metal-organic compounds
Di-μ-glutarato-κ4O1:O5-bis[aqua(1,10-phenanthroline-κ2N,N′)copper(II)]
aSchool of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, People's Republic of China
*Correspondence e-mail: zhou21921@sina.com
In the centrosymmetric dinuclear title complex, [Cu2(C5H6O4)2(C12H18N2)2(H2O)2], the CuII atom displays a distorted square-pyramidal coordination environment with the basal plane occupied by two phenanthroline N atoms and two O atoms from different glutarate dianions while a water molecule is located at the apical position. Of the two water H atoms, one is engaged in an intramolecular hydrogen bond with a free oxygen of the dianion whereas the second is engaged in an intermolecular hydrogen bond, building a corrugated layer parallel to (100). These layers are further connected through π–π stacking interactions involving symmetry-related phenanthroline rings [centroid–centroid distance = 3.5599 (17) and 3.5617 (18) Å], building a three dimensionnal network. C—H⋯π interactions involving the phenanthroline ring system are also observed.
Related literature
For coordination modes of the glutarate anion, see: Ghosh et al. (2007); Kim et al. (2005); Rather & Zaworotko (2003); Zheng et al. (2004); Vaidhyanathan et al. (2004); Girginova et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811007938/dn2661sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811007938/dn2661Isup2.hkl
The title complex was prepared by the addition of the stoichiometric amount of CuCl2 (0.134 g, 1 mmol) to an ethanol solution of glutaric acid (0.264 g, 2 mmol) and 1,10-phenanthroline monohydrate(0.396 g, 2 mmol), the pH was adjusted to ~6 with 0.2 mol.L-1 KOH solution. The resulting solution was stirred for 30 min at room temperature and then filtered. Blue single crystals were isolated from the solution at room temperature over two weeks.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent
using restraints (O—H= 0.88 (1)Å and H···H= 1.50 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of they were treated as riding on their parent O atoms.Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu2(C5H6O4)2(C12H18N2)2(H2O)2] | F(000) = 804 |
Mr = 783.72 | Dx = 1.604 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3334 reflections |
a = 10.2767 (11) Å | θ = 2.4–27.3° |
b = 10.5935 (14) Å | µ = 1.38 mm−1 |
c = 15.5998 (16) Å | T = 298 K |
β = 107.114 (1)° | Block, blue |
V = 1623.1 (3) Å3 | 0.26 × 0.25 × 0.23 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2867 independent reflections |
Radiation source: fine-focus sealed tube | 2275 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −11→12 |
Tmin = 0.716, Tmax = 0.742 | k = −12→10 |
7937 measured reflections | l = −18→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0346P)2 + 1.103P] where P = (Fo2 + 2Fc2)/3 |
2867 reflections | (Δ/σ)max < 0.001 |
226 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
[Cu2(C5H6O4)2(C12H18N2)2(H2O)2] | V = 1623.1 (3) Å3 |
Mr = 783.72 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.2767 (11) Å | µ = 1.38 mm−1 |
b = 10.5935 (14) Å | T = 298 K |
c = 15.5998 (16) Å | 0.26 × 0.25 × 0.23 mm |
β = 107.114 (1)° |
Bruker SMART CCD area-detector diffractometer | 2867 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 2275 reflections with I > 2σ(I) |
Tmin = 0.716, Tmax = 0.742 | Rint = 0.028 |
7937 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.31 e Å−3 |
2867 reflections | Δρmin = −0.28 e Å−3 |
226 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.34382 (3) | 0.54797 (3) | 0.21857 (2) | 0.03292 (13) | |
N1 | 0.2087 (2) | 0.4429 (2) | 0.12652 (14) | 0.0299 (5) | |
N2 | 0.3977 (2) | 0.6012 (2) | 0.10928 (14) | 0.0318 (5) | |
O1 | 0.5068 (2) | 0.61750 (19) | 0.30440 (12) | 0.0416 (5) | |
O2 | 0.5850 (2) | 0.43066 (19) | 0.28151 (13) | 0.0432 (5) | |
O3 | 0.2798 (2) | 0.4813 (2) | 0.31524 (13) | 0.0467 (5) | |
O4 | 0.1462 (3) | 0.6404 (2) | 0.32731 (17) | 0.0689 (7) | |
O5 | 0.2215 (2) | 0.74242 (19) | 0.19357 (13) | 0.0441 (5) | |
H51 | 0.1900 | 0.7287 | 0.2401 | 0.066* | |
H52 | 0.2746 | 0.8093 | 0.2014 | 0.066* | |
C1 | 0.5979 (3) | 0.5330 (3) | 0.32214 (17) | 0.0318 (6) | |
C2 | 0.7228 (3) | 0.5601 (3) | 0.39982 (18) | 0.0397 (7) | |
H2A | 0.7284 | 0.6499 | 0.4125 | 0.048* | |
H2B | 0.8038 | 0.5354 | 0.3841 | 0.048* | |
C3 | 0.7158 (3) | 0.4873 (3) | 0.48313 (18) | 0.0380 (7) | |
H3A | 0.6265 | 0.4993 | 0.4910 | 0.046* | |
H3B | 0.7266 | 0.3980 | 0.4735 | 0.046* | |
C4 | 0.1767 (3) | 0.4723 (3) | 0.43155 (18) | 0.0401 (7) | |
H4A | 0.1805 | 0.3816 | 0.4242 | 0.048* | |
H4B | 0.0869 | 0.4938 | 0.4356 | 0.048* | |
C5 | 0.2012 (3) | 0.5385 (3) | 0.35137 (18) | 0.0387 (7) | |
C6 | 0.1142 (3) | 0.3640 (3) | 0.13755 (19) | 0.0370 (7) | |
H6 | 0.1091 | 0.3496 | 0.1953 | 0.044* | |
C7 | 0.0230 (3) | 0.3025 (3) | 0.0664 (2) | 0.0417 (7) | |
H7 | −0.0423 | 0.2487 | 0.0768 | 0.050* | |
C8 | 0.0291 (3) | 0.3208 (3) | −0.0187 (2) | 0.0401 (7) | |
H8 | −0.0321 | 0.2800 | −0.0667 | 0.048* | |
C9 | 0.1287 (3) | 0.4017 (3) | −0.03337 (18) | 0.0339 (6) | |
C10 | 0.2164 (3) | 0.4611 (2) | 0.04186 (17) | 0.0292 (6) | |
C11 | 0.3172 (3) | 0.5485 (2) | 0.03226 (17) | 0.0294 (6) | |
C12 | 0.3286 (3) | 0.5760 (3) | −0.05311 (18) | 0.0368 (7) | |
C13 | 0.4278 (3) | 0.6647 (3) | −0.0576 (2) | 0.0445 (8) | |
H13 | 0.4398 | 0.6864 | −0.1126 | 0.053* | |
C14 | 0.5061 (3) | 0.7183 (3) | 0.0194 (2) | 0.0472 (8) | |
H14 | 0.5717 | 0.7776 | 0.0171 | 0.057* | |
C15 | 0.4890 (3) | 0.6853 (3) | 0.1024 (2) | 0.0397 (7) | |
H15 | 0.5435 | 0.7237 | 0.1542 | 0.048* | |
C16 | 0.1444 (3) | 0.4307 (3) | −0.11997 (19) | 0.0429 (8) | |
H16 | 0.0881 | 0.3915 | −0.1707 | 0.051* | |
C17 | 0.2384 (3) | 0.5131 (3) | −0.12896 (19) | 0.0453 (8) | |
H17 | 0.2455 | 0.5299 | −0.1859 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0360 (2) | 0.0377 (2) | 0.02556 (18) | 0.00182 (16) | 0.00982 (14) | −0.00183 (15) |
N1 | 0.0338 (12) | 0.0290 (12) | 0.0281 (11) | 0.0019 (10) | 0.0112 (10) | 0.0016 (9) |
N2 | 0.0340 (13) | 0.0280 (12) | 0.0336 (12) | 0.0029 (10) | 0.0105 (10) | 0.0010 (10) |
O1 | 0.0444 (12) | 0.0396 (12) | 0.0349 (11) | 0.0059 (10) | 0.0024 (9) | −0.0066 (9) |
O2 | 0.0467 (13) | 0.0412 (12) | 0.0381 (11) | 0.0073 (10) | 0.0072 (9) | −0.0055 (9) |
O3 | 0.0591 (14) | 0.0546 (14) | 0.0325 (11) | 0.0083 (11) | 0.0230 (10) | 0.0053 (10) |
O4 | 0.095 (2) | 0.0595 (16) | 0.0710 (16) | 0.0257 (15) | 0.0535 (15) | 0.0232 (14) |
O5 | 0.0495 (12) | 0.0443 (12) | 0.0379 (11) | −0.0074 (10) | 0.0120 (9) | −0.0047 (9) |
C1 | 0.0351 (15) | 0.0379 (17) | 0.0232 (13) | −0.0013 (13) | 0.0097 (11) | 0.0041 (12) |
C2 | 0.0365 (16) | 0.0490 (18) | 0.0310 (14) | −0.0073 (14) | 0.0057 (12) | 0.0045 (13) |
C3 | 0.0428 (17) | 0.0383 (17) | 0.0316 (15) | −0.0051 (13) | 0.0090 (13) | 0.0043 (13) |
C4 | 0.0410 (17) | 0.0481 (19) | 0.0319 (15) | −0.0069 (14) | 0.0117 (13) | −0.0004 (13) |
C5 | 0.0417 (17) | 0.0492 (19) | 0.0253 (14) | −0.0065 (15) | 0.0100 (12) | −0.0020 (14) |
C6 | 0.0390 (16) | 0.0338 (16) | 0.0417 (16) | 0.0031 (13) | 0.0174 (13) | 0.0044 (13) |
C7 | 0.0359 (16) | 0.0317 (16) | 0.0580 (19) | −0.0016 (13) | 0.0147 (14) | −0.0013 (14) |
C8 | 0.0325 (16) | 0.0339 (16) | 0.0475 (18) | 0.0027 (13) | 0.0019 (13) | −0.0101 (14) |
C9 | 0.0342 (15) | 0.0326 (15) | 0.0313 (14) | 0.0095 (12) | 0.0041 (12) | −0.0017 (12) |
C10 | 0.0319 (14) | 0.0280 (14) | 0.0274 (13) | 0.0071 (12) | 0.0084 (11) | 0.0002 (11) |
C11 | 0.0320 (14) | 0.0287 (14) | 0.0287 (14) | 0.0089 (12) | 0.0105 (11) | 0.0026 (11) |
C12 | 0.0443 (17) | 0.0357 (16) | 0.0342 (15) | 0.0159 (13) | 0.0177 (13) | 0.0100 (12) |
C13 | 0.0488 (19) | 0.0447 (19) | 0.0476 (18) | 0.0138 (15) | 0.0260 (15) | 0.0163 (15) |
C14 | 0.0453 (18) | 0.0354 (17) | 0.070 (2) | 0.0027 (14) | 0.0307 (17) | 0.0137 (16) |
C15 | 0.0370 (16) | 0.0318 (16) | 0.0503 (18) | 0.0004 (13) | 0.0131 (14) | −0.0021 (14) |
C16 | 0.0475 (18) | 0.0480 (19) | 0.0289 (15) | 0.0103 (15) | 0.0046 (13) | −0.0058 (13) |
C17 | 0.058 (2) | 0.055 (2) | 0.0246 (15) | 0.0181 (17) | 0.0136 (14) | 0.0054 (14) |
Cu1—O3 | 1.947 (2) | C4—C3i | 1.520 (4) |
Cu1—O1 | 1.9545 (19) | C4—H4A | 0.9700 |
Cu1—N1 | 2.014 (2) | C4—H4B | 0.9700 |
Cu1—N2 | 2.022 (2) | C6—C7 | 1.387 (4) |
Cu1—O5 | 2.385 (2) | C6—H6 | 0.9300 |
N1—C6 | 1.329 (3) | C7—C8 | 1.362 (4) |
N1—C10 | 1.360 (3) | C7—H7 | 0.9300 |
N2—C15 | 1.320 (4) | C8—C9 | 1.404 (4) |
N2—C11 | 1.362 (3) | C8—H8 | 0.9300 |
O1—C1 | 1.266 (3) | C9—C10 | 1.401 (4) |
O2—C1 | 1.243 (3) | C9—C16 | 1.440 (4) |
O3—C5 | 1.267 (3) | C10—C11 | 1.429 (4) |
O4—C5 | 1.225 (4) | C11—C12 | 1.402 (4) |
O5—H51 | 0.8897 | C12—C13 | 1.403 (4) |
O5—H52 | 0.8804 | C12—C17 | 1.435 (4) |
C1—C2 | 1.511 (4) | C13—C14 | 1.359 (4) |
C2—C3 | 1.531 (4) | C13—H13 | 0.9300 |
C2—H2A | 0.9700 | C14—C15 | 1.401 (4) |
C2—H2B | 0.9700 | C14—H14 | 0.9300 |
C3—C4i | 1.520 (4) | C15—H15 | 0.9300 |
C3—H3A | 0.9700 | C16—C17 | 1.340 (5) |
C3—H3B | 0.9700 | C16—H16 | 0.9300 |
C4—C5 | 1.518 (4) | C17—H17 | 0.9300 |
O3—Cu1—O1 | 91.32 (9) | H4A—C4—H4B | 108.2 |
O3—Cu1—N1 | 91.85 (9) | O4—C5—O3 | 125.6 (3) |
O1—Cu1—N1 | 165.65 (9) | O4—C5—C4 | 119.0 (3) |
O3—Cu1—N2 | 173.39 (9) | O3—C5—C4 | 115.3 (3) |
O1—Cu1—N2 | 94.62 (9) | N1—C6—C7 | 122.6 (3) |
N1—Cu1—N2 | 81.69 (9) | N1—C6—H6 | 118.7 |
O3—Cu1—O5 | 99.10 (8) | C7—C6—H6 | 118.7 |
O1—Cu1—O5 | 95.20 (7) | C8—C7—C6 | 120.0 (3) |
N1—Cu1—O5 | 98.12 (8) | C8—C7—H7 | 120.0 |
N2—Cu1—O5 | 83.28 (8) | C6—C7—H7 | 120.0 |
C6—N1—C10 | 117.9 (2) | C7—C8—C9 | 119.4 (3) |
C6—N1—Cu1 | 129.16 (18) | C7—C8—H8 | 120.3 |
C10—N1—Cu1 | 112.87 (17) | C9—C8—H8 | 120.3 |
C15—N2—C11 | 117.8 (2) | C10—C9—C8 | 117.3 (3) |
C15—N2—Cu1 | 129.3 (2) | C10—C9—C16 | 117.9 (3) |
C11—N2—Cu1 | 112.56 (17) | C8—C9—C16 | 124.8 (3) |
C1—O1—Cu1 | 108.23 (17) | N1—C10—C9 | 122.8 (2) |
C5—O3—Cu1 | 125.2 (2) | N1—C10—C11 | 116.4 (2) |
Cu1—O5—H51 | 91.5 | C9—C10—C11 | 120.7 (2) |
Cu1—O5—H52 | 113.4 | N2—C11—C12 | 123.6 (3) |
H51—O5—H52 | 112.2 | N2—C11—C10 | 116.3 (2) |
O2—C1—O1 | 123.0 (2) | C12—C11—C10 | 120.0 (2) |
O2—C1—C2 | 120.8 (3) | C11—C12—C13 | 116.9 (3) |
O1—C1—C2 | 116.1 (3) | C11—C12—C17 | 118.2 (3) |
C1—C2—C3 | 110.1 (2) | C13—C12—C17 | 124.9 (3) |
C1—C2—H2A | 109.6 | C14—C13—C12 | 119.0 (3) |
C3—C2—H2A | 109.6 | C14—C13—H13 | 120.5 |
C1—C2—H2B | 109.6 | C12—C13—H13 | 120.5 |
C3—C2—H2B | 109.6 | C13—C14—C15 | 120.7 (3) |
H2A—C2—H2B | 108.1 | C13—C14—H14 | 119.6 |
C4i—C3—C2 | 113.5 (2) | C15—C14—H14 | 119.6 |
C4i—C3—H3A | 108.9 | N2—C15—C14 | 121.9 (3) |
C2—C3—H3A | 108.9 | N2—C15—H15 | 119.1 |
C4i—C3—H3B | 108.9 | C14—C15—H15 | 119.1 |
C2—C3—H3B | 108.9 | C17—C16—C9 | 121.4 (3) |
H3A—C3—H3B | 107.7 | C17—C16—H16 | 119.3 |
C5—C4—C3i | 109.7 (2) | C9—C16—H16 | 119.3 |
C5—C4—H4A | 109.7 | C16—C17—C12 | 121.8 (3) |
C3i—C4—H4A | 109.7 | C16—C17—H17 | 119.1 |
C5—C4—H4B | 109.7 | C12—C17—H17 | 119.1 |
C3i—C4—H4B | 109.7 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg1 is the centroid of the N1,C6–C10 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O4 | 0.89 | 1.81 | 2.659 (3) | 158 |
O5—H52···O2ii | 0.88 | 1.89 | 2.762 (3) | 169 |
C2—H2A···Cg1ii | 0.97 | 2.88 | 3.754 (3) | 151 |
Symmetry code: (ii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C5H6O4)2(C12H18N2)2(H2O)2] |
Mr | 783.72 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 10.2767 (11), 10.5935 (14), 15.5998 (16) |
β (°) | 107.114 (1) |
V (Å3) | 1623.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.38 |
Crystal size (mm) | 0.26 × 0.25 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.716, 0.742 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7937, 2867, 2275 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.083, 1.07 |
No. of reflections | 2867 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.28 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
Cg1 is the centroid of the N1,C6–C10 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O4 | 0.89 | 1.81 | 2.659 (3) | 157.9 |
O5—H52···O2i | 0.88 | 1.89 | 2.762 (3) | 169.1 |
C2—H2A···Cg1i | 0.97 | 2.88 | 3.754 (3) | 151 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Cg1 is the centroid of the N1,C6–C10 ring. Cg2 is the centroid of the N2,C11–C15 ring |
CgI | CgJ | centroid-to-centroid | interplanar vector | Slippage |
Cg1 | Cg1ii | 3.5599 (17) | 3.342 | 1.226 |
Cg2 | Cg2iii | 3.5617 (18) | 3.374 | 1.142 |
Symmetry codes: (ii)-x,1-y,1-z; (iii) 1-x, 1-y, -z Slippage = vertical displacement between ring centroids. |
Acknowledgements
The project was supported by the Natural Science Foundation of Anhui Provincial Education Commission (No. KJw2008B65ZC) and the Open Foundation of Anhui Key Laboratory of Energetic Materials (No. KLEM2009004).
References
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chem. 46, 3057–3071. Web of Science CSD CrossRef PubMed CAS Google Scholar
Girginova, P. I., Almeida Paz, F. A., Soares-Santos, P. C. R., Ferreira, R. A. S., Carlos, L. D., Amaral, V. S., Klinowski, J., Nogueira, H. I. S. & Trindade, T. (2007). Eur. J. Inorg. Chem. pp. 4238–4246. CrossRef Google Scholar
Kim, Y. J., Park, Y. J. & Jung, D.-Y. (2005). J. Chem. Soc. Dalton Trans. pp. 2603–2609. CrossRef Google Scholar
Rather, B. & Zaworotko, M. J. (2003). Chem. Commun. pp. 830–831. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2004). J. Solid State Chem. 177, 1444–1448. CrossRef CAS Google Scholar
Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2004). Inorg. Chem. 43, 2590–2596. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For many yeras, there is a growing interest in developing organic-inorganic hybrid materials owing to their intriguing structures, new topologies, and potential applications(Ghosh et al., 2007; Kim et al.,2005). Carboxylic acids have been proved to be versatile functional moieties in generating interesting hybrid materials by interacting with metal ions. The abilities of its anion to metal ions in diverse and unique linking modes can be regarded as a major factor in making the carboxylate function a versatile structure directing moiety.
Metal glutarates are one class of dicarboxylate system which exhibit interesting structural features. Previous investigations have demonstrated that glutaric acid presents interesting behaviors due to its conformational flexibility and coordination diversity (Rather et al., 2003; Zheng et al., 2004; Vaidhyanathan et al., 2004; Girginova et al., 2007). We report here the crystal structure of the title compound.
The title complex, [Cu(C12H18N2)(C5H6O4)(H2O)]2, is a dinuclear compound organized around inversion center. The CuII displays a distorted square pyramidal coordination environment (Fig. 1). The basal plane is occupied by two nitrogen atoms of the phenanthroline [Cu—N(1) = 2.014 (2)Å and Cu—N(2) = 2.022 (2) Å] and two O atoms from different glutarate dianions[Cu—O(1) = 1.954 (2)Å and Cu—O(3) = 1.947 (2) Å], whereas one water molecule is located at the apical position at a significantly longer distance[Cu—O(5) = 2.380 (2) Å]. The glutarate dianions act as a bidentate ligand bridging the two CuII ions which are separated by 8.476 Å.
There is an intramolecular hydrogen bond involving one H of the water and the O4 oxygen of one dianion within the dinuclear complex. The second H atom of the water is engaged in hydrogen bond interaction with the O2 oxygen atom of symmetry related dinuclear complex building then a corrugated layer parallel to the (1 0 0) plane (Fig. 2, Table 1). The layers are interconnected through π-π stacking involving the symmetry related N1,C6,C7,C8,C9,C10 (A) and N2,C11,C12,C13,C14,C15 (B) phenanthroline rings (Fig. 2, Table 2) building a three dimensional network. The packing is further stabilized by weak C—H···π interaction involving the symmetry related ring A (Table 1).