organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o890-o891

3-[(1-Benzyl-1H-1,2,3-triazol-5-yl)meth­yl]-6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA, cDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, dINANOTECH (Institute of Nanomaterials and Nanotechnology), MAScIR, Avenue de l'Armée Royale, Rabat, Morocco, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kandri_rodi@yahoo.fr

(Received 1 March 2011; accepted 9 March 2011; online 15 March 2011)

There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound, C22H17BrN6. The dihedral angles between the imidazo[4,5-b]pyridine mean plane and the phenyl rings are 20.4 (2) and 24.0 (2)° in the two mol­ecules. The orientation of triazoles compared to the imidazo[4,5-b]pyridine system is almost the same in both mol­ecules, with dihedral angles of 64.2 (2) and 65.1 (2)°. However, the main difference between the two mol­ecules lies in the arrangement of the phenyl groups compared to imidazo[4,5-b]pyridine in each mol­ecule. Indeed, in the first mol­ecule the dihedral angle between the plane of the phenyl ring and that of the imidazo[4,5-b]pyridine system is 67.7 (2)°, while in the second mol­ecule the plane of the phenyl ring is almost perpendicular to that of the imidazo[4,5-b]pyridine system with a dihedral angle of 86.0 (2)°.

Related literature

For background literature on the medicinal properties of imidazo[4,5-b]pyridine and its derivatives, see: Jiyeon et al. (2010[Jiyeon, O., Sangseop, K., Kyu-Yang, Y., Nak-Jung, K., Hyung, S. H., Je-Yoel, C. & Kyoungho, S. (2010). Biochem. Pharmacol. 79, 596-609.]); Passannanti et al. (1998[Passannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A. & Cirrincione, G. (1998). Heterocycles, 48, 1229-1235.]); Bavetsias et al. (2007[Bavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. Lett. 17, 6567-6571.]); Tomczuk et al. (1991[Tomczuk, B. E., Taylor, C. J., Moses, L. M., Sutherland, D. B., Lo, Y. S., Johnson, D. N., Kinnier, W. B. & Kilpatrick, B. F. (1991). J. Med. Chem. 34, 2993-3006.]); Ouzidan, Obbade et al. (2010[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.]); Ouzidan, Rodi et al. (2010[Ouzidan, Y., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1903.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17BrN6

  • Mr = 445.33

  • Monoclinic, P 21 /c

  • a = 41.122 (6) Å

  • b = 5.8358 (10) Å

  • c = 15.988 (3) Å

  • β = 93.922 (6)°

  • V = 3827.8 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 93 K

  • 0.32 × 0.05 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.878, Tmax = 0.979

  • 14153 measured reflections

  • 7510 independent reflections

  • 4016 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.109

  • S = 0.96

  • 7510 reflections

  • 524 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])'; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is a result of an extensive program of scientific research on the synthesis and characterization of imidazo[4,5-b]pyridine and its derivatives started in the laboratory since two years (Ouzidan, Obbade et al. 2010; Ouzidan, Rodi et al. 2010). It is motivated by numerous applications of these compounds in medicinal chemistry (Passannanti et al., (1998); Tomczuk et al., (1991)). Furthermore, the imidazo[4,5-b]pyridine moiety is also an important heterocyclic nucleus which has been used extensively in medicinal chemistry. In fact, the heterocycles derived from these intermediates have been tested for their potential as anti-neuroinflammatory (Jiyeon et al., (2010); Bavetsias et al., (2007).

In this work we have synthesized 3-((3-benzyl-3H-1,2,3-triazol-4-yl)methyl)- 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine by 1,3-dipolar cycloaddition reaction of benzyl azide with 6-bromo-2-phenyl-3-(prop-2-ynyl)-3H-imidazo [4,5-b]pyridine.

The plot of the two molecules building the asymmetric unit of the crystal structure of 3-((3-benzyl-3H-1,2,3-triazol-4-yl)methyl)-6-bromo-2- phenyl-3H-ιmidazo[4,5-b]pyridine is shown in Fig. 1. The two cycles forming the imidazo[4,5-b]pyridine are almost planar and form dihedral angles with the phenyl rings of 20.4 (2)° and 24.0 (2)°, in the first and in the second molecule respectively. Moreover, the dihedral angle between the phenyl ring and the imidazo[4,5-b]pyridine system is 67.7 (2) °, in the first while in the second molecule the phenyl is almost perpendicular to the imidazo[4,5-b]pyridine system with a dihedral angle of 86.0 (2) ° as shown in Fig.2 which represents the fitting of the two molecules.

Related literature top

For background literature on the medicinal properties of imidazo[4,5-b]pyridine and its derivatives, see: Jiyeon et al. (2010); Passannanti et al. (1998); Bavetsias et al. (2007); Tomczuk et al. (1991); Ouzidan, Obbade et al. (2010); Ouzidan, Rodi et al. (2010).

Experimental top

To a solution of 6-bromo-2-phenyl-3-(prop-2-ynyl)-3H-imidazo[4,5-b]pyridine (0.2 g, 0.64 mmol) in ethanol (15 ml) was added benzyl azide (0.1 ml, 0.77 mmol). The mixture was stirred under reflux for 72 h. After completion of reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using a mixture (hexane/ethyl acetate 2/1). Crystals were obtained when the solvent was allowed to evaporate.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å for all H atoms with Uiso(H) = 1.2 Ueq(aromatic, methine) and Uiso(H) = 1.5 Ueq(methyl).

The reflections 002, -102 and -202 were omitted because the difference between their calculated and observed intensities are very large. They are affected by the beamstop.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Plot of the asymmetric unit of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. View showing the fitting of the two molecules building the asymmetric unit.
3-[(1-Benzyl-1H-1,2,3-triazol-5-yl)methyl]-6-bromo-2-phenyl- 3H-imidazo[4,5-b]pyridine top
Crystal data top
C22H17BrN6F(000) = 1808
Mr = 445.33Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8098 reflections
a = 41.122 (6) Åθ = 2.5–26.0°
b = 5.8358 (10) ŵ = 2.17 mm1
c = 15.988 (3) ÅT = 93 K
β = 93.922 (6)°Lath, colourless
V = 3827.8 (11) Å30.32 × 0.05 × 0.01 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
7510 independent reflections
Radiation source: fine-focus sealed tube4016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω and ϕ scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 5050
Tmin = 0.878, Tmax = 0.979k = 77
14153 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0383P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.002
7510 reflectionsΔρmax = 0.37 e Å3
524 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00033 (9)
Crystal data top
C22H17BrN6V = 3827.8 (11) Å3
Mr = 445.33Z = 8
Monoclinic, P21/cMo Kα radiation
a = 41.122 (6) ŵ = 2.17 mm1
b = 5.8358 (10) ÅT = 93 K
c = 15.988 (3) Å0.32 × 0.05 × 0.01 mm
β = 93.922 (6)°
Data collection top
Nonius KappaCCD
diffractometer
7510 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4016 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.979Rint = 0.088
14153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.96Δρmax = 0.37 e Å3
7510 reflectionsΔρmin = 0.43 e Å3
524 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.989447 (10)0.09151 (9)0.32192 (3)0.03656 (17)
N10.90534 (7)0.0612 (6)0.4335 (2)0.0193 (8)
N20.94688 (8)0.5152 (6)0.5460 (2)0.0230 (9)
N30.89663 (7)0.3576 (5)0.5350 (2)0.0187 (8)
N40.81767 (8)0.8153 (6)0.4658 (2)0.0207 (9)
N50.79371 (7)0.6850 (6)0.4916 (2)0.0194 (8)
N60.80743 (7)0.4880 (5)0.5204 (2)0.0149 (8)
C10.92866 (9)0.0255 (7)0.3886 (3)0.0219 (11)
H10.92330.15220.35300.026*
C20.96043 (9)0.0590 (7)0.3909 (3)0.0252 (11)
C30.97024 (10)0.2447 (7)0.4406 (3)0.0248 (12)
H30.99180.30450.44200.030*
C40.94644 (10)0.3375 (7)0.4886 (3)0.0208 (11)
C50.91541 (9)0.2381 (7)0.4805 (3)0.0179 (10)
C60.91729 (9)0.5220 (7)0.5727 (3)0.0193 (10)
C70.90790 (9)0.6912 (7)0.6361 (3)0.0177 (10)
C80.92746 (9)0.8867 (7)0.6463 (3)0.0231 (11)
H80.94560.90560.61330.028*
C90.92049 (10)1.0533 (7)0.7044 (3)0.0260 (11)
H90.93431.18320.71230.031*
C100.89335 (10)1.0306 (7)0.7510 (3)0.0259 (11)
H100.88801.14780.78900.031*
C110.87404 (10)0.8355 (8)0.7419 (3)0.0280 (11)
H110.85570.81810.77430.034*
C120.88160 (10)0.6658 (8)0.6852 (3)0.0269 (11)
H120.86860.53120.68010.032*
C130.86240 (8)0.2979 (7)0.5432 (3)0.0194 (10)
H13A0.85910.26130.60250.023*
H13B0.85680.15990.50920.023*
C140.84022 (9)0.4920 (7)0.5147 (2)0.0167 (10)
C150.84631 (9)0.7005 (7)0.4797 (3)0.0179 (10)
H150.86720.75590.46720.021*
C160.78661 (9)0.3022 (7)0.5469 (3)0.0178 (10)
H16A0.79140.16190.51510.021*
H16B0.76350.34350.53280.021*
C170.79114 (9)0.2506 (7)0.6397 (3)0.0176 (10)
C180.80353 (8)0.4096 (7)0.6972 (2)0.0191 (9)
H180.81030.55500.67810.023*
C190.80625 (9)0.3609 (7)0.7828 (3)0.0224 (10)
H190.81520.47090.82170.027*
C200.79574 (9)0.1489 (7)0.8105 (3)0.0261 (11)
H200.79740.11330.86860.031*
C210.78273 (9)0.0108 (7)0.7529 (3)0.0235 (10)
H210.77530.15460.77180.028*
C220.78062 (9)0.0389 (7)0.6684 (2)0.0199 (10)
H220.77190.07160.62940.024*
Br20.504814 (10)1.09139 (8)1.17516 (3)0.03284 (16)
N70.59172 (7)0.9600 (6)1.0742 (2)0.0224 (9)
N80.55365 (8)0.5067 (6)0.9533 (2)0.0220 (9)
N90.60306 (7)0.6754 (6)0.9706 (2)0.0197 (8)
N100.68098 (8)0.2184 (6)1.0476 (2)0.0225 (9)
N110.70526 (7)0.3468 (6)1.0243 (2)0.0201 (9)
N120.69174 (7)0.5464 (5)0.9948 (2)0.0170 (8)
C230.56715 (9)1.0389 (7)1.1175 (3)0.0241 (11)
H230.57131.16341.15500.029*
C240.53579 (9)0.9465 (7)1.1099 (3)0.0224 (11)
C250.52746 (9)0.7637 (7)1.0584 (3)0.0249 (12)
H250.50620.69921.05440.030*
C260.55258 (9)0.6800 (7)1.0124 (3)0.0209 (11)
C270.58294 (9)0.7867 (7)1.0236 (3)0.0193 (10)
C280.58399 (9)0.5082 (7)0.9293 (3)0.0191 (10)
C290.59501 (9)0.3528 (7)0.8654 (3)0.0194 (10)
C300.57769 (9)0.1458 (7)0.8524 (3)0.0215 (11)
H300.55990.11290.88520.026*
C310.58624 (10)0.0106 (7)0.7924 (3)0.0239 (11)
H310.57420.14850.78400.029*
C320.61243 (10)0.0343 (8)0.7446 (3)0.0282 (12)
H320.61850.07410.70420.034*
C330.62961 (10)0.2366 (7)0.7558 (3)0.0268 (12)
H330.64730.26820.72250.032*
C340.62105 (9)0.3933 (7)0.8154 (3)0.0232 (10)
H340.63310.53150.82250.028*
C350.63732 (8)0.7354 (6)0.9684 (3)0.0203 (10)
H35A0.64210.87051.00470.024*
H35B0.64190.77760.91040.024*
C360.65910 (9)0.5413 (7)0.9975 (2)0.0167 (10)
C370.65276 (10)0.3341 (7)1.0321 (3)0.0203 (10)
H370.63180.27951.04350.024*
C380.71226 (9)0.7200 (6)0.9582 (3)0.0175 (10)
H38A0.73510.70080.98120.021*
H38B0.70480.87430.97410.021*
C390.71105 (9)0.7025 (7)0.8641 (3)0.0160 (10)
C400.72190 (9)0.5023 (7)0.8270 (3)0.0222 (10)
H400.73060.38110.86120.027*
C410.71999 (10)0.4796 (7)0.7407 (3)0.0260 (11)
H410.72720.34230.71590.031*
C420.70759 (9)0.6569 (7)0.6903 (3)0.0268 (11)
H420.70640.64140.63100.032*
C430.69698 (9)0.8569 (7)0.7266 (3)0.0245 (11)
H430.68870.97920.69230.029*
C440.69857 (9)0.8778 (7)0.8139 (3)0.0209 (10)
H440.69101.01390.83880.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0235 (3)0.0446 (3)0.0428 (4)0.0063 (2)0.0115 (2)0.0184 (3)
N10.0119 (18)0.019 (2)0.027 (2)0.0002 (16)0.0013 (15)0.0017 (18)
N20.020 (2)0.023 (2)0.026 (2)0.0010 (16)0.0012 (16)0.0046 (18)
N30.0155 (18)0.018 (2)0.023 (2)0.0021 (15)0.0017 (15)0.0005 (17)
N40.022 (2)0.0176 (19)0.022 (2)0.0036 (17)0.0022 (16)0.0014 (17)
N50.0189 (19)0.016 (2)0.023 (2)0.0011 (16)0.0019 (16)0.0037 (17)
N60.0142 (18)0.0159 (19)0.015 (2)0.0010 (15)0.0028 (14)0.0025 (16)
C10.022 (2)0.019 (3)0.024 (3)0.0044 (19)0.0015 (19)0.000 (2)
C20.019 (2)0.032 (3)0.025 (3)0.001 (2)0.0027 (19)0.004 (2)
C30.019 (2)0.020 (3)0.034 (3)0.005 (2)0.002 (2)0.002 (2)
C40.020 (2)0.016 (3)0.026 (3)0.0012 (19)0.000 (2)0.002 (2)
C50.015 (2)0.018 (3)0.020 (3)0.0010 (19)0.0035 (19)0.002 (2)
C60.014 (2)0.019 (2)0.024 (3)0.0004 (19)0.0035 (19)0.001 (2)
C70.012 (2)0.019 (2)0.022 (3)0.0027 (19)0.0028 (18)0.002 (2)
C80.020 (2)0.023 (3)0.026 (3)0.002 (2)0.0028 (19)0.002 (2)
C90.026 (3)0.024 (3)0.028 (3)0.001 (2)0.007 (2)0.003 (2)
C100.031 (3)0.019 (3)0.027 (3)0.011 (2)0.007 (2)0.002 (2)
C110.025 (3)0.034 (3)0.025 (3)0.008 (2)0.001 (2)0.001 (2)
C120.020 (2)0.027 (3)0.033 (3)0.003 (2)0.001 (2)0.001 (2)
C130.011 (2)0.020 (2)0.028 (3)0.0005 (18)0.0003 (18)0.002 (2)
C140.014 (2)0.020 (2)0.016 (2)0.0026 (18)0.0027 (17)0.000 (2)
C150.016 (2)0.020 (2)0.018 (3)0.0009 (19)0.0008 (18)0.002 (2)
C160.015 (2)0.017 (2)0.022 (3)0.0040 (18)0.0037 (18)0.001 (2)
C170.014 (2)0.019 (3)0.020 (3)0.0029 (19)0.0027 (18)0.005 (2)
C180.020 (2)0.017 (2)0.021 (2)0.003 (2)0.0032 (17)0.003 (2)
C190.025 (2)0.023 (3)0.019 (3)0.002 (2)0.0018 (18)0.003 (2)
C200.031 (3)0.029 (3)0.019 (3)0.006 (2)0.005 (2)0.005 (2)
C210.026 (2)0.020 (2)0.026 (3)0.003 (2)0.0075 (19)0.004 (2)
C220.021 (2)0.021 (3)0.018 (3)0.0045 (19)0.0022 (18)0.002 (2)
Br20.0237 (3)0.0376 (3)0.0383 (3)0.0037 (2)0.0099 (2)0.0134 (3)
N70.0176 (19)0.020 (2)0.030 (2)0.0009 (16)0.0006 (16)0.0009 (18)
N80.0173 (19)0.021 (2)0.028 (2)0.0014 (16)0.0045 (16)0.0017 (18)
N90.0118 (18)0.0175 (19)0.030 (2)0.0006 (15)0.0024 (16)0.0015 (18)
N100.022 (2)0.024 (2)0.022 (2)0.0012 (17)0.0017 (16)0.0006 (17)
N110.0177 (19)0.024 (2)0.019 (2)0.0032 (16)0.0003 (15)0.0009 (17)
N120.0152 (18)0.015 (2)0.021 (2)0.0028 (15)0.0001 (14)0.0006 (16)
C230.025 (2)0.026 (3)0.022 (3)0.002 (2)0.0024 (19)0.004 (2)
C240.019 (2)0.021 (3)0.028 (3)0.003 (2)0.0066 (19)0.001 (2)
C250.013 (2)0.035 (3)0.028 (3)0.006 (2)0.0061 (19)0.005 (2)
C260.018 (2)0.022 (3)0.023 (3)0.0026 (19)0.0015 (19)0.002 (2)
C270.015 (2)0.017 (2)0.026 (3)0.0008 (19)0.0001 (19)0.001 (2)
C280.019 (2)0.016 (2)0.022 (3)0.0010 (19)0.0018 (19)0.002 (2)
C290.015 (2)0.019 (3)0.024 (3)0.0018 (19)0.0043 (19)0.001 (2)
C300.016 (2)0.025 (3)0.023 (3)0.005 (2)0.0013 (18)0.005 (2)
C310.026 (3)0.020 (3)0.025 (3)0.000 (2)0.005 (2)0.001 (2)
C320.027 (3)0.031 (3)0.025 (3)0.009 (2)0.003 (2)0.005 (2)
C330.022 (2)0.031 (3)0.028 (3)0.007 (2)0.002 (2)0.002 (2)
C340.022 (2)0.021 (3)0.027 (3)0.000 (2)0.0028 (19)0.001 (2)
C350.018 (2)0.013 (2)0.030 (3)0.0042 (19)0.0022 (19)0.001 (2)
C360.015 (2)0.016 (3)0.020 (3)0.0010 (18)0.0005 (17)0.003 (2)
C370.015 (2)0.024 (3)0.022 (3)0.0022 (19)0.0019 (18)0.001 (2)
C380.011 (2)0.017 (2)0.024 (3)0.0059 (18)0.0010 (18)0.001 (2)
C390.016 (2)0.017 (2)0.015 (3)0.0036 (19)0.0006 (18)0.001 (2)
C400.023 (2)0.023 (2)0.021 (3)0.0011 (19)0.0050 (19)0.001 (2)
C410.030 (3)0.017 (2)0.032 (3)0.001 (2)0.009 (2)0.003 (2)
C420.029 (3)0.032 (3)0.019 (3)0.005 (2)0.001 (2)0.002 (2)
C430.023 (2)0.018 (3)0.033 (3)0.0011 (19)0.000 (2)0.004 (2)
C440.022 (2)0.018 (2)0.022 (3)0.003 (2)0.0002 (18)0.003 (2)
Geometric parameters (Å, º) top
Br1—C21.895 (4)Br2—C241.899 (4)
N1—C51.326 (5)N7—C271.330 (5)
N1—C11.337 (5)N7—C231.345 (5)
N2—C61.318 (5)N8—C281.330 (5)
N2—C41.384 (5)N8—C261.387 (5)
N3—C51.390 (5)N9—C271.386 (5)
N3—C61.392 (5)N9—C281.390 (5)
N3—C131.465 (4)N9—C351.454 (4)
N4—N51.332 (4)N10—N111.322 (4)
N4—C151.360 (4)N10—C371.351 (5)
N5—N61.348 (4)N11—N121.361 (4)
N6—C141.358 (4)N12—C361.346 (4)
N6—C161.462 (4)N12—C381.466 (4)
C1—C21.395 (5)C23—C241.395 (5)
C1—H10.9500C23—H230.9500
C2—C31.388 (5)C24—C251.377 (5)
C3—C41.393 (5)C25—C261.397 (5)
C3—H30.9500C25—H250.9500
C4—C51.400 (5)C26—C271.396 (5)
C6—C71.484 (6)C28—C291.461 (5)
C7—C121.388 (6)C29—C341.400 (5)
C7—C81.399 (5)C29—C301.411 (5)
C8—C91.388 (5)C30—C311.387 (5)
C8—H80.9500C30—H300.9500
C9—C101.390 (6)C31—C321.387 (6)
C9—H90.9500C31—H310.9500
C10—C111.390 (6)C32—C331.381 (6)
C10—H100.9500C32—H320.9500
C11—C121.392 (6)C33—C341.384 (6)
C11—H110.9500C33—H330.9500
C12—H120.9500C34—H340.9500
C13—C141.505 (5)C35—C361.499 (5)
C13—H13A0.9900C35—H35A0.9900
C13—H13B0.9900C35—H35B0.9900
C14—C151.369 (5)C36—C371.362 (5)
C15—H150.9500C37—H370.9500
C16—C171.513 (5)C38—C391.505 (5)
C16—H16A0.9900C38—H38A0.9900
C16—H16B0.9900C38—H38B0.9900
C17—C181.379 (5)C39—C441.377 (5)
C17—C221.396 (5)C39—C401.397 (5)
C18—C191.395 (5)C40—C411.382 (5)
C18—H180.9500C40—H400.9500
C19—C201.393 (5)C41—C421.387 (5)
C19—H190.9500C41—H410.9500
C20—C211.392 (5)C42—C431.387 (6)
C20—H200.9500C42—H420.9500
C21—C221.378 (5)C43—C441.399 (6)
C21—H210.9500C43—H430.9500
C22—H220.9500C44—H440.9500
C5—N1—C1113.1 (3)C27—N7—C23113.0 (3)
C6—N2—C4105.5 (3)C28—N8—C26105.4 (3)
C5—N3—C6105.6 (3)C27—N9—C28106.2 (3)
C5—N3—C13121.0 (3)C27—N9—C35121.4 (3)
C6—N3—C13133.4 (3)C28—N9—C35132.3 (3)
N5—N4—C15108.6 (3)N11—N10—C37108.7 (3)
N4—N5—N6107.0 (3)N10—N11—N12106.5 (3)
N5—N6—C14110.9 (3)C36—N12—N11110.8 (3)
N5—N6—C16119.5 (3)C36—N12—C38129.1 (3)
C14—N6—C16129.5 (3)N11—N12—C38119.8 (3)
N1—C1—C2123.9 (4)N7—C23—C24123.0 (4)
N1—C1—H1118.1N7—C23—H23118.5
C2—C1—H1118.1C24—C23—H23118.5
C3—C2—C1121.7 (4)C25—C24—C23122.8 (4)
C3—C2—Br1121.7 (3)C25—C24—Br2121.7 (3)
C1—C2—Br1116.5 (3)C23—C24—Br2115.5 (3)
C2—C3—C4115.6 (4)C24—C25—C26115.0 (4)
C2—C3—H3122.2C24—C25—H25122.5
C4—C3—H3122.2C26—C25—H25122.5
N2—C4—C3132.7 (4)N8—C26—C27110.1 (4)
N2—C4—C5110.0 (4)N8—C26—C25132.3 (4)
C3—C4—C5117.3 (4)C27—C26—C25117.6 (4)
N1—C5—N3125.4 (4)N7—C27—N9125.4 (4)
N1—C5—C4128.5 (4)N7—C27—C26128.4 (4)
N3—C5—C4106.1 (4)N9—C27—C26106.2 (4)
N2—C6—N3112.9 (4)N8—C28—N9112.1 (4)
N2—C6—C7122.0 (4)N8—C28—C29122.7 (4)
N3—C6—C7125.1 (4)N9—C28—C29125.2 (4)
C12—C7—C8119.0 (4)C34—C29—C30117.3 (4)
C12—C7—C6124.4 (4)C34—C29—C28125.5 (4)
C8—C7—C6116.6 (4)C30—C29—C28117.2 (4)
C9—C8—C7120.4 (4)C31—C30—C29121.1 (4)
C9—C8—H8119.8C31—C30—H30119.5
C7—C8—H8119.8C29—C30—H30119.5
C8—C9—C10120.1 (4)C30—C31—C32120.0 (4)
C8—C9—H9119.9C30—C31—H31120.0
C10—C9—H9119.9C32—C31—H31120.0
C11—C10—C9119.7 (4)C33—C32—C31120.0 (4)
C11—C10—H10120.1C33—C32—H32120.0
C9—C10—H10120.1C31—C32—H32120.0
C10—C11—C12120.0 (4)C32—C33—C34120.1 (4)
C10—C11—H11120.0C32—C33—H33119.9
C12—C11—H11120.0C34—C33—H33119.9
C7—C12—C11120.7 (4)C33—C34—C29121.5 (4)
C7—C12—H12119.7C33—C34—H34119.2
C11—C12—H12119.7C29—C34—H34119.2
N3—C13—C14111.1 (3)N9—C35—C36111.7 (3)
N3—C13—H13A109.4N9—C35—H35A109.3
C14—C13—H13A109.4C36—C35—H35A109.3
N3—C13—H13B109.4N9—C35—H35B109.3
C14—C13—H13B109.4C36—C35—H35B109.3
H13A—C13—H13B108.0H35A—C35—H35B107.9
N6—C14—C15104.7 (3)N12—C36—C37104.6 (4)
N6—C14—C13123.4 (4)N12—C36—C35123.3 (4)
C15—C14—C13132.0 (4)C37—C36—C35132.1 (4)
N4—C15—C14108.9 (4)N10—C37—C36109.4 (4)
N4—C15—H15125.5N10—C37—H37125.3
C14—C15—H15125.5C36—C37—H37125.3
N6—C16—C17113.3 (3)N12—C38—C39111.8 (3)
N6—C16—H16A108.9N12—C38—H38A109.3
C17—C16—H16A108.9C39—C38—H38A109.3
N6—C16—H16B108.9N12—C38—H38B109.3
C17—C16—H16B108.9C39—C38—H38B109.3
H16A—C16—H16B107.7H38A—C38—H38B107.9
C18—C17—C22119.0 (4)C44—C39—C40119.4 (4)
C18—C17—C16122.3 (4)C44—C39—C38121.1 (4)
C22—C17—C16118.5 (4)C40—C39—C38119.5 (4)
C17—C18—C19121.2 (4)C41—C40—C39120.4 (4)
C17—C18—H18119.4C41—C40—H40119.8
C19—C18—H18119.4C39—C40—H40119.8
C20—C19—C18119.1 (4)C40—C41—C42120.1 (4)
C20—C19—H19120.4C40—C41—H41120.0
C18—C19—H19120.4C42—C41—H41120.0
C21—C20—C19119.9 (4)C43—C42—C41119.9 (4)
C21—C20—H20120.1C43—C42—H42120.1
C19—C20—H20120.1C41—C42—H42120.1
C22—C21—C20120.2 (4)C42—C43—C44119.8 (4)
C22—C21—H21119.9C42—C43—H43120.1
C20—C21—H21119.9C44—C43—H43120.1
C21—C22—C17120.5 (4)C39—C44—C43120.4 (4)
C21—C22—H22119.7C39—C44—H44119.8
C17—C22—H22119.7C43—C44—H44119.8
C15—N4—N5—N60.9 (4)C37—N10—N11—N120.7 (4)
N4—N5—N6—C141.1 (4)N10—N11—N12—C361.5 (4)
N4—N5—N6—C16175.0 (3)N10—N11—N12—C38175.6 (3)
C5—N1—C1—C20.4 (6)C27—N7—C23—C240.3 (6)
N1—C1—C2—C30.5 (7)N7—C23—C24—C251.1 (7)
N1—C1—C2—Br1179.9 (3)N7—C23—C24—Br2178.4 (3)
C1—C2—C3—C40.9 (6)C23—C24—C25—C261.4 (6)
Br1—C2—C3—C4179.5 (3)Br2—C24—C25—C26178.0 (3)
C6—N2—C4—C3178.7 (5)C28—N8—C26—C270.0 (5)
C6—N2—C4—C50.7 (5)C28—N8—C26—C25178.5 (5)
C2—C3—C4—N2178.3 (4)C24—C25—C26—N8177.9 (4)
C2—C3—C4—C51.1 (6)C24—C25—C26—C270.5 (6)
C1—N1—C5—N3178.3 (4)C23—N7—C27—N9178.7 (4)
C1—N1—C5—C40.8 (6)C23—N7—C27—C261.3 (6)
C6—N3—C5—N1178.0 (4)C28—N9—C27—N7179.6 (4)
C13—N3—C5—N11.7 (6)C35—N9—C27—N72.7 (6)
C6—N3—C5—C40.0 (4)C28—N9—C27—C260.5 (5)
C13—N3—C5—C4179.7 (3)C35—N9—C27—C26177.2 (3)
N2—C4—C5—N1178.3 (4)N8—C26—C27—N7179.7 (4)
C3—C4—C5—N11.2 (7)C25—C26—C27—N71.0 (7)
N2—C4—C5—N30.4 (5)N8—C26—C27—N90.3 (5)
C3—C4—C5—N3179.1 (4)C25—C26—C27—N9179.0 (4)
C4—N2—C6—N30.7 (5)C26—N8—C28—N90.3 (5)
C4—N2—C6—C7179.7 (4)C26—N8—C28—C29178.5 (4)
C5—N3—C6—N20.5 (5)C27—N9—C28—N80.5 (5)
C13—N3—C6—N2179.9 (4)C35—N9—C28—N8176.9 (4)
C5—N3—C6—C7180.0 (4)C27—N9—C28—C29178.3 (4)
C13—N3—C6—C70.4 (7)C35—N9—C28—C294.4 (7)
N2—C6—C7—C12159.2 (4)N8—C28—C29—C34155.2 (4)
N3—C6—C7—C1221.3 (6)N9—C28—C29—C3423.5 (7)
N2—C6—C7—C820.2 (6)N8—C28—C29—C3024.1 (6)
N3—C6—C7—C8159.3 (4)N9—C28—C29—C30157.3 (4)
C12—C7—C8—C90.4 (6)C34—C29—C30—C310.0 (6)
C6—C7—C8—C9179.8 (4)C28—C29—C30—C31179.3 (4)
C7—C8—C9—C102.1 (6)C29—C30—C31—C320.7 (6)
C8—C9—C10—C112.8 (6)C30—C31—C32—C331.1 (6)
C9—C10—C11—C121.1 (6)C31—C32—C33—C340.9 (6)
C8—C7—C12—C112.2 (6)C32—C33—C34—C290.2 (6)
C6—C7—C12—C11178.5 (4)C30—C29—C34—C330.3 (6)
C10—C11—C12—C71.5 (6)C28—C29—C34—C33179.5 (4)
C5—N3—C13—C14116.3 (4)C27—N9—C35—C36115.4 (4)
C6—N3—C13—C1464.2 (6)C28—N9—C35—C3661.6 (6)
N5—N6—C14—C150.8 (4)N11—N12—C36—C371.7 (4)
C16—N6—C14—C15174.8 (4)C38—N12—C36—C37175.1 (4)
N5—N6—C14—C13179.0 (4)N11—N12—C36—C35179.4 (4)
C16—N6—C14—C135.4 (6)C38—N12—C36—C356.1 (6)
N3—C13—C14—N6175.8 (4)N9—C35—C36—N12174.2 (4)
N3—C13—C14—C153.9 (6)N9—C35—C36—C377.2 (7)
N5—N4—C15—C140.4 (5)N11—N10—C37—C360.4 (5)
N6—C14—C15—N40.2 (4)N12—C36—C37—N101.3 (5)
C13—C14—C15—N4179.6 (4)C35—C36—C37—N10179.9 (4)
N5—N6—C16—C17114.4 (4)C36—N12—C38—C3976.5 (5)
C14—N6—C16—C1770.3 (5)N11—N12—C38—C3996.3 (4)
N6—C16—C17—C1822.8 (5)N12—C38—C39—C44116.3 (4)
N6—C16—C17—C22161.0 (3)N12—C38—C39—C4061.8 (5)
C22—C17—C18—C191.2 (6)C44—C39—C40—C410.3 (6)
C16—C17—C18—C19177.4 (4)C38—C39—C40—C41177.8 (3)
C17—C18—C19—C201.1 (6)C39—C40—C41—C420.7 (6)
C18—C19—C20—C210.0 (6)C40—C41—C42—C430.3 (6)
C19—C20—C21—C220.9 (6)C41—C42—C43—C440.6 (6)
C20—C21—C22—C170.7 (6)C40—C39—C44—C430.5 (6)
C18—C17—C22—C210.3 (6)C38—C39—C44—C43178.6 (3)
C16—C17—C22—C21176.7 (4)C42—C43—C44—C391.0 (6)

Experimental details

Crystal data
Chemical formulaC22H17BrN6
Mr445.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)41.122 (6), 5.8358 (10), 15.988 (3)
β (°) 93.922 (6)
V3)3827.8 (11)
Z8
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.32 × 0.05 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.878, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
14153, 7510, 4016
Rint0.088
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 0.96
No. of reflections7510
No. of parameters524
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.43

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009)'.

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. Lett. 17, 6567–6571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJiyeon, O., Sangseop, K., Kyu-Yang, Y., Nak-Jung, K., Hyung, S. H., Je-Yoel, C. & Kyoungho, S. (2010). Biochem. Pharmacol. 79, 596–609.  Web of Science PubMed Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOuzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPassannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A. & Cirrincione, G. (1998). Heterocycles, 48, 1229–1235.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomczuk, B. E., Taylor, C. J., Moses, L. M., Sutherland, D. B., Lo, Y. S., Johnson, D. N., Kinnier, W. B. & Kilpatrick, B. F. (1991). J. Med. Chem. 34, 2993–3006.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o890-o891
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds