metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-glutarato-κ4O1:O5-bis­­[aqua­(1,10-phenanthroline-κ2N,N′)copper(II)]

aSchool of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, People's Republic of China
*Correspondence e-mail: zhou21921@sina.com

(Received 20 February 2011; accepted 2 March 2011; online 9 March 2011)

In the centrosymmetric dinuclear title complex, [Cu2(C5H6O4)2(C12H18N2)2(H2O)2], the CuII atom displays a dis­torted square-pyramidal coordination environment with the basal plane occupied by two phenanthroline N atoms and two O atoms from different glutarate dianions while a water mol­ecule is located at the apical position. Of the two water H atoms, one is engaged in an intra­molecular hydrogen bond with a free oxygen of the dianion whereas the second is engaged in an inter­molecular hydrogen bond, building a corrugated layer parallel to (100). These layers are further connected through ππ stacking inter­actions involving symmetry-related phenanthroline rings [centroid–centroid distance = 3.5599 (17) and 3.5617 (18) Å], building a three dimensionnal network. C—H⋯π inter­actions involving the phenanthroline ring system are also observed.

Related literature

For coordination modes of the glutarate anion, see: Ghosh et al. (2007[Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chem. 46, 3057-3071.]); Kim et al. (2005[Kim, Y. J., Park, Y. J. & Jung, D.-Y. (2005). J. Chem. Soc. Dalton Trans. pp. 2603-2609.]); Rather & Zaworotko (2003[Rather, B. & Zaworotko, M. J. (2003). Chem. Commun. pp. 830-831.]); Zheng et al. (2004[Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2004). Inorg. Chem. 43, 2590-2596.]); Vaidhyanathan et al. (2004[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2004). J. Solid State Chem. 177, 1444-1448.]); Girginova et al. (2007[Girginova, P. I., Almeida Paz, F. A., Soares-Santos, P. C. R., Ferreira, R. A. S., Carlos, L. D., Amaral, V. S., Klinowski, J., Nogueira, H. I. S. & Trindade, T. (2007). Eur. J. Inorg. Chem. pp. 4238-4246.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C5H6O4)2(C12H18N2)2(H2O)2]

  • Mr = 783.72

  • Monoclinic, P 21 /c

  • a = 10.2767 (11) Å

  • b = 10.5935 (14) Å

  • c = 15.5998 (16) Å

  • β = 107.114 (1)°

  • V = 1623.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 298 K

  • 0.26 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.716, Tmax = 0.742

  • 7937 measured reflections

  • 2867 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.07

  • 2867 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C6–C10 ring

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4 0.89 1.81 2.659 (3) 158
O5—H52⋯O2i 0.88 1.89 2.762 (3) 169
C2—H2ACg1i 0.97 2.88 3.754 (3) 151
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

For many yeras, there is a growing interest in developing organic-inorganic hybrid materials owing to their intriguing structures, new topologies, and potential applications(Ghosh et al., 2007; Kim et al.,2005). Carboxylic acids have been proved to be versatile functional moieties in generating interesting hybrid materials by interacting with metal ions. The abilities of its anion to metal ions in diverse and unique linking modes can be regarded as a major factor in making the carboxylate function a versatile structure directing moiety.

Metal glutarates are one class of dicarboxylate system which exhibit interesting structural features. Previous investigations have demonstrated that glutaric acid presents interesting behaviors due to its conformational flexibility and coordination diversity (Rather et al., 2003; Zheng et al., 2004; Vaidhyanathan et al., 2004; Girginova et al., 2007). We report here the crystal structure of the title compound.

The title complex, [Cu(C12H18N2)(C5H6O4)(H2O)]2, is a dinuclear compound organized around inversion center. The CuII displays a distorted square pyramidal coordination environment (Fig. 1). The basal plane is occupied by two nitrogen atoms of the phenanthroline [Cu—N(1) = 2.014 (2)Å and Cu—N(2) = 2.022 (2) Å] and two O atoms from different glutarate dianions[Cu—O(1) = 1.954 (2)Å and Cu—O(3) = 1.947 (2) Å], whereas one water molecule is located at the apical position at a significantly longer distance[Cu—O(5) = 2.380 (2) Å]. The glutarate dianions act as a bidentate ligand bridging the two CuII ions which are separated by 8.476 Å.

There is an intramolecular hydrogen bond involving one H of the water and the O4 oxygen of one dianion within the dinuclear complex. The second H atom of the water is engaged in hydrogen bond interaction with the O2 oxygen atom of symmetry related dinuclear complex building then a corrugated layer parallel to the (1 0 0) plane (Fig. 2, Table 1). The layers are interconnected through π-π stacking involving the symmetry related N1,C6,C7,C8,C9,C10 (A) and N2,C11,C12,C13,C14,C15 (B) phenanthroline rings (Fig. 2, Table 2) building a three dimensional network. The packing is further stabilized by weak C—H···π interaction involving the symmetry related ring A (Table 1).

Related literature top

For coordination modes of the glutarate anion, see: Ghosh et al. (2007); Kim et al. (2005); Rather et al. (2003); Zheng et al. (2004); Vaidhyanathan et al. (2004); Girginova et al. (2007). Scheme - waters should coordinate through O atoms

Experimental top

The title complex was prepared by the addition of the stoichiometric amount of CuCl2 (0.134 g, 1 mmol) to an ethanol solution of glutaric acid (0.264 g, 2 mmol) and 1,10-phenanthroline monohydrate(0.396 g, 2 mmol), the pH was adjusted to ~6 with 0.2 mol.L-1 KOH solution. The resulting solution was stirred for 30 min at room temperature and then filtered. Blue single crystals were isolated from the solution at room temperature over two weeks.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.88 (1)Å and H···H= 1.50 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as riding on their parent O atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labeling scheme. Displacement thermal paremeters are represented at the 30% probability level. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for the sake of clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 1]
[Figure 2] Fig. 2. Partial packing view showing the formation of layer through O—H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for the sake of clarity.
Di-µ-glutarato-κ4O1:O5-bis[aqua(1,10-phenanthroline-κ2N,N')copper(II)] top
Crystal data top
[Cu2(C5H6O4)2(C12H18N2)2(H2O)2]F(000) = 804
Mr = 783.72Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3334 reflections
a = 10.2767 (11) Åθ = 2.4–27.3°
b = 10.5935 (14) ŵ = 1.38 mm1
c = 15.5998 (16) ÅT = 298 K
β = 107.114 (1)°Block, blue
V = 1623.1 (3) Å30.26 × 0.25 × 0.23 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2867 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1112
Tmin = 0.716, Tmax = 0.742k = 1210
7937 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.103P]
where P = (Fo2 + 2Fc2)/3
2867 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu2(C5H6O4)2(C12H18N2)2(H2O)2]V = 1623.1 (3) Å3
Mr = 783.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2767 (11) ŵ = 1.38 mm1
b = 10.5935 (14) ÅT = 298 K
c = 15.5998 (16) Å0.26 × 0.25 × 0.23 mm
β = 107.114 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2867 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2275 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.742Rint = 0.028
7937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
2867 reflectionsΔρmin = 0.28 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.34382 (3)0.54797 (3)0.21857 (2)0.03292 (13)
N10.2087 (2)0.4429 (2)0.12652 (14)0.0299 (5)
N20.3977 (2)0.6012 (2)0.10928 (14)0.0318 (5)
O10.5068 (2)0.61750 (19)0.30440 (12)0.0416 (5)
O20.5850 (2)0.43066 (19)0.28151 (13)0.0432 (5)
O30.2798 (2)0.4813 (2)0.31524 (13)0.0467 (5)
O40.1462 (3)0.6404 (2)0.32731 (17)0.0689 (7)
O50.2215 (2)0.74242 (19)0.19357 (13)0.0441 (5)
H510.19000.72870.24010.066*
H520.27460.80930.20140.066*
C10.5979 (3)0.5330 (3)0.32214 (17)0.0318 (6)
C20.7228 (3)0.5601 (3)0.39982 (18)0.0397 (7)
H2A0.72840.64990.41250.048*
H2B0.80380.53540.38410.048*
C30.7158 (3)0.4873 (3)0.48313 (18)0.0380 (7)
H3A0.62650.49930.49100.046*
H3B0.72660.39800.47350.046*
C40.1767 (3)0.4723 (3)0.43155 (18)0.0401 (7)
H4A0.18050.38160.42420.048*
H4B0.08690.49380.43560.048*
C50.2012 (3)0.5385 (3)0.35137 (18)0.0387 (7)
C60.1142 (3)0.3640 (3)0.13755 (19)0.0370 (7)
H60.10910.34960.19530.044*
C70.0230 (3)0.3025 (3)0.0664 (2)0.0417 (7)
H70.04230.24870.07680.050*
C80.0291 (3)0.3208 (3)0.0187 (2)0.0401 (7)
H80.03210.28000.06670.048*
C90.1287 (3)0.4017 (3)0.03337 (18)0.0339 (6)
C100.2164 (3)0.4611 (2)0.04186 (17)0.0292 (6)
C110.3172 (3)0.5485 (2)0.03226 (17)0.0294 (6)
C120.3286 (3)0.5760 (3)0.05311 (18)0.0368 (7)
C130.4278 (3)0.6647 (3)0.0576 (2)0.0445 (8)
H130.43980.68640.11260.053*
C140.5061 (3)0.7183 (3)0.0194 (2)0.0472 (8)
H140.57170.77760.01710.057*
C150.4890 (3)0.6853 (3)0.1024 (2)0.0397 (7)
H150.54350.72370.15420.048*
C160.1444 (3)0.4307 (3)0.11997 (19)0.0429 (8)
H160.08810.39150.17070.051*
C170.2384 (3)0.5131 (3)0.12896 (19)0.0453 (8)
H170.24550.52990.18590.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0360 (2)0.0377 (2)0.02556 (18)0.00182 (16)0.00982 (14)0.00183 (15)
N10.0338 (12)0.0290 (12)0.0281 (11)0.0019 (10)0.0112 (10)0.0016 (9)
N20.0340 (13)0.0280 (12)0.0336 (12)0.0029 (10)0.0105 (10)0.0010 (10)
O10.0444 (12)0.0396 (12)0.0349 (11)0.0059 (10)0.0024 (9)0.0066 (9)
O20.0467 (13)0.0412 (12)0.0381 (11)0.0073 (10)0.0072 (9)0.0055 (9)
O30.0591 (14)0.0546 (14)0.0325 (11)0.0083 (11)0.0230 (10)0.0053 (10)
O40.095 (2)0.0595 (16)0.0710 (16)0.0257 (15)0.0535 (15)0.0232 (14)
O50.0495 (12)0.0443 (12)0.0379 (11)0.0074 (10)0.0120 (9)0.0047 (9)
C10.0351 (15)0.0379 (17)0.0232 (13)0.0013 (13)0.0097 (11)0.0041 (12)
C20.0365 (16)0.0490 (18)0.0310 (14)0.0073 (14)0.0057 (12)0.0045 (13)
C30.0428 (17)0.0383 (17)0.0316 (15)0.0051 (13)0.0090 (13)0.0043 (13)
C40.0410 (17)0.0481 (19)0.0319 (15)0.0069 (14)0.0117 (13)0.0004 (13)
C50.0417 (17)0.0492 (19)0.0253 (14)0.0065 (15)0.0100 (12)0.0020 (14)
C60.0390 (16)0.0338 (16)0.0417 (16)0.0031 (13)0.0174 (13)0.0044 (13)
C70.0359 (16)0.0317 (16)0.0580 (19)0.0016 (13)0.0147 (14)0.0013 (14)
C80.0325 (16)0.0339 (16)0.0475 (18)0.0027 (13)0.0019 (13)0.0101 (14)
C90.0342 (15)0.0326 (15)0.0313 (14)0.0095 (12)0.0041 (12)0.0017 (12)
C100.0319 (14)0.0280 (14)0.0274 (13)0.0071 (12)0.0084 (11)0.0002 (11)
C110.0320 (14)0.0287 (14)0.0287 (14)0.0089 (12)0.0105 (11)0.0026 (11)
C120.0443 (17)0.0357 (16)0.0342 (15)0.0159 (13)0.0177 (13)0.0100 (12)
C130.0488 (19)0.0447 (19)0.0476 (18)0.0138 (15)0.0260 (15)0.0163 (15)
C140.0453 (18)0.0354 (17)0.070 (2)0.0027 (14)0.0307 (17)0.0137 (16)
C150.0370 (16)0.0318 (16)0.0503 (18)0.0004 (13)0.0131 (14)0.0021 (14)
C160.0475 (18)0.0480 (19)0.0289 (15)0.0103 (15)0.0046 (13)0.0058 (13)
C170.058 (2)0.055 (2)0.0246 (15)0.0181 (17)0.0136 (14)0.0054 (14)
Geometric parameters (Å, º) top
Cu1—O31.947 (2)C4—C3i1.520 (4)
Cu1—O11.9545 (19)C4—H4A0.9700
Cu1—N12.014 (2)C4—H4B0.9700
Cu1—N22.022 (2)C6—C71.387 (4)
Cu1—O52.385 (2)C6—H60.9300
N1—C61.329 (3)C7—C81.362 (4)
N1—C101.360 (3)C7—H70.9300
N2—C151.320 (4)C8—C91.404 (4)
N2—C111.362 (3)C8—H80.9300
O1—C11.266 (3)C9—C101.401 (4)
O2—C11.243 (3)C9—C161.440 (4)
O3—C51.267 (3)C10—C111.429 (4)
O4—C51.225 (4)C11—C121.402 (4)
O5—H510.8897C12—C131.403 (4)
O5—H520.8804C12—C171.435 (4)
C1—C21.511 (4)C13—C141.359 (4)
C2—C31.531 (4)C13—H130.9300
C2—H2A0.9700C14—C151.401 (4)
C2—H2B0.9700C14—H140.9300
C3—C4i1.520 (4)C15—H150.9300
C3—H3A0.9700C16—C171.340 (5)
C3—H3B0.9700C16—H160.9300
C4—C51.518 (4)C17—H170.9300
O3—Cu1—O191.32 (9)H4A—C4—H4B108.2
O3—Cu1—N191.85 (9)O4—C5—O3125.6 (3)
O1—Cu1—N1165.65 (9)O4—C5—C4119.0 (3)
O3—Cu1—N2173.39 (9)O3—C5—C4115.3 (3)
O1—Cu1—N294.62 (9)N1—C6—C7122.6 (3)
N1—Cu1—N281.69 (9)N1—C6—H6118.7
O3—Cu1—O599.10 (8)C7—C6—H6118.7
O1—Cu1—O595.20 (7)C8—C7—C6120.0 (3)
N1—Cu1—O598.12 (8)C8—C7—H7120.0
N2—Cu1—O583.28 (8)C6—C7—H7120.0
C6—N1—C10117.9 (2)C7—C8—C9119.4 (3)
C6—N1—Cu1129.16 (18)C7—C8—H8120.3
C10—N1—Cu1112.87 (17)C9—C8—H8120.3
C15—N2—C11117.8 (2)C10—C9—C8117.3 (3)
C15—N2—Cu1129.3 (2)C10—C9—C16117.9 (3)
C11—N2—Cu1112.56 (17)C8—C9—C16124.8 (3)
C1—O1—Cu1108.23 (17)N1—C10—C9122.8 (2)
C5—O3—Cu1125.2 (2)N1—C10—C11116.4 (2)
Cu1—O5—H5191.5C9—C10—C11120.7 (2)
Cu1—O5—H52113.4N2—C11—C12123.6 (3)
H51—O5—H52112.2N2—C11—C10116.3 (2)
O2—C1—O1123.0 (2)C12—C11—C10120.0 (2)
O2—C1—C2120.8 (3)C11—C12—C13116.9 (3)
O1—C1—C2116.1 (3)C11—C12—C17118.2 (3)
C1—C2—C3110.1 (2)C13—C12—C17124.9 (3)
C1—C2—H2A109.6C14—C13—C12119.0 (3)
C3—C2—H2A109.6C14—C13—H13120.5
C1—C2—H2B109.6C12—C13—H13120.5
C3—C2—H2B109.6C13—C14—C15120.7 (3)
H2A—C2—H2B108.1C13—C14—H14119.6
C4i—C3—C2113.5 (2)C15—C14—H14119.6
C4i—C3—H3A108.9N2—C15—C14121.9 (3)
C2—C3—H3A108.9N2—C15—H15119.1
C4i—C3—H3B108.9C14—C15—H15119.1
C2—C3—H3B108.9C17—C16—C9121.4 (3)
H3A—C3—H3B107.7C17—C16—H16119.3
C5—C4—C3i109.7 (2)C9—C16—H16119.3
C5—C4—H4A109.7C16—C17—C12121.8 (3)
C3i—C4—H4A109.7C16—C17—H17119.1
C5—C4—H4B109.7C12—C17—H17119.1
C3i—C4—H4B109.7
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C6–C10 ring
D—H···AD—HH···AD···AD—H···A
O5—H51···O40.891.812.659 (3)158
O5—H52···O2ii0.881.892.762 (3)169
C2—H2A···Cg1ii0.972.883.754 (3)151
Symmetry code: (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C5H6O4)2(C12H18N2)2(H2O)2]
Mr783.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.2767 (11), 10.5935 (14), 15.5998 (16)
β (°) 107.114 (1)
V3)1623.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.26 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.716, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
7937, 2867, 2275
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.07
No. of reflections2867
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C6–C10 ring
D—H···AD—HH···AD···AD—H···A
O5—H51···O40.891.812.659 (3)157.9
O5—H52···O2i0.881.892.762 (3)169.1
C2—H2A···Cg1i0.972.883.754 (3)151
Symmetry code: (i) x+1, y+1/2, z+1/2.
Table 2 π-π stacking interactions (Å) top
Cg1 is the centroid of the N1,C6–C10 ring. Cg2 is the centroid of the N2,C11–C15 ring
CgICgJcentroid-to-centroidinterplanar vectorSlippage
Cg1Cg1ii3.5599 (17)3.3421.226
Cg2Cg2iii3.5617 (18)3.3741.142
Symmetry codes: (ii)-x,1-y,1-z; (iii) 1-x, 1-y, -z

Slippage = vertical displacement between ring centroids.
 

Acknowledgements

The project was supported by the Natural Science Foundation of Anhui Provincial Education Commission (No. KJw2008B65ZC) and the Open Foundation of Anhui Key Laboratory of Energetic Materials (No. KLEM2009004).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chem. 46, 3057–3071.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGirginova, P. I., Almeida Paz, F. A., Soares-Santos, P. C. R., Ferreira, R. A. S., Carlos, L. D., Amaral, V. S., Klinowski, J., Nogueira, H. I. S. & Trindade, T. (2007). Eur. J. Inorg. Chem. pp. 4238–4246.  CrossRef Google Scholar
First citationKim, Y. J., Park, Y. J. & Jung, D.-Y. (2005). J. Chem. Soc. Dalton Trans. pp. 2603–2609.  CrossRef Google Scholar
First citationRather, B. & Zaworotko, M. J. (2003). Chem. Commun. pp. 830–831.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2004). J. Solid State Chem. 177, 1444–1448.  CrossRef CAS Google Scholar
First citationZheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2004). Inorg. Chem. 43, 2590–2596.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds