28040.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (2)0.058 (3)0.026 (2)0.007 (2)0.002 (2)0.001 (2)
C20.031 (2)0.047 (3)0.034 (2)0.010 (2)0.006 (2)0.007 (2)
C30.029 (2)0.033 (2)0.024 (2)0.0004 (19)0.0058 (18)0.0032 (18)
C40.030 (2)0.041 (3)0.029 (2)0.008 (2)0.0042 (19)0.002 (2)
C50.043 (3)0.041 (3)0.031 (2)0.005 (2)0.011 (2)0.005 (2)
C60.036 (2)0.040 (3)0.033 (2)0.014 (2)0.005 (2)0.006 (2)
C70.033 (2)0.035 (3)0.023 (2)0.0064 (19)0.0021 (19)0.0029 (18)
C80.022 (2)0.031 (2)0.027 (2)0.0049 (17)0.0033 (17)0.0016 (18)
C90.040 (3)0.041 (3)0.034 (2)0.015 (2)0.005 (2)0.007 (2)
C100.040 (3)0.047 (3)0.028 (2)0.011 (2)0.001 (2)0.005 (2)
C110.035 (2)0.045 (3)0.034 (2)0.002 (2)0.006 (2)0.010 (2)
C120.026 (2)0.042 (3)0.035 (2)0.006 (2)0.0054 (19)0.002 (2)
C130.026 (2)0.027 (2)0.028 (2)0.0003 (17)0.0086 (18)0.0022 (18)
C140.029 (2)0.032 (3)0.029 (2)0.0042 (19)0.0052 (18)0.0044 (19)
C150.029 (2)0.043 (3)0.032 (2)0.003 (2)0.001 (2)0.001 (2)
C160.027 (2)0.029 (2)0.026 (2)0.0028 (18)0.0038 (18)0.0024 (18)
C170.026 (2)0.028 (2)0.027 (2)0.0003 (18)0.0060 (18)0.0015 (18)
C180.024 (2)0.028 (2)0.029 (2)0.0002 (17)0.0048 (18)0.0023 (18)
Cu10.0337 (3)0.0470 (4)0.0281 (3)0.0141 (3)0.0034 (2)0.0025 (3)
N10.037 (2)0.044 (2)0.0250 (18)0.0085 (17)0.0054 (16)0.0013 (16)
N20.0297 (19)0.035 (2)0.0277 (18)0.0108 (16)0.0024 (16)0.0016 (16)
N30.0270 (19)0.037 (2)0.034 (2)0.0079 (16)0.0077 (16)0.0036 (17)
N40.0312 (19)0.032 (2)0.0281 (18)0.0071 (15)0.0048 (16)0.0006 (15)
N50.0273 (18)0.032 (2)0.0249 (18)0.0054 (15)0.0038 (15)0.0011 (15)
N60.0275 (17)0.032 (2)0.0303 (18)0.0049 (17)0.0052 (15)0.0014 (17)
N70.044 (3)0.080 (4)0.058 (3)0.017 (3)0.010 (2)0.012 (3)
O10.054 (2)0.097 (3)0.097 (3)0.008 (2)0.032 (2)0.008 (3)
O20.064 (3)0.190 (5)0.060 (3)0.006 (3)0.025 (2)0.000 (3)
O30.068 (3)0.131 (4)0.071 (3)0.022 (3)0.002 (2)0.021 (3)
O4W0.088 (3)0.100 (4)0.130 (4)0.007 (3)0.005 (3)0.021 (3)
Geometric parameters (Å, º) top
C1—N11.332 (5)C12—C131.384 (5)
C1—C21.367 (5)C12—H120.9300
C1—H10.9300C13—C141.381 (5)
C2—C31.386 (5)C13—C181.473 (5)
C2—H20.9300C14—C151.366 (5)
C3—C41.380 (5)C14—H140.9300
C3—C161.479 (5)C15—N31.342 (5)
C4—C51.367 (5)C15—H150.9300
C4—H40.9300C16—N41.329 (5)
C5—N11.338 (5)C16—N51.334 (5)
C5—H50.9300C17—N61.332 (5)
C6—N21.340 (5)C17—N51.334 (5)
C6—C71.368 (5)C18—N61.331 (5)
C6—H60.9300C18—N41.336 (5)
C7—C81.383 (5)Cu1—N2i1.962 (3)
C7—H70.9300Cu1—N11.978 (3)
C8—C91.382 (5)Cu1—N3ii2.019 (3)
C8—C171.474 (5)N2—Cu1iii1.962 (3)
C9—C101.376 (5)N3—Cu1iv2.019 (3)
C9—H90.9300N7—O31.218 (5)
C10—N21.326 (5)N7—O11.226 (5)
C10—H100.9300N7—O21.243 (5)
C11—N31.335 (5)O4W—H4WA0.9125
C11—C121.374 (6)O4W—H4WB0.9175
C11—H110.9300
N1—C1—C2123.3 (4)C14—C13—C18120.0 (3)
N1—C1—H1118.4C12—C13—C18122.0 (3)
C2—C1—H1118.4C15—C14—C13119.4 (4)
C1—C2—C3119.3 (4)C15—C14—H14120.3
C1—C2—H2120.4C13—C14—H14120.3
C3—C2—H2120.4N3—C15—C14123.3 (4)
C4—C3—C2118.0 (4)N3—C15—H15118.3
C4—C3—C16120.8 (3)C14—C15—H15118.3
C2—C3—C16121.2 (4)N4—C16—N5124.8 (3)
C5—C4—C3118.8 (4)N4—C16—C3118.4 (3)
C5—C4—H4120.6N5—C16—C3116.7 (4)
C3—C4—H4120.6N6—C17—N5125.1 (3)
N1—C5—C4123.7 (4)N6—C17—C8118.8 (3)
N1—C5—H5118.1N5—C17—C8116.0 (4)
C4—C5—H5118.1N6—C18—N4125.1 (4)
N2—C6—C7123.3 (4)N6—C18—C13118.5 (3)
N2—C6—H6118.4N4—C18—C13116.3 (3)
C7—C6—H6118.4N2i—Cu1—N1128.12 (14)
C6—C7—C8119.4 (4)N2i—Cu1—N3ii122.55 (14)
C6—C7—H7120.3N1—Cu1—N3ii109.03 (14)
C8—C7—H7120.3C1—N1—C5116.9 (3)
C9—C8—C7118.0 (4)C1—N1—Cu1120.2 (3)
C9—C8—C17122.5 (4)C5—N1—Cu1122.1 (3)
C7—C8—C17119.5 (3)C10—N2—C6116.7 (3)
C10—C9—C8118.5 (4)C10—N2—Cu1iii124.9 (3)
C10—C9—H9120.8C6—N2—Cu1iii118.3 (3)
C8—C9—H9120.8C11—N3—C15116.6 (4)
N2—C10—C9124.2 (4)C11—N3—Cu1iv123.3 (3)
N2—C10—H10117.9C15—N3—Cu1iv119.1 (3)
C9—C10—H10117.9C16—N4—C18115.1 (3)
N3—C11—C12123.9 (4)C17—N5—C16115.1 (3)
N3—C11—H11118.1C18—N6—C17114.7 (3)
C12—C11—H11118.1O3—N7—O1121.1 (5)
C11—C12—C13118.6 (4)O3—N7—O2119.7 (5)
C11—C12—H12120.7O1—N7—O2119.1 (5)
C13—C12—H12120.7H4WA—O4W—H4WB110.6
C14—C13—C12118.0 (4)
N1—C1—C2—C30.1 (7)C12—C13—C18—N4169.4 (4)
C1—C2—C3—C40.4 (6)C2—C1—N1—C50.2 (7)
C1—C2—C3—C16178.4 (4)C2—C1—N1—Cu1170.1 (3)
C2—C3—C4—C50.4 (6)C4—C5—N1—C10.1 (6)
C16—C3—C4—C5178.4 (4)C4—C5—N1—Cu1169.9 (3)
C3—C4—C5—N10.2 (7)N2i—Cu1—N1—C182.3 (4)
N2—C6—C7—C80.4 (7)N3ii—Cu1—N1—C1103.9 (3)
C6—C7—C8—C90.2 (6)N2i—Cu1—N1—C5107.9 (3)
C6—C7—C8—C17178.5 (4)N3ii—Cu1—N1—C565.8 (4)
C7—C8—C9—C100.0 (6)C9—C10—N2—C60.3 (7)
C17—C8—C9—C10178.6 (4)C9—C10—N2—Cu1iii176.6 (4)
C8—C9—C10—N20.1 (7)C7—C6—N2—C100.5 (7)
N3—C11—C12—C131.8 (7)C7—C6—N2—Cu1iii177.0 (3)
C11—C12—C13—C140.6 (6)C12—C11—N3—C152.5 (7)
C11—C12—C13—C18177.1 (4)C12—C11—N3—Cu1iv165.7 (3)
C12—C13—C14—C152.2 (6)C14—C15—N3—C110.8 (6)
C18—C13—C14—C15175.6 (4)C14—C15—N3—Cu1iv167.9 (3)
C13—C14—C15—N31.5 (7)N5—C16—N4—C180.7 (6)
C4—C3—C16—N4176.4 (4)C3—C16—N4—C18178.4 (3)
C2—C3—C16—N45.6 (6)N6—C18—N4—C162.4 (6)
C4—C3—C16—N55.7 (6)C13—C18—N4—C16179.3 (3)
C2—C3—C16—N5172.2 (4)N6—C17—N5—C162.1 (6)
C9—C8—C17—N64.5 (6)C8—C17—N5—C16175.8 (3)
C7—C8—C17—N6174.0 (4)N4—C16—N5—C171.3 (6)
C9—C8—C17—N5177.5 (4)C3—C16—N5—C17176.4 (3)
C7—C8—C17—N54.0 (6)N4—C18—N6—C171.7 (6)
C14—C13—C18—N6164.3 (4)C13—C18—N6—C17178.6 (3)
C12—C13—C18—N613.4 (6)N5—C17—N6—C180.7 (6)
C14—C13—C18—N412.9 (5)C8—C17—N6—C18177.1 (4)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O20.912.233.057 (7)151
O4W—H4WB···O2v0.922.233.082 (7)155
Symmetry code: (v) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C18H12N6)]NO3·H2O
Mr455.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.917 (2), 8.7409 (17), 22.499 (6)
β (°) 107.43 (3)
V3)1860.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku SCX-mini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.736, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18394, 4262, 2717
Rint0.097
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.125, 1.09
No. of reflections4262
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O20.912.233.057 (7)151
O4W—H4WB···O2i0.922.233.082 (7)155
Symmetry code: (i) x1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project approval No. 20974053).

References

First citationAbrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475–1477.  Web of Science CrossRef CAS Google Scholar
First citationBarrios, L. A., Ribas, J. & Aromi, G. (2007). Inorg. Chem. 46, 7154–7162.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDybtsev, D. N., Chun, H. & Kim, K. (2004). Chem. Commun. pp. 1594–1595.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds