metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido[(1R,2R,N1S)-N-(pyridin-2-ylmeth­yl)cyclo­hexane-1,2-di­amine-κ3N,N′,N′′]cadmium

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 17 February 2011; accepted 24 February 2011; online 2 March 2011)

In the title compound, [CdBr2(C12H19N3)], the CdII atom is coordinated by the three N atoms of the (1R,2R)-N-(pyridin-2-ylmeth­yl)cyclo­hexane-1,2-diamine ligand and a bromide ion in the basal plane, and by a second bromide in the apical position. The coordination environment can be described as distorted square pyramidal. The coordination of the enanti­o­pure ligand to the metal atom renders the central N atom chiral with an S configuration, so the complex is enanti­omerically pure and corresponds to the S,R,R diastereoisomer. In the crystal, the mol­ecules are linked via weak N—H⋯Br hydrogen bonds into a chain parallel to the b axis.

Related literature

For related structures, see: Gou et al. (2010[Gou, S. H. & Tong, T. F. (2010). Faming Zhuanli Shenqing (P. R. China), p. 16.]). For non-linear optical properties of chiral coordination polymers, see: He et al. (2010[He, R., Song, H. H., Wei, Z., Zhang, J. J. & Gao, Y. Z. (2010). J. Solid State Chem. 183, 2021-2026.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C12H19N3)]

  • Mr = 477.52

  • Orthorhombic, P 21 21 21

  • a = 8.7153 (16) Å

  • b = 9.1978 (17) Å

  • c = 19.759 (4) Å

  • V = 1583.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.41 mm−1

  • T = 173 K

  • 0.12 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.513, Tmax = 0.628

  • 9389 measured reflections

  • 3048 independent reflections

  • 2348 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.052

  • S = 0.96

  • 3048 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1244 Friedel pairs

  • Flack parameter: 0.049 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Br2i 0.92 2.89 3.750 (5) 156
N3—H3C⋯Br1ii 0.92 2.59 3.498 (5) 168
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, rational design and synthesis of chiral coordination polymers have been of great interests due to their potential utility in enantiomerically selective catalysis and separations, second-order nonlinearoptical (NLO) applications and luminescence (He et al., 2010). A simple and effective design route for such polymers is to appropriately organize the metal ions into ordered architectures by use of chiral ligands. Herein, we report a new chiral complex, Zn(pcd)Br2 (pcd = (1R,2R)-N1-(pyridin-2-ylmethyl)cyclohexane -1,2-diamine), with a enantiomerically pure pcd ligand.

The title compound is a mononuclear complex, in which the coordination environment of CdII ion can be described as distorted square-pyramidal, being surrounded by one tridentate ligand and two bromine anions (Fig. 1).

The molecules are linked to each other, via weak N—H···Br hydrogen bonds, into a one-dimensional hydrogen bonding network developping parallel to the b axis (Table 1, Fig. 2).

Related literature top

For related structures, see: Gou et al. (2010). For non-linear optical properties of chiral coordination polymers, see: He et al. (2010).

Experimental top

(1R,2R)-N1-(pyridin-2-ylmethyl)cyclohexane -1,2-diamine (0.041 g, 0.2 mmol) dissolved in water (8 ml) was added to a methanol solution (10 ml) of CdBr2 (0.054 g, 0.2 mmol). The mixture solution was stirred for 1 h at room temperature and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After 2 weeks, yellow block crystals were obtained in 32.5% yield (0.031 g).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93–0.97 Å and N—H = 0.92–0.93 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain developping parallel to the b axis. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+1, y+1/2, -z+1/2]
Dibromido[(1R,2R,N1S)-N-(pyridin-2- ylmethyl)cyclohexane-1,2-diamine-κ3N,N',N'']cadmium top
Crystal data top
[CdBr2(C12H19N3)]F(000) = 920
Mr = 477.52Dx = 2.003 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 792 reflections
a = 8.7153 (16) Åθ = 2.5–28.0°
b = 9.1978 (17) ŵ = 6.41 mm1
c = 19.759 (4) ÅT = 173 K
V = 1583.9 (5) Å3Block, yellow
Z = 40.12 × 0.09 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3048 independent reflections
Radiation source: fine-focus sealed tube2348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 109
Tmin = 0.513, Tmax = 0.628k = 1110
9389 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0014P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
3048 reflectionsΔρmax = 0.49 e Å3
163 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), 1244 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.049 (11)
Crystal data top
[CdBr2(C12H19N3)]V = 1583.9 (5) Å3
Mr = 477.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7153 (16) ŵ = 6.41 mm1
b = 9.1978 (17) ÅT = 173 K
c = 19.759 (4) Å0.12 × 0.09 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3048 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2348 reflections with I > 2σ(I)
Tmin = 0.513, Tmax = 0.628Rint = 0.048
9389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.49 e Å3
S = 0.96Δρmin = 0.48 e Å3
3048 reflectionsAbsolute structure: Flack (1983), 1244 Friedel pairs
163 parametersAbsolute structure parameter: 0.049 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.24783 (5)0.10173 (5)0.207493 (18)0.03280 (11)
Br10.29207 (7)0.17278 (7)0.18146 (3)0.04158 (18)
Br20.35856 (7)0.29959 (7)0.13039 (3)0.04411 (18)
C10.0384 (8)0.1320 (7)0.0949 (3)0.052 (2)
H1A0.04040.16500.06540.062*
C20.1845 (8)0.1196 (8)0.0697 (3)0.062 (2)
H2A0.20710.14270.02390.075*
C30.2968 (8)0.0725 (8)0.1131 (4)0.065 (2)
H3A0.39930.06300.09730.077*
C40.2620 (8)0.0390 (7)0.1792 (3)0.0499 (16)
H4A0.33960.00640.20940.060*
C50.1119 (7)0.0538 (6)0.2009 (3)0.0353 (15)
C60.0630 (6)0.0155 (7)0.2716 (3)0.0373 (16)
H6A0.15160.02570.30260.045*
H6B0.02900.08720.27280.045*
C70.1349 (6)0.0623 (6)0.3592 (3)0.0336 (15)
H7A0.15280.04490.35640.040*
C80.0343 (7)0.0913 (8)0.4213 (3)0.0448 (18)
H8A0.00290.19470.42140.054*
H8B0.05990.03140.41810.054*
C90.1152 (7)0.0572 (7)0.4877 (3)0.0508 (19)
H9A0.04880.08680.52600.061*
H9B0.13230.04900.49110.061*
C100.2669 (8)0.1347 (7)0.4929 (3)0.0550 (19)
H10A0.31910.10560.53530.066*
H10B0.24920.24100.49460.066*
C110.3695 (7)0.0987 (8)0.4326 (3)0.0499 (18)
H11A0.46650.15420.43620.060*
H11B0.39500.00620.43330.060*
C120.2901 (6)0.1360 (6)0.3664 (2)0.0339 (15)
H12A0.27230.24340.36590.041*
N10.0014 (5)0.0998 (6)0.1591 (2)0.0377 (13)
N20.0625 (4)0.1095 (6)0.2950 (2)0.0313 (12)
H2B0.02650.20410.29970.038*
N30.3872 (5)0.0999 (6)0.3071 (2)0.0366 (12)
H3B0.42980.00930.31320.044*
H3C0.46590.16620.30400.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0323 (2)0.0391 (3)0.02707 (19)0.0016 (3)0.0035 (2)0.0018 (2)
Br10.0462 (4)0.0380 (4)0.0405 (3)0.0053 (3)0.0043 (3)0.0000 (3)
Br20.0478 (4)0.0428 (4)0.0418 (3)0.0031 (4)0.0129 (3)0.0066 (3)
C10.056 (5)0.061 (6)0.039 (4)0.011 (4)0.004 (3)0.001 (4)
C20.070 (5)0.064 (6)0.053 (4)0.018 (5)0.020 (4)0.008 (4)
C30.047 (5)0.070 (6)0.076 (5)0.013 (4)0.023 (4)0.036 (5)
C40.036 (4)0.052 (4)0.061 (4)0.001 (4)0.001 (4)0.020 (3)
C50.029 (4)0.031 (4)0.046 (4)0.006 (3)0.002 (3)0.011 (3)
C60.034 (4)0.039 (4)0.039 (4)0.005 (3)0.006 (3)0.004 (3)
C70.036 (4)0.033 (4)0.032 (3)0.004 (3)0.004 (3)0.002 (3)
C80.051 (4)0.048 (5)0.035 (3)0.002 (4)0.010 (3)0.004 (4)
C90.067 (5)0.053 (5)0.032 (4)0.004 (4)0.017 (4)0.000 (3)
C100.072 (5)0.064 (5)0.029 (3)0.001 (5)0.008 (4)0.005 (3)
C110.051 (4)0.059 (5)0.040 (4)0.001 (4)0.002 (3)0.001 (4)
C120.041 (4)0.033 (4)0.028 (3)0.001 (3)0.005 (3)0.009 (3)
N10.041 (3)0.039 (3)0.034 (3)0.010 (3)0.001 (2)0.003 (3)
N20.032 (3)0.029 (3)0.032 (3)0.006 (2)0.001 (2)0.003 (3)
N30.034 (3)0.043 (3)0.032 (3)0.005 (3)0.001 (2)0.003 (3)
Geometric parameters (Å, º) top
Cd1—N32.313 (4)C7—C121.520 (7)
Cd1—N22.366 (4)C7—C81.532 (7)
Cd1—N12.373 (5)C7—H7A1.0000
Cd1—Br22.5621 (8)C8—C91.522 (7)
Cd1—Br12.6054 (9)C8—H8A0.9900
C1—N11.342 (7)C8—H8B0.9900
C1—C21.372 (8)C9—C101.506 (8)
C1—H1A0.9500C9—H9A0.9900
C2—C31.370 (9)C9—H9B0.9900
C2—H2A0.9500C10—C111.526 (7)
C3—C41.377 (8)C10—H10A0.9900
C3—H3A0.9500C10—H10B0.9900
C4—C51.383 (8)C11—C121.520 (7)
C4—H4A0.9500C11—H11A0.9900
C5—N11.338 (7)C11—H11B0.9900
C5—C61.502 (7)C12—N31.483 (6)
C6—N21.468 (7)C12—H12A1.0000
C6—H6A0.9900N2—H2B0.9300
C6—H6B0.9900N3—H3B0.9200
C7—N21.483 (6)N3—H3C0.9200
N3—Cd1—N274.77 (15)C7—C8—H8B109.0
N3—Cd1—N1145.44 (16)H8A—C8—H8B107.8
N2—Cd1—N170.73 (15)C10—C9—C8111.6 (5)
N3—Cd1—Br2108.26 (12)C10—C9—H9A109.3
N2—Cd1—Br2132.07 (13)C8—C9—H9A109.3
N1—Cd1—Br296.34 (13)C10—C9—H9B109.3
N3—Cd1—Br194.77 (13)C8—C9—H9B109.3
N2—Cd1—Br1105.92 (12)H9A—C9—H9B108.0
N1—Cd1—Br192.79 (13)C9—C10—C11111.0 (5)
Br2—Cd1—Br1121.01 (3)C9—C10—H10A109.4
N1—C1—C2123.2 (7)C11—C10—H10A109.4
N1—C1—H1A118.4C9—C10—H10B109.4
C2—C1—H1A118.4C11—C10—H10B109.4
C3—C2—C1117.6 (6)H10A—C10—H10B108.0
C3—C2—H2A121.2C12—C11—C10110.9 (5)
C1—C2—H2A121.2C12—C11—H11A109.5
C2—C3—C4120.5 (6)C10—C11—H11A109.5
C2—C3—H3A119.8C12—C11—H11B109.5
C4—C3—H3A119.8C10—C11—H11B109.5
C3—C4—C5118.7 (6)H11A—C11—H11B108.1
C3—C4—H4A120.7N3—C12—C11111.7 (4)
C5—C4—H4A120.7N3—C12—C7109.5 (4)
N1—C5—C4121.4 (6)C11—C12—C7112.7 (5)
N1—C5—C6116.4 (5)N3—C12—H12A107.6
C4—C5—C6122.2 (6)C11—C12—H12A107.6
N2—C6—C5111.4 (5)C7—C12—H12A107.6
N2—C6—H6A109.3C5—N1—C1118.7 (5)
C5—C6—H6A109.3C5—N1—Cd1114.3 (4)
N2—C6—H6B109.3C1—N1—Cd1126.8 (4)
C5—C6—H6B109.3C6—N2—C7114.4 (4)
H6A—C6—H6B108.0C6—N2—Cd1105.1 (3)
N2—C7—C12109.1 (4)C7—N2—Cd1109.1 (3)
N2—C7—C8113.1 (4)C6—N2—H2B109.4
C12—C7—C8110.9 (5)C7—N2—H2B109.4
N2—C7—H7A107.8Cd1—N2—H2B109.4
C12—C7—H7A107.8C12—N3—Cd1111.8 (3)
C8—C7—H7A107.8C12—N3—H3B109.3
C9—C8—C7112.9 (5)Cd1—N3—H3B109.3
C9—C8—H8A109.0C12—N3—H3C109.3
C7—C8—H8A109.0Cd1—N3—H3C109.3
C9—C8—H8B109.0H3B—N3—H3C107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Br2i0.922.893.750 (5)156
N3—H3C···Br1ii0.922.593.498 (5)168
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CdBr2(C12H19N3)]
Mr477.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.7153 (16), 9.1978 (17), 19.759 (4)
V3)1583.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)6.41
Crystal size (mm)0.12 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.513, 0.628
No. of measured, independent and
observed [I > 2σ(I)] reflections
9389, 3048, 2348
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.052, 0.96
No. of reflections3048
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.48
Absolute structureFlack (1983), 1244 Friedel pairs
Absolute structure parameter0.049 (11)

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Br2i0.922.893.750 (5)156
N3—H3C···Br1ii0.922.593.498 (5)168
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGou, S. H. & Tong, T. F. (2010). Faming Zhuanli Shenqing (P. R. China), p. 16.  Google Scholar
First citationHe, R., Song, H. H., Wei, Z., Zhang, J. J. & Gao, Y. Z. (2010). J. Solid State Chem. 183, 2021–2026.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds