organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-(3-benzoyl­thio­ureido)propano­ate

aFuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor, Malaysia, and bSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: ibnhum@gmail.com

(Received 7 February 2011; accepted 15 February 2011; online 5 March 2011)

In the title compound, C12H14N2O3S, the propyl acetate group and the benzoyl group adopt a cistrans conformation, respectively, with respect to the thiono S atom across the C—N bonds. The phenyl ring is twisted relative to the the thio­urea mean plane, forming a dihedral angle of 24.16 (9)°. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal packing is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a chain along the a axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related strutures, see: Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]); Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.], 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.]), Hung et al. (2010[Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.]). For a related synthesis, see: Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O3S

  • Mr = 266.31

  • Triclinic, [P \overline 1]

  • a = 7.5901 (18) Å

  • b = 8.2688 (19) Å

  • c = 10.547 (3) Å

  • α = 86.168 (5)°

  • β = 86.892 (4)°

  • γ = 81.545 (4)°

  • V = 652.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.35 × 0.31 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.945

  • 8953 measured reflections

  • 3229 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.141

  • S = 1.12

  • 3229 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.94 2.625 (2) 136
N1—H1A⋯O2i 0.86 2.17 3.022 (2) 169
C1—H1B⋯O2i 0.93 2.50 3.187 (3) 130
C9—H9A⋯O1ii 0.97 2.59 3.464 (3) 150
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON.

Supporting information


Comment top

The title compound, I, is a methyl ester derivative of beta-alanine thiourea analogous to our previous reported, methyl-2-(3-benzoylthioureido)acetate, II (Hassan et al. 2009).

The molecule maintains the same cis-trans conformation with respect to the positions of the methyl propanoate and benzoyl groups, relative to the S atom across the C—N bonds (Fig 1), respectively. The phenyl group, [C1/C2/C3/C4/C5/C6], and the methyl propanoate fragment, [O2/O3/C10/C11/C12], are essentially planar and the dihedral angle between them is 82.28 (11)°. The bond lengths (Allen et al., 1987) and angles in the molecules are in normal ranges and comparable to those of II. The C=S bond length [1.670 (2) Å] is identical within experimental error to that of II [1.662 (5) Å]. The thiourea fragment,[S1/O1/N1/N2/C6/C7/C8/C9], is essentially planar with a maximum deviation of 0.037 (2) Å, at the atom N2. The phenyl ring [C1—C6] is inclined to the thiourea mean plane making a dihedral angle of 24.16 (9)° which is slightly larger than that of II [20.12 (19)°]. Atom O3 of the methyl propanoate group, (O2/O3/C10/C11/C12), has the maximum deviation 0.033 (2)Å from the mean plane.

There is one intramolecular hydrogen bonds, N2—H2A···O1 (Table 1) forming a pseudo-six-membered ring (N2/H2A/O1/C7/N1/C8). The intermolecular N1—H1A···O2, C1—H1B···O2 and C9—H9A···O1 hydrogen bonds, (Table 1), link the molecules into a chain parallel to the a axis (Fig 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related strutures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009), Hung et al. (2010). For a related synthesis, see: Hassan et al. (2008a).

Experimental top

The title compound was synthesized according to a previously reported compound (Hassan et al., 2008a). A yellowish crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from CH2Cl2 solution at room temperature (yield 79%).

Refinement top

H atoms of both C and N atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso= 1.2Ueq (C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å, Uiso = 1.5Ueq (C) for CH3 0.96 Å, Uiso = 1.2Ueq (N) for N—H 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of (I) showing the chain formed by N-H···O and C-H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1]
Methyl 3-(3-benzoylthioureido)propanoate top
Crystal data top
C12H14N2O3SZ = 2
Mr = 266.31F(000) = 280
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5901 (18) ÅCell parameters from 2861 reflections
b = 8.2688 (19) Åθ = 1.9–28.3°
c = 10.547 (3) ŵ = 0.25 mm1
α = 86.168 (5)°T = 298 K
β = 86.892 (4)°Block, colourless
γ = 81.545 (4)°0.35 × 0.31 × 0.23 mm
V = 652.6 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3229 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.918, Tmax = 0.945k = 1111
8953 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.1657P]
where P = (Fo2 + 2Fc2)/3
3229 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H14N2O3Sγ = 81.545 (4)°
Mr = 266.31V = 652.6 (3) Å3
Triclinic, P1Z = 2
a = 7.5901 (18) ÅMo Kα radiation
b = 8.2688 (19) ŵ = 0.25 mm1
c = 10.547 (3) ÅT = 298 K
α = 86.168 (5)°0.35 × 0.31 × 0.23 mm
β = 86.892 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3229 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2654 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.945Rint = 0.024
8953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.12Δρmax = 0.27 e Å3
3229 reflectionsΔρmin = 0.22 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38506 (7)0.35748 (7)0.87738 (5)0.05290 (19)
O10.2339 (2)0.3507 (2)0.46757 (14)0.0658 (5)
O20.1984 (2)0.2418 (2)0.71396 (14)0.0594 (4)
O30.1813 (2)0.1042 (2)0.90333 (16)0.0656 (5)
N10.4213 (2)0.3096 (2)0.63147 (15)0.0442 (4)
H1A0.53050.27780.64960.053*
N20.1375 (2)0.4127 (2)0.70422 (15)0.0472 (4)
H2A0.10860.40520.62730.057*
C10.6740 (3)0.1203 (3)0.4582 (2)0.0572 (6)
H1B0.68730.09190.54440.069*
C20.7984 (3)0.0513 (3)0.3688 (3)0.0685 (7)
H2B0.89480.02420.39490.082*
C30.7794 (3)0.0944 (3)0.2416 (2)0.0644 (6)
H3A0.86350.04840.18200.077*
C40.6379 (3)0.2044 (3)0.2022 (2)0.0630 (6)
H4A0.62560.23310.11600.076*
C50.5136 (3)0.2726 (3)0.2903 (2)0.0544 (5)
H5A0.41730.34730.26300.065*
C60.5295 (3)0.2318 (2)0.41872 (18)0.0429 (4)
C70.3820 (3)0.3027 (3)0.50660 (18)0.0457 (5)
C80.3050 (3)0.3619 (2)0.73260 (17)0.0412 (4)
C90.0010 (3)0.4804 (3)0.7945 (2)0.0524 (5)
H9A0.09930.53960.74770.063*
H9B0.04630.55840.84320.063*
C100.0714 (3)0.3532 (3)0.88575 (19)0.0548 (6)
H10A0.02640.29600.93410.066*
H10B0.15790.40870.94530.066*
C110.1567 (2)0.2306 (3)0.82278 (19)0.0498 (5)
C120.2732 (4)0.0183 (4)0.8564 (3)0.0828 (8)
H12A0.28340.10320.92190.124*
H12B0.20740.06420.78380.124*
H12C0.39000.03090.83230.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0462 (3)0.0734 (4)0.0374 (3)0.0019 (2)0.0064 (2)0.0099 (2)
O10.0455 (8)0.1087 (14)0.0376 (8)0.0111 (8)0.0050 (6)0.0092 (8)
O20.0487 (9)0.0918 (12)0.0405 (8)0.0169 (8)0.0049 (6)0.0074 (8)
O30.0587 (10)0.0788 (12)0.0545 (9)0.0018 (8)0.0010 (8)0.0032 (8)
N10.0347 (8)0.0593 (10)0.0377 (8)0.0015 (7)0.0020 (6)0.0076 (7)
N20.0380 (8)0.0664 (11)0.0360 (8)0.0001 (8)0.0033 (6)0.0086 (7)
C10.0571 (13)0.0664 (14)0.0464 (11)0.0019 (11)0.0066 (10)0.0101 (10)
C20.0546 (14)0.0803 (17)0.0663 (15)0.0120 (12)0.0043 (11)0.0194 (13)
C30.0532 (13)0.0839 (17)0.0544 (13)0.0035 (12)0.0137 (10)0.0200 (12)
C40.0623 (14)0.0824 (17)0.0419 (11)0.0071 (12)0.0108 (10)0.0037 (11)
C50.0491 (12)0.0660 (14)0.0450 (11)0.0022 (10)0.0038 (9)0.0005 (10)
C60.0407 (10)0.0494 (11)0.0400 (10)0.0096 (8)0.0009 (8)0.0072 (8)
C70.0434 (10)0.0571 (12)0.0362 (9)0.0061 (9)0.0008 (8)0.0039 (8)
C80.0406 (10)0.0456 (10)0.0369 (9)0.0042 (8)0.0007 (7)0.0043 (8)
C90.0415 (10)0.0669 (14)0.0467 (11)0.0063 (9)0.0034 (9)0.0172 (10)
C100.0410 (10)0.0857 (16)0.0365 (10)0.0008 (10)0.0006 (8)0.0160 (10)
C110.0300 (9)0.0757 (14)0.0398 (10)0.0046 (9)0.0044 (8)0.0075 (10)
C120.0768 (19)0.0713 (18)0.098 (2)0.0117 (15)0.0022 (16)0.0070 (16)
Geometric parameters (Å, º) top
S1—C81.6699 (19)C3—C41.365 (4)
O1—C71.220 (2)C3—H3A0.9300
O2—C111.201 (2)C4—C51.375 (3)
O3—C111.331 (3)C4—H4A0.9300
O3—C121.438 (3)C5—C61.381 (3)
N1—C71.373 (2)C5—H5A0.9300
N1—C81.397 (2)C6—C71.491 (3)
N1—H1A0.8600C9—C101.514 (3)
N2—C81.323 (2)C9—H9A0.9700
N2—C91.454 (2)C9—H9B0.9700
N2—H2A0.8600C10—C111.489 (3)
C1—C21.387 (3)C10—H10A0.9700
C1—C61.388 (3)C10—H10B0.9700
C1—H1B0.9300C12—H12A0.9600
C2—C31.375 (4)C12—H12B0.9600
C2—H2B0.9300C12—H12C0.9600
C11—O3—C12116.5 (2)O1—C7—C6120.56 (18)
C7—N1—C8127.78 (16)N1—C7—C6116.94 (17)
C7—N1—H1A116.1N2—C8—N1116.04 (16)
C8—N1—H1A116.1N2—C8—S1125.16 (15)
C8—N2—C9124.28 (16)N1—C8—S1118.80 (14)
C8—N2—H2A117.9N2—C9—C10113.98 (18)
C9—N2—H2A117.9N2—C9—H9A108.8
C2—C1—C6119.8 (2)C10—C9—H9A108.8
C2—C1—H1B120.1N2—C9—H9B108.8
C6—C1—H1B120.1C10—C9—H9B108.8
C3—C2—C1120.0 (2)H9A—C9—H9B107.7
C3—C2—H2B120.0C11—C10—C9114.09 (17)
C1—C2—H2B120.0C11—C10—H10A108.7
C4—C3—C2120.5 (2)C9—C10—H10A108.7
C4—C3—H3A119.8C11—C10—H10B108.7
C2—C3—H3A119.8C9—C10—H10B108.7
C3—C4—C5119.8 (2)H10A—C10—H10B107.6
C3—C4—H4A120.1O2—C11—O3123.6 (2)
C5—C4—H4A120.1O2—C11—C10125.4 (2)
C4—C5—C6121.0 (2)O3—C11—C10110.98 (18)
C4—C5—H5A119.5O3—C12—H12A109.5
C6—C5—H5A119.5O3—C12—H12B109.5
C5—C6—C1118.93 (19)H12A—C12—H12B109.5
C5—C6—C7117.30 (18)O3—C12—H12C109.5
C1—C6—C7123.63 (18)H12A—C12—H12C109.5
O1—C7—N1122.51 (18)H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.942.625 (2)136
N1—H1A···O2i0.862.173.022 (2)169
C1—H1B···O2i0.932.503.187 (3)130
C9—H9A···O1ii0.972.593.464 (3)150
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N2O3S
Mr266.31
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.5901 (18), 8.2688 (19), 10.547 (3)
α, β, γ (°)86.168 (5), 86.892 (4), 81.545 (4)
V3)652.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.31 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.918, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
8953, 3229, 2654
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.141, 1.12
No. of reflections3229
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.942.625 (2)136
N1—H1A···O2i0.862.173.022 (2)169
C1—H1B···O2i0.932.503.187 (3)130
C9—H9A···O1ii0.972.593.464 (3)150
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (postdoctoral for INH, UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010) and the Kementerian Pengajian Tinggi, Malaysia for the research fund No. UKM-ST-06-FRGS0111–2009.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds